Recent Perspectives on Rearrangement Reactions of Ylides Via Carbene Transfer Reactions Sripati Jana, Yujing Guo, and Rene M

Total Page:16

File Type:pdf, Size:1020Kb

Recent Perspectives on Rearrangement Reactions of Ylides Via Carbene Transfer Reactions Sripati Jana, Yujing Guo, and Rene M Minireview Chemistry—A European Journal doi.org/10.1002/chem.202002556 & Organic Chemistry |Reviews Showcase| Recent Perspectives on Rearrangement Reactions of Ylides via Carbene Transfer Reactions Sripati Jana, Yujing Guo, and Rene M. Koenigs*[a] Chem. Eur. J. 2020, 26,1–13 1 2020 The Authors. Published by Wiley-VCH GmbH && These are not the final page numbers! ÞÞ Minireview Chemistry—A European Journal doi.org/10.1002/chem.202002556 Abstract: Among the available methods to increase the mo- between p-bond and negatively charged atom followed by lecular complexity, sigmatropic rearrangements occupy a simultaneous redistribution of p-electrons. This minireview distinct position in organic synthesis. Despite being known describes the advances in this research area made in recent for over a century sigmatropic rearrangement reactions of years, which now opens up metal-catalyzed enantioselective ylides via carbene transfer reaction have only recently come sigmatropic rearrangement reactions, metal-free photo- of age. Most of the ylide mediated rearrangement processes chemical rearrangement reactions and novel reaction path- involve rupture of a s-bond and formation of a new bond ways that can be accessed via ylide intermediates. Introduction In 1912, Rainer Ludwig Claisen reported on the reaction of allyl vinyl ether 1a under thermal reaction conditions to deliver g,d-unsaturated carbonyl compound 2a, which is now text- book knowledge in undergraduate course and commonly known as the Claisen reaction (Scheme 1a).[1] The Claisen rear- rangement is an example of a [3,3]-sigmatropic rearrangement reaction. Sigmatropic rearrangement reactions are character- ized by the migration of a s-bond, flanked by at least one p- system, to a new position and the order of rearrangement re- actions is determined by the original and terminal position of the migratory group. Sigmatropic rearrangements thus involve the reorganization of multiple s-bonds and consequently enable the access of complex molecular systems through well- defined predictable transition states.[1] These features make sig- matropic rearrangement an important toolbox in synthesis methodology. This process can be classified into two key cate- gories (a) ylide mediated or neutral rearrangements (3 to 4) and (b) anionic or nonbonding electron pair mediated rear- rangements (5 to 6) (Scheme 1b,c).[2] Ylide mediated rearrangement reactions are accessed in general by two methods, either (a) by deprotonation of corre- sponding onium salts with a base or (b) by reaction of electro- Scheme 1. Rearrangement reactions. philic metal-carbene or free-carbene intermediates with a nu- cleophile.[2] The latter is one of the most important strategies to conduct efficient rearrangement reactions and the required proceeds, depending on the substituents pattern, via [2,3]- or electrophilic carbene intermediate, is most generally obtained [1,2]-sigmatropic rearrangement reactions (Scheme 2).[2] through metal-catalyzed or photochemical decomposition of The stereochemical configuration of the newly formed s- diazoalkanes 8. The reaction of the electron-deficient carbene bond can be controlled by the prevailing stereocenters within intermediate 8’ or 8’’ with a nonbonding lone pair of hetero- the starting materials, chiral ligands or chiral auxiliaries. These atom nucleophiles 7 generates a metal-bound ylide 10 or a strategies have been widely employed with limited success,[3,4] free ylide 9 that participates in the rearrangement step, which and only recently the first reports on highly enantioselective sigmatropic rearrangement reactions via carbene transfer reac- [5,6] [a] S. Jana, Y. Guo, Prof. Dr. R. M. Koenigs tions and ylide intermediate have been reported. The lack Institute of Organic Chemistry, RWTH Aachen University of existing methods and understanding can, in some part, be Landoltweg 1, 52074 Aachen (Germany) rationalized by missing knowledge on the rearrangement step E-mail: [email protected] Homepage: www.koenigslab.rwth-aachen.de itself. With the resurgence of photochemical carbene transfer The ORCID identification number(s) for the author(s) of this article can be reactions and detailed DFT calculations, the importance of free found under: https://doi.org/10.1002/chem.202002556. ylide intermediates in rearrangement was recently recog- 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access nized.