2016 Atlantic Hurricane Season
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear
1290 MONTHLY WEATHER REVIEW VOLUME 142 Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear ERIC W. UHLHORN NOAA/AOML/Hurricane Research Division, Miami, Florida BRADLEY W. KLOTZ Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida TOMISLAVA VUKICEVIC,PAUL D. REASOR, AND ROBERT F. ROGERS NOAA/AOML/Hurricane Research Division, Miami, Florida (Manuscript received 6 June 2013, in final form 19 November 2013) ABSTRACT Wavenumber-1 wind speed asymmetries in 35 hurricanes are quantified in terms of their amplitude and phase, based on aircraft observations from 128 individual flights between 1998 and 2011. The impacts of motion and 850–200-mb environmental vertical shear are examined separately to estimate the resulting asymmetric structures at the sea surface and standard 700-mb reconnaissance flight level. The surface asymmetry amplitude is on average around 50% smaller than found at flight level, and while the asymmetry amplitude grows in proportion to storm translation speed at the flight level, no significant growth at the surface is observed, contrary to conventional assumption. However, a significant upwind storm-motion- relative phase rotation is found at the surface as translation speed increases, while the flight-level phase remains fairly constant. After removing the estimated impact of storm motion on the asymmetry, a significant residual shear direction-relative asymmetry is found, particularly at the surface, and, on average, is located downshear to the left of shear. Furthermore, the shear-relative phase has a significant downwind rotation as shear magnitude increases, such that the maximum rotates from the downshear to left-of-shear azimuthal location. -
Waste Management Strategy for the British Virgin Islands Ministry of Health & Social Development
FINAL REPORT ON WASTE MANAGEMENT WASTE CHARACTERISATION STRATEGY FOR THE BRITISH J U L Y 2 0 1 9 VIRGIN ISLANDS Ref. 32-BV-2018Waste Management Strategy for the British Virgin Islands Ministry of Health & Social Development TABLE OF CONTENTS LIST OF ACRONYMS..............................................................................2 1 INTRODUCTION.........................................................3 1.1 BACKGROUND OF THE STUDY..........................................................3 1.2 SUBJECT OF THE PRESENT REPORT..................................................3 1.3 OBJECTIVE OF THE WASTE CHARACTERISATION................................3 2 METHODOLOGY.........................................................4 2.1 ORGANISATION AND IMPLEMENTATION OF THE WASTE CHARACTERISATION....................................................................4 2.2 LIMITATIONS AND DIFFICULTIES......................................................6 3 RESULTS...................................................................7 3.1 GRANULOMETRY.............................................................................7 3.2 GRANULOMETRY.............................................................................8 3.2.1 Overall waste composition..................................................................8 3.2.2 Development of waste composition over the years..........................11 3.2.3 Waste composition per fraction........................................................12 3.3 STATISTICAL ANALYSIS.................................................................17 -
Hurricane Matthew Disaster Recovery and Resilience Initiative ______
HURRICANE MATTHEW DISASTER RECOVERY AND RESILIENCE INITIATIVE ______________ A project of the North Carolina Policy Collaboratory Gavin Smith, PhD, AICP Project Director _________________ September 11, 2017 Progress Report Hurricane Matthew Disaster Recovery and Resilience Initiative Table of Contents Introduction .................................................................................................................................................. 2 A. Background ......................................................................................................................................... 2 B. Objectives ........................................................................................................................................... 2 C. Activities ............................................................................................................................................. 2 D. Organizational Structure .................................................................................................................... 4 Leveraging State and Federal Resources ..................................................................................................... 7 Executive Summaries of Project Reports .................................................................................................... 8 A. Home Place ......................................................................................................................................... 8 B. Affordable Housing .......................................................................................................................... -