[7] article under the terms of Creative Commons Attribution NonCommercial An intricacy of ylide-mediated rearrangement reactions lies License, which permits use, distribution and reproduction in any medium, within the chemoselectivity of the rearrangement step itself provided the original work is properly cited and is not used for commercial purposes. and different types of rearrangement processes find common Selected by the Editorial Office for our Showcase of outstanding Review- application, depending on the substitution pattern of the ylide type articles http://www.chemeurj.org/showcase. intermediate (Scheme 2).[8–10] However, recent advances in this && Chem. Eur. J. 2020, 26,1–13 www.chemeurj.org 2 2020 The Authors. Published by Wiley-VCH GmbH ÝÝ These are not the final page numbers! Minireview Chemistry—A European Journal doi.org/10.1002/chem.202002556 research area now demonstrate initial application that permit face differentiation (formation of 25) and thus allows enantio- the control of the reaction pathway by choice of reaction con- specific ylide formation (Scheme 3b),[5,6] the other strategy har- ditions and therefore allow for new reactivity modes of ylide nesses latest developments in catalyst design to improve the intermediates.[11–14] face differentiation and thus allows for high asymmetric induc- This minireview aims at providing the reader with an over- tion.[6,23] view on the advances made in the past five years that have In 2017, Wang and co-workers reported on the first highly significantly developed the field of sigmatropic rearrangement enantioselective [2,3]-sigmatropic rearrangement reaction via carbene transfer reactions. These developments include the of allyl trifluoromethylsulfides 24. In the presence of the realization of highly enantioselective, metal-catalyzed sigma- Rh2(DOSP)4 catalyst, donor/acceptor diazoalkanes 7 readily un- tropic rearrangement reactions, metal-free photochemical rear- dergo formation of an electrophilic intermediate rhodium-car- rangement reactions and novel reaction pathways that can be bene complex 27, that can react with allyl trifluoromethylsul- accessed via ylide intermediates and that are not covered in fides 24 with a high degree of stereocontrol to form the pivo- previous reviews.[2] In each section, we will discuss the advan- tal ylide intermediate 25. Subsequent [2,3]-sigmatropic rear- ces that were made and give an overview on the respective re- rangement then furnishes the corresponding trifluoromethyl action mechanism to provide a detailed understanding. thioether 26 reaction products. Importantly, the stereo-deter- mining step lies within the addition reaction of the sulfide 24 Catalytic, Enantioselective Sigmatropic to the rhodium-carbene intermediate 27. The high degree of Rearrangements stereocontrol is presumably due to both steric and electronic Without doubt, asymmetric catalysis is one of the key advan- ces in the chemical sciences and was honored with the Nobel Prize in chemistry in 2001.[15] Many important milestones, rang- [16] Sripati Jana obtained his B.Sc. (2016) from ing from asymmetric organocatalysis, catalysis with chiral-at- RKMVC College Rahara, Kolkata, and M.Sc. [17] [18] metal complexes, or biocatalysis have been achieved and (2018) from Indian Institute of Technology today a plethora of different approaches towards catalytic, Kharagpur, India. In 2018, Sripati moved to asymmetric synthesis have been developed and revolutionized RWTH Aachen University, Germany, for his [19] doctoral study in the group of Prof. Dr. Rene modern synthesis. While asymmetric sigmatropic rearrange- M. Koenigs. His research interest is focused on ment reaction of allylic alcohols and derivatives thereof, have the metal catalyzed and photochemical car- been extensively studied by the Davies group and high levels bene transfer reactions. of enantioselectivity could be obtained,[20] the development of asymmetric sigmatropic rearrangement reactions proceeding via ylide intermediates of non-alcohol substrates remained elu- sive in organic synthesis. The [2,3]-sigmatropic rearrangement reaction of allyl sulfides Yujing Guo obtained her B.Sc. (2015) from 17 with diazoalkanes 8 was initially discovered in 1968 by Zhoukou Normal University, China, and M.Sc. Kirmse and Kapps, who reported on the copper-catalyzed reac- (2018) from Zhengzhou University, China. She tion of an allylic thiol with diazomethane.