Conference Poster Production
65th Interdepartmental Hurricane Conference Miami, Florida February 28 - March 3, 2011 Hurricane Earl:September 2, 2010 Ocean and Atmospheric Influences on Tropical Cyclone Predictions: Challenges and Recent Progress S E S S Session 2 I The 2010 Tropical Cyclone Season in Review O N 2 The 2010 Atlantic Hurricane Season: Extremely Active but no U.S. Hurricane Landfalls Eric Blake and John L. Beven II ([email protected]) NOAA/NWS/National Hurricane Center The 2010 Atlantic hurricane season was quite active, with 19 named storms, 12 of which became hurricanes and 5 of which reached major hurricane intensity. These totals are well above the long-term normals of about 11 named storms, 6 hurricanes, and 2 major hurricanes. Although the 2010 season was considerably busier than normal, no hurricanes struck the United States. This was the most active season on record in the Atlantic that did not have a U.S. landfalling hurricane, and was also the second year in a row without a hurricane striking the U.S. coastline. A persistent trough along the east coast of the United States steered many of the hurricanes out to sea, while ridging over the central United States kept any hurricanes over the western part of the Caribbean Sea and Gulf of Mexico farther south over Central America and Mexico. The most significant U.S. impacts occurred with Tropical Storm Hermine, which brought hurricane-force wind gusts to south Texas along with extremely heavy rain, six fatalities, and about $240 million dollars of damage. Hurricane Earl was responsible for four deaths along the east coast of the United States due to very large swells, although the center of the hurricane stayed offshore. -
Tropical Cyclone Report for Hurricane Ivan
Tropical Cyclone Report Hurricane Ivan 2-24 September 2004 Stacy R. Stewart National Hurricane Center 16 December 2004 Updated 27 May 2005 to revise damage estimate Updated 11 August 2011 to revise damage estimate Ivan was a classical, long-lived Cape Verde hurricane that reached Category 5 strength three times on the Saffir-Simpson Hurricane Scale (SSHS). It was also the strongest hurricane on record that far south east of the Lesser Antilles. Ivan caused considerable damage and loss of life as it passed through the Caribbean Sea. a. Synoptic History Ivan developed from a large tropical wave that moved off the west coast of Africa on 31 August. Although the wave was accompanied by a surface pressure system and an impressive upper-level outflow pattern, associated convection was limited and not well organized. However, by early on 1 September, convective banding began to develop around the low-level center and Dvorak satellite classifications were initiated later that day. Favorable upper-level outflow and low shear environment was conducive for the formation of vigorous deep convection to develop and persist near the center, and it is estimated that a tropical depression formed around 1800 UTC 2 September. Figure 1 depicts the “best track” of the tropical cyclone’s path. The wind and pressure histories are shown in Figs. 2a and 3a, respectively. Table 1 is a listing of the best track positions and intensities. Despite a relatively low latitude (9.7o N), development continued and it is estimated that the cyclone became Tropical Storm Ivan just 12 h later at 0600 UTC 3 September. -
10R.3 the Tornado Outbreak Across the North Florida Panhandle in Association with Hurricane Ivan