[21a] However, this re- then moved to RWTH Aachen University, Ger- many, for her doctoral study. She is working action only found its way into the organic synthesis repertoire in the group of Prof. Dr. Rene M. Koenigs after Doyle and co-workers rediscovered this transformation in since September 2018. He research interest is 1981.[21b] Since then, [2,3]-sigmatropic rearrangement of allyl focused on metal-catalyzed and photochemi- sulfides 17, or the Doyle–Kirmse reaction, has found wide- cal cyclopropanation reactions. spread application in organic synthesis to access highly func- tionalized building blocks with applications in total synthe- sis.[22] Many groups reported their efforts using chiral catalysts[3]
Recommended publications
  • Rearrangement Reactions
    Rearrangement Reactions A rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. 1, 2-Rearrangements A 1, 2-rearrangement is an organic reaction where a substituent moves from one atom to another atom in a chemical compound. In a 1, 2 shift the movement involves two adjacent atoms but moves over larger distances are possible. In general straight-chain alkanes, are converted to branched isomers by heating in the presence of a catalyst. Examples include isomerisation of n-butane to isobutane and pentane to isopentane. Highly branched alkanes have favorable combustion characteristics for internal combustion engines. Further examples are the Wagner-Meerwein rearrangement: and the Beckmann rearrangement, which is relevant to the production of certain nylons: Pericyclic reactions A pericyclic reaction is a type of reaction with multiple carbon-carbon bonds making and breaking wherein the transition state of the molecule has a cyclic geometry and the reaction progresses in a concerted fashion. Examples are hydride shifts [email protected] and the Claisen rearrangement: Olefin metathesis Olefin metathesis is a formal exchange of the alkylidene fragments in two alkenes. It is a catalytic reaction with carbene, or more accurately, transition metal carbene complexintermediates. In this example (ethenolysis, a pair of vinyl compounds form a new symmetrical alkene with expulsion of ethylene. Pinacol rearrangement The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions.
    [Show full text]
  • 1 the Principle of Conservation of Structural Aspect: Facilitating Visual Communication and Learning in Organic Chemistry Instr
    1 The Principle of Conservation of Structural Aspect: Facilitating Visual Communication and Learning in Organic Chemistry Instruction John Andraos CareerChem 504-1129 Don Mills Road Toronto, ON M3B 2W4 Canada [email protected] Abstract An effective pedagogical method is presented for the visual communication of chemical reactions learned in organic chemistry undergraduate courses. The basis for the method is the preservation of the visual aspect of reactant and product structures so that the tracking of cleaved and formed chemical bonds is made self-evident. This consequently leads to improved clarity of presentation and a better understanding and grasp of proposed reaction mechanisms to explain product outcomes. The method is demonstrated for a variety of individual reaction types and synthesis plans. Various visual training exercises are also presented using ChemDraw Ultra 7.0 software and literature table of contents (TOC) graphics appearing in journal articles. Keywords: upper-division undergraduate, curriculum, organic chemistry pedagogy, problem solving, organic synthesis Introduction It is well known that when students encounter organic chemistry for the first time in undergraduate courses, they perceive the subject as “hard”. From their point of view their complaint stems from two major issues: (a) the apparent overwhelming volume of material that needs to be digested and learned in a relatively short period of time 2 (typically a three-month course session); and (b) the material is presented in a visual manner that is not always “easy” or evident to understand what is going in any given chemical reaction that is presented to them. The inevitable outcome is increased frustration and ultimately a dislike for the subject for the majority of students, particularly those that take organic chemistry as a standard mandatory requirement for other disciplines such as pre-medical studies and life sciences.
    [Show full text]
  • Carbene Rearrangements: Intramolecular Interaction of a Triple Bond with a Carbene Center
    An Abstract OF THE THESIS OF Jose C. Danino for the degree of Doctor of Philosophy in Chemistry presented on _Dcc, Title: Carbene RearrangementE) Intramolecular Interaction of a Triple Bond with aCarbene Center Redacted for Privacy Abstract approved: Dr. Vetere. Freeman The tosylhydrazones of2-heptanone, 4,4-dimethy1-2- heptanone, 6-heptyn-2-one and 4,4-dimethy1-6-heptyn-2- one were synthesizedand decomposed under a varietyof reaction conditions:' drylithium and sodium salt pyrolyses, sodium methoxide thermolysesin diglyme and photolyses of the lithium salt intetrahydrofuran. The saturated ana- logues 2-heptanone tosylhydrazoneand its 4,4-dimethyl isomer afforded the alkenesarising from 6-hydrogeninser- product distribution in the tion. It was determined that differ- dry salt pyrolyses of2-heptanone tosylhydrazone was ent for the lithiumand the sodium salts. However, the product distribution of thedry sodium salt was verysimilar diglyme to product distributionobtained on thermolysis in explained by a with sodium methoxide. This difference was reaction of lithium bromide(present as an impurity inall compound to the lithium salts)with the intermediate diazo afford an organolithiumintermediate that behaves in a some- what different fashionthan the free carbene.The unsaturated analogues were found to produce a cyclic product in addition to the expected acyclic alkenes arising from 3-hydrogen insertion. By comparison of the acyclic alkene distri- bution obtained in the saturated analogues with those in the unsaturated analogues, it was concluded that at leastsome cyclization was occurring via addition of the diazo moiety to the triple bond. It was determined that the organo- lithium intermediateresulting from lithium bromide cat- alyzed decomposition of the diazo compound was incapable of cyclization.
    [Show full text]
  • The Claisen Condensation
    Lecture 19 The Claisen Condensation •• •• • • O • O • – • CH3COCH2CH3 • CH2 COCH2CH3 March 29, 2016 Chemistry 328N Exam Tomorrow Evening!! Review tonight 5PM -6PM Welch 1.316 Chemistry 328N Some “loose ends” before we go on Spectrosopy of acid derivatives A selective reduction for your tool box Chemistry 328N Reduction of Acid Derivatives Acids (page 679-681) Esters (page 738-739) Please work through the example on 738 Amides (page 739-742) Nitriles (page 742) Selective reductions with NaBH4 Chemistry 328N DIBAlH Diisobutylaluminum hydride (DIBAlH) at -78°C selectively reduces esters to aldehydes •at -78°C, the tetrahedral intermediate does not collapse and it is not until hydrolysis in aqueous acid that the carbonyl group of the aldehyde is liberated Stable at low temperature Chemistry 328N Infrared Spectroscopy C=O stretching frequency depends on whether the compound is an acyl chloride, anhydride, ester, or amide. C=O stretching frequency n O O O O O CH3CCl CH3COCCH3 CH3COCH3 CH3CNH2 1822 cm-1 1748 1736 cm-1 1694 cm-1 and 1815 cm-1 Chemistry 328N Infrared Spectroscopy Anhydrides have two peaks due to C=O stretching. One from symmetrical stretching of the C=O and the other from an antisymmetrical stretch. C=O stretching frequency n O O CH3COCCH3 1748 and 1815 cm-1 Chemistry 328N Infrared Spectroscopy Nitriles are readily identified by absorption due to carbon-nitrogen triple bond stretching that is “all alone” in the 2210-2260 cm-1 region. Chemistry 328N Hydrolysis and Decarboxylation Chemistry 328N t-Butyl esters Chemistry 328N t-Butyl esters Chemistry 328N t-Butyl ester hydrolysis Note which bond is broken in this hydrolysis !! Chemistry 328N Recall our discussion of the acidity of protons a to carbonyls The anion is stabilized by resonance The better the stabilization, the more acidic the a proton Acidity of a protons on“normal” aldehydes and ketones is about that of alcohols and less than water…pKa ~ 18-20 Some are far more acidic, i.e.