10R.3 The Tornado Outbreak across the North Florida Panhandle in association with Hurricane Ivan Andrew I. Watson* Michael A. Jamski T.J. Turnage NOAA/National Weather Service Tallahassee, Florida Joshua R.Bowen Meteorology Department Florida State University Tallahassee, Florida Jason C. Kelley WJHG-TV Panama City, Florida 1. INTRODUCTION their mobile homes were destroyed near Blountstown, Florida. Hurricane Ivan made landfall early on the morning of 16 September 2004, just west of Overall, there were 24 tornadoes reported Gulf Shores, Alabama as a category 3 across the National Weather Service (NWS) hurricane on the Saffir-Simpson Hurricane Tallahassee forecast area. The office issued Scale. Approximately 117 tornadoes were 130 tornado warnings from the afternoon of 15 reported associated with Ivan across the September until just after daybreak on 16 southeast United States. Eight people were September. killed and 17 were injured by tornadoes (Storm Data 2004; Stewart 2004). The most The paper examines the convective cells significant tornadoes occurred as hurricane within the rain bands of hurricane Ivan, which Ivan approached the Florida Gulf coast on the produced these tornadoes across the Florida afternoon and evening of 15 September. Panhandle, Big Bend, and southwest Georgia. The structure of the tornadic and non-tornadic The intense outer rain bands of Ivan supercells is examined for clues on how to produced numerous supercells over portions better warn for these types of storms. This of the Florida Panhandle, Big Bend, southwest study will focus on the short-term predictability Georgia, and Gulf coastal waters. In turn, of these dangerous storms, and will these supercells spawned dozens of investigate the problem of how to reduce the tornadoes. -
And Hurricane Michael (2018)
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform. Please provide feedback Please support the ScholarWorks@UMBC repository by emailing [email protected] and telling us what having access to this work means to you and why it’s important to you. Thank you. atmosphere Article Understanding the Role of Mean and Eddy Momentum Transport in the Rapid Intensification of Hurricane Irma (2017) and Hurricane Michael (2018) Alrick Green 1, Sundararaman G. Gopalakrishnan 2, Ghassan J. Alaka, Jr. 2 and Sen Chiao 3,* 1 Atmospheric Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; [email protected] 2 Hurricane Research Division, NOAA/AOML, Miami, FL 33149, USA; [email protected] (S.G.G.); [email protected] (G.J.A.) 3 Department of Meteorology and Climate Science, San Jose State University, San Jose, CA 95192, USA * Correspondence: [email protected]; Tel.: +1-408-924-5204 Abstract: The prediction of rapid intensification (RI) in tropical cyclones (TCs) is a challenging problem. In this study, the RI process and factors contributing to it are compared for two TCs: an axis-symmetric case (Hurricane Irma, 2017) and an asymmetric case (Hurricane Michael, 2018). -
World Bank Document
The World Bank Costa Rica Catastrophe Deferred Drawdown Option (CAT DDO) (P111926) Document of The World Bank Public Disclosure Authorized Report No: ICR00004369 IMPLEMENTATION COMPLETION AND RESULTS REPORT (IBRD-75940) ON A LOAN Public Disclosure Authorized IN THE AMOUNT OF US$65 MILLION TO THE REPUBLIC OF COSTA RICA FOR A DEVELOPMENT POLICY LOAN WITH A CATASTROPHE DEFERRED DRAWDOWN OPTION (CAT DDO) Public Disclosure Authorized October 17, 2018 Public Disclosure Authorized Social, Urban, Rural and Resilience Global Practice Central America Country Management Unit Latin America and the Caribbean Region The World Bank Costa Rica Catastrophe Deferred Drawdown Option (CAT DDO) (P111926) CURRENCY EQUIVALENTS (Exchange Rate Effective October 31, 2017) Currency Unit = Costa Rican Colones (CRC) CRC 1 = US$ 0.0018 US$1 = CRC 569.75 FISCAL YEAR January 1–December 31 ABBREVIATIONS AND ACRONYMS AyA Costa Rican National Water and Sanitation Institution (Instituto Costarricense de Acueductos y Alcantarillados) Cat DDO Catastrophe Deferred Drawdown Option CCA Climate Change Adaptation CCRIF Caribbean Catastrophe Risk Insurance Facility CEPREDENAC Coordination Center for the Prevention of Disasters in Central America and the Dominican Republic (Centro de Coordinación para la Prevención de los Desastres en America Central y República Dominicana) CNE National Commission for Risk Prevention and Emergency Management (Comisión Nacional de Prevención de Riesgos y Atención de Emergencias) Before 1999: National Emergency Commission (Comisión Nacional de Emergencia) -
Background Hurricane Katrina