    [Show full text]
  • 1 Msc(Chem) 1St Sem Dr Sanjeev Kumar Jha M.L.T. College, Saharsa Reaction Mechanism: Structure and Reactivity Types Of
    MSc(Chem) 1st Sem Dr Sanjeev Kumar Jha M.L.T. College, Saharsa Reaction Mechanism: Structure and reactivity Types of reactions:-- 1.Addition reaction An addition reaction , is simply termed as a reaction where two or more molecules combine to form a larger one (the adduct). Addition reactions are limited to chemical compounds that have multiple bonds, such as molecules with carbon–carbon double bonds (alkenes), or with triple bonds (alkynes), and compounds that have rings, which are also considered points of unsaturation. Molecules containing carbon— hetero double bonds like carbonyl (C=O) groups, or imine (C=N) groups, can undergo addition, as they too have double-bond character. An addition reaction is the reverse of an elimination reaction. For instance, the hydration of an alkene to an alcohol is reversed by dehydration. There are two main types of polar addition reactions: electrophilic addition and nucleophilic addition. Two non-polar addition reactions exist as well, called free-radical addition and cycloadditions. Addition reactions are also encountered in polymerizations and called addition polymerization. 1 General overview of addition reactions. Top to bottom: electrophilic addition to alkene, nucleophilic addition of nucleophile to carbonyl and free-radical addition of halide to alkene. 2.Elimination reaction An elimination reaction is a type of reaction in which two substituents are removed from a molecule in either a one or two-step mechanism. The one- step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction. The numbers refer not to the number of steps in the mechanism, but rather to the kinetics of the reaction: E2 is bimolecular (second-order) while E1 is unimolecular (first-order).
    [Show full text]
  • Methodology Studies on One and Two Carbon Ring Expansion on Polyether Polycyclic Natural Products
    Mamalis, Dimitrios (2020) Methodology studies on one and two carbon ring expansion on polyether polycyclic natural products. MRes thesis. http://theses.gla.ac.uk/81800/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Methodology Studies on One and Two Carbon Ring Expansion on Polyether Polycyclic Natural Products Dimitrios Mamalis, BSc Chemistry Thesis Submitted in the fulfillment of the requirements for the degree of Master in Research School of Chemistry College of Science and Engineering University of Glasgow September 2020 Abstract Medium sized cyclic ethers are found in many natural products, with the most notable example being the polyether polycyclic family of marine toxins. Due to their increased size loss of entropy, torsional strain and unfavourable transannular interactions, as well as other effects require different synthetic approaches than the smaller homologues. In this work, different pathways were explored for the efficient synthesis of the seven-, eight- and nine- membered rings of marine polyether polycyclic natural products, through the expansion of a common six-membered ether substrate.
    [Show full text]
  • Molecular REARRANGEMENTS
    Key words: rearrangement reactions, migration to electron deficient nitrogen, electron deficient oxygen, electron deficient carbon. Migratory aptitude, cross- over experiments Rearrangment reactions are an interesting class of reactions wherein a group or an atom migration during the course of the reaction. While most of the rearrangements are designed in that fashion, it can also be undesirable in some cases. Depending on the reaction conditions, the nature of rearrangement (and the product) could also change. In this module, various rearrangement reactions are presented. These are classified with respect the the migration origin and migration terminus. Emphasis has been placed on examples involving skeletal rearrangements that are practically used in day-to-day organic synthesis. Rearrangement reactions involve the migration of a group or an atom from one center (migration origin) to another (migration terminus) within the same molecule. W W A B A B In the above-mentioned generalized representation, atom-A is migration origin from where the migrating group “W” moves to atom-B (migration terminus) These rearrangements can be roughly classified on the basis of the nature of the migrating group/atom, i.Nucleophilic or Anionotropic: migrating group migrates with its electron pair. ii.Electrophilic or cationotropic: migrating group migrates without its electron pair. iii.Free radical: migrating group migrates with only one electron. Of these most commonly found are nucleophilic one. These rearrangements can take place in two possible modes, i.Intramolecular : In these migrating group do not completely detach from the migration origin and occurs within the same molecule. W A B A B W ii. Intermolecular : In these migrating group is detached from the migration origin.