PARTPART 33 IMPACTIMPACT OFOF HURRICANESHURRICANES ONON NEWNEW ORLEANSORLEANS ANDAND THETHE GULFGULF COASTCOAST 19001900--19981998 HURRICANEHURRICANE--CAUSEDCAUSED FLOODINGFLOODING OFOF NEWNEW ORLEANSORLEANS •• SinceSince 1559,1559, 172172 hurricaneshurricanes havehave struckstruck southernsouthern LouisianaLouisiana ((ShallatShallat,, 2000).2000). •• OfOf these,these, 3838 havehave causedcaused floodingflooding inin NewNew thethe OrleansOrleans area,area, usuallyusually viavia LakeLake PonchartrainPonchartrain.. •• SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: 1812,1812, 1831,1831, 1860,1860, 1915,1915, 1947,1947, 1965,1965, 1969,1969, andand 20052005.. IsaacIsaac MonroeMonroe ClineCline USWS meteorologist Isaac Monroe Cline pioneered the study of tropical cyclones and hurricanes in the early 20th Century, by recording barometric pressures, storm surges, and wind velocities. •• Cline charted barometric gradients (right) and tracked the eyes of hurricanes as they approached landfall. This shows the event of Sept 29, 1915 hitting the New Orleans area. • Storm or tidal surges are caused by lifting of the oceanic surface by abnormal low atmospheric pressure beneath the eye of a hurricane. The faster the winds, the lower the pressure; and the greater the storm surge. At its peak, Hurricane Katrina caused a surge 53 feet high under its eye as it approached the Louisiana coast, triggering a storm surge advisory of 18 to 28 feet in New Orleans (image from USA Today). StormStorm SurgeSurge •• The surge effect is minimal in the open ocean, because the water falls back on itself •• As the storm makes landfall, water is lifted onto the continent, locally elevating the sea level, much like a tsunami, but with much higher winds Images from USA Today •• Cline showed that it was then northeast quadrant of a cyclonic event that produced the greatest storm surge, in accordance with the drop in barometric pressure. -
The Tropic Islesbreezes
Published by On Trac Publishing, P.O. Box 985, Bradenton, FL 34206 (941) 723-5003 Tropic Isles • 1503 28th Ave. West • Palmetto, Florida 34221 • (941) 721-8888 • Website: www.TropicIsles.net Home of the Month Meet Your New Neighbors By Cindy Shaw The Tropic Isles I’d like to introduce you to our new, part-time neighbors, PAUL September and MIRIAM GROSSI. They live in their new home at 128 Capri Dr. Paul is originally from New York City, NY, but both he and Miriam now reside part-time in Millersburg, Ohio. Paul is a retired hospital administrator in Ohio and Okla- homa where he worked for 35 years. Miriam is a retired RN of 17 years and has foster parented newborns for many years. Paul and Miriam also ran a B & B in Millersburg for 13 years. They have been coming down to this area for 14 years and have been vacationing on Anna Maria Island. While on vacation, they 2017 would often ride out to Emerson Point. They would also do an exchange system with their B & B allowing interested people to September’s “Home of the Month” belongs to Tommy and stay in their B & B in exchange for staying in other peoples’ homes. Charlene Barlow at 1312 29th Ave. W. Lots of work and loving When they became interested in putting down roots, they touches, both inside and out, went into the creation of this cute began looking at vacant lots in the area where they could build little “tropical cottage”. Congratulations! a house. They went to Jacobson Homes who sent them to Tropic Isles. -
State of the Climate in 2016
STATE OF THE CLIMATE IN 2016 Special Supplement to the Bullei of the Aerica Meteorological Society Vol. 98, No. 8, August 2017 STATE OF THE CLIMATE IN 2016 Editors Jessica Blunden Derek S. Arndt Chapter Editors Howard J. Diamond Jeremy T. Mathis Ahira Sánchez-Lugo Robert J. H. Dunn Ademe Mekonnen Ted A. Scambos Nadine Gobron James A. Renwick Carl J. Schreck III Dale F. Hurst Jacqueline A. Richter-Menge Sharon Stammerjohn Gregory C. Johnson Kate M. Willett Technical Editor Mara Sprain AMERICAN METEOROLOGICAL SOCIETY COVER CREDITS: FRONT/BACK: Courtesy of Reuters/Mike Hutchings Malawian subsistence farmer Rozaria Hamiton plants sweet potatoes near the capital Lilongwe, Malawi, 1 February 2016. Late rains in Malawi threaten the staple maize crop and have pushed prices to record highs. About 14 million people face hunger in Southern Africa because of a drought that has been exacerbated by an El Niño weather pattern, according to the United Nations World Food Programme. A supplement to this report is available online (10.1175/2017BAMSStateoftheClimate.2) How to cite this document: Citing the complete report: Blunden, J., and D. S. Arndt, Eds., 2017: State of the Climate in 2016. Bull. Amer. Meteor. Soc., 98 (8), Si–S277, doi:10.1175/2017BAMSStateoftheClimate.1. Citing a chapter (example): Diamond, H. J., and C. J. Schreck III, Eds., 2017: The Tropics [in “State of the Climate in 2016”]. Bull. Amer. Meteor. Soc., 98 (8), S93–S128, doi:10.1175/2017BAMSStateoftheClimate.1. Citing a section (example): Bell, G., M. L’Heureux, and M. S. Halpert, 2017: ENSO and the tropical Paciic [in “State of the Climate in 2016”]. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.