    [Show full text]
  • II.Pericyclic Reactions 7
    M.Sc. Semester-IV Core Course-9 (CC-9) Synthetic Organic Chemistry II.Pericyclic Reactions 7. Claisen Rearrangement, The Nazarov Reaction Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi II Pericyclic Reactions 20 Hrs Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1, 3, 5-hexatriene, allyl system, Classification of pericyclic reactions. FMO approach, Woodward-Hoffman correlation diagram method and PMO approach for pericyclic reaction under thermal and photochemical conditions. Electrocyclic reactions: Conrotatary and disrotatary motion, 4n and (4n+2) systems, Cycloaddition reaction: [2+2] and [4+2] cycloaddition reaction, Cycloaddition of ketones, Secondary effects in [4+2] cycloaddition. Stereochemical effects on rate of cycloaddition reaction, Diels-Alder reaction, 1,3-dipolar cycloaddition, Chelotropic reaction, The Nazarov reaction. Sigmotropic rearrangement: Suprafacial and antarafacial shift involving H and carbon-moieties, Peripatetic cyclopropane bridge, Retention and inversion of configuration, [3,3]-, [1,5]-, [2,3]-, [4,5]-, [5,5]-, and [9,9]- Sigmatropic rearrangements, Claisen rearrangements (including Aza-Claisen, Ireland-Claisen), Cope rearrangements (including Oxy-Cope, Aza-Cope), Sommelet-Hauser rearrangements, Group transfer reaction, Ene reaction, Mislow - Evans rearrangement, Walk rearrangement. Coverage: 1.Claisen Rearrangement 2.The Nazarov Reaction 2 Claisen Rearrangement : [3, 3] Sigmatropic Rearrangement How and Why? Claisen rearrangement: A thermal rearrangement of allyl phenyl ethers to form 2- allylphenols. Rainer Ludwig Claisen O OH 1851-1930 200-250°C Allyl phenyl ether 2-Allylphenol Dr. Rajeev Ranjan 3 Claisen Rearrangement : [3, 3] Sigmatropic Rearrangement Mechanism: O O heat Allyl phenyl Transition ether state O OH keto-enol tautomerism H A cyclohexadienone o-Allylphenol intermediate Dr.
    [Show full text]
  • Discovery of the Michael Reaction
    IN MEMORIAM DOI: 10.1002/ejoc.200901130 Discovery of the Michael Reaction Takashi Tokoroyama*[a] Keywords: Michael addition / History of science / Chemical creativity / Reminiscences This essay deals with the details of the discovery of the the Michael addition were observed prior to Michael’s crucial Michael addition reaction, focusing on Arthur Michael, an finding, and the validity of his credit as the discoverer is dis- American chemist, after whom it is named. Michael envis- cussed. At the same time, a general consideration is made on aged the possibility of an addition reaction of sodiomalonate chemical creativity with reference to the individuality in the ester or sodioacetoacetate ester to α,β-unsaturated acid esters career and the personality of A. Michael. and confirmed this by experimentation. Some instances of Introduction At classical school, Michael received private instruction in chemistry, and in his leisure time, he enjoyed performing [1–3] The Michael reaction, addition of stabilized anions chemical experiments in a home laboratory that his father (e.g., enolate) to α,β-unsaturated carbonyl and related com- had set up for him. Toward the end of his teens, he experi- pounds, is a prototype for the conjugate addition reactions enced a great trial: his plan to enter Harvard College was [4,5] of various nucleophiles that now find wide utility in or- foiled by a serious illness. After wavering about his future ganic syntheses (Scheme 1). career following his recovery, Michael decided to study chemistry in Germany. During a family sojourn in Ger- many in the summer of 1871 (the year of the establishment of the German Empire), Michael had the fortune to be ad- mitted to the Chemical Laboratory of Professor August W.
    [Show full text]
  • Unit – I - Carboxylic Acids and Their Derivatives - Scy1315
    SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF CHEMISTRY UNIT – I - CARBOXYLIC ACIDS AND THEIR DERIVATIVES - SCY1315 1 1. CARBOXYLIC ACIDS AND THEIR DERIVATIVES Structure and nomenclature - General methods of preparation of carboxylic acids – acidity – Effect of substituents on acidity – Physical and Chemical properties –Hell-Volhard-Zelinsky Reaction –Dicarboxylic acids - oxalic, malonic succinic, glutaric, adipic, phthalic, acrylic, crotonic and cinnamic acids – Stereospecific addition to maleic and fumaric acids – Derivatives of carboxylic acids – Acid halides, esters, anhydrides and amides – Preparation and Properties – Relative reactivity - Acid and alkaline hydrolysis of esters – trans-esterification. Organic compounds containing carboxylic group are known as carboxylic acids. Their general formulae is RCOOH. NOMENCLATURE H O O HO HO Ethanoic acid methanoic acid O O HO Propanoic acid HO Butanoic acid O (2Z)-3-phenylprop-2-enoic acid O HO Benzoic acid HO O O HO oxo(phenyl)acetic acid 2 ACID DERIVATIVES O O O O H2N Cl benzoyl chloride benzamide ethyl benzoate O O Cl H2N acetyl chloride acetamide O O O Cl H2N H2N butanamide propanoyl chloride propanamide O O O O O O ethyl acetate ethyl butanoate ethyl propanoate 3 DICARBOXILIC ACIDS O O O O HO OH HO OH oxalic acid propanedioic acid O O O O HO OH HO OH butanedioic acid (2E)-but-2-enedioic acid GENERAL PREPARATION METHODS 1. Oxidation of alcohols, aldehydes and ketones CH3CH2OH CH3CHO CH3COOH [O] [O] H [O] OH [O] O O + O HO HO 2. Hydrolysis of cyanides and amides H O+ + 3 H3O CH3CN CH3CONH2 CH3 COOH C H SO K + KCN C H CN 6 5 3 6 5 4 3.
    [Show full text]
  • Organic Chemistry-II (Reaction Mechanism-1) MODULE No
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title Paper 5: Organic Chemistry-II (Reaction Mechanism-I) Module No and Title Module 1: Types of Organic Reactions Module Tag CHE_P5_M1_e-Text CHEMISTRY PAPER No. 5: Organic Chemistry-II (Reaction Mechanism-1) MODULE No. 1: Types of Organic Reactions ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Types of Organic Reactions 3.1 Substitution Reactions 3.2 Addition Reactions 3.3 Elimination Reactions 3.4. Rearrangement Reactions 3.5 Oxidation and Reduction Reactions 4. Summary CHEMISTRY PAPER No. 5: Organic Chemistry-II (Reaction Mechanism-1) MODULE No. 1: Types of Organic Reactions ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, you shall be able to • Know the various types of organic reactions • Learn the difference between each type of reaction • Identify the reaction types depending upon reactants and conditions • Analyze organic reactions 2. Introduction An organic reaction is a change in structure or functional group leading to formation of a new substance. The compound undergoing a change in structure or functional group is called a reactant or substrate. The knowledge of organic reactions helps in the synthesis of useful chemical compounds such as polymers, dyes, drugs, perfumes, cosmetics,
    [Show full text]
  • Give Mechanism of the Following Reactions I) Wolf-Kishner Reduction Ii) Claisen Condensation Iii) Ozonolysis of 2-Butene
    Question #61068 – Chemistry – Organic Chemistry Question: Give mechanism of the following reactions i) Wolf-Kishner reduction ii) Claisen condensation iii) Ozonolysis of 2-butene i) In general, the reaction mechanism first involves the in situ generation of a hydrazone by condensation of hydrazine with the ketone or aldehyde substrate. Sometimes it is however advantageous to use a pre-formed hydrazone as substrate (see modifications). The hydrazone is deprotonated by alkoxide base followed by a concerted, rate-determining step in which a diimide anion is formed. Collapse of this alkyldiimde with loss of N2 leads to formation of an alkylanion which can be protonated by solvent to give the desired product. ii) The Claisen condensation is a carbon–carbon bond forming reaction that occurs between two esters or one ester and anothercarbonyl compound in the presence of a strong base, resulting in a β-keto ester or a β- diketone.[1] It is named after Rainer Ludwig Claisen, who first published his work on the reaction in 1887.[2][3][4] In the first step of the mechanism, an α-proton is removed by a strong base, resulting in the formation of an enolate anion, which is made relatively stable by the delocalization of electrons. Next, the carbonyl carbon of the (other) ester is nucleophilically attacked by the enolate anion. The alkoxy group is then eliminated (resulting in (re)generation of the alkoxide), and the alkoxide removes the newly formed doubly α-proton to form a new, highly resonance-stabilized enolate anion. Aqueous acid (e.g. sulfuric acid or phosphoric acid) is added in the final step to neutralize the enolate and any base still present.
    [Show full text]