Vaccine Safety Basics Learning Manual

Total Page:16

File Type:pdf, Size:1020Kb

Vaccine Safety Basics Learning Manual VACCINE SAFETY BASICS learning manual The content of this course has been compiled by leading international vaccine experts who are committed to the promo- tion of best practice in the implementation of immunization programmes across the world. CONTRIBUTORS Molly Mort (project coordinator and writer of a pilot course, which served as basis of this course). Adele Baleta (South Africa), Frank Destefano (US CDC), Jane G. Nsubuga (US CDC), Claudia Vellozzi (US CDC), Ushma Mehta (Medicines Control Council, South Africa), Robert Pless (Public Health Agency of Canada), Siti Asfijah Abdoellah (NADFC Indonesia), Prima Yosephine (EPI-MOH, Indonesia), Sherli Karolina (EPI-MOH, Indonesia). PHOTO CREDITS Barbara Pahud (Children’s Mercy Hospitals and Clinics, UMKC), WHO Photo Library, CDC Photo Library. OVERALL COORDINATION (WHO) Patrick Zuber, Philipp Lambach. DESIGN AND TECHNICAL IMPLEMENTATION Oksana Fillmann, Munich. SEND US FEEDBACK Please let us know how you liked the course. Send us an email with your suggestions to: [email protected]. © World Health Organization 2013 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpreta- tion and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. Table of Contents Introduction ...................................................................................................................................... 7 Getting starting ................................................................................................................................ 8 MODULE 1: Introduction to vaccine safety ................................................................................ 9 Overview ............................................................................................................................... 10 Importance of immunization programmes ...................................................................... 10 History of vaccine development ....................................................................................... 11 Expectations towards safety of vaccines ...................................................................... 13 How the immune system works ....................................................................................... 14 How vaccines work ............................................................................................................. 16 Vaccine-preventable diseases ......................................................................................... 17 Types of vaccine .................................................................................................................. 18 Adverse events .................................................................................................................... 19 Classification ..........................................................................................................................19 Causes .....................................................................................................................................20 Frequency and severity ........................................................................................................21 Vaccine safety in immunization programmes ................................................................23 Vaccine regulations ............................................................................................................25 Pre-licensure vaccine safety ............................................................................................25 Post licensure surveillance options ...................................................................................27 Balancing efficacy and safety ..........................................................................................29 Summary ...............................................................................................................................31 ASSESSMENT 1 .............................................................................................................................32 Assessment solutions ........................................................................................................36 MODULE 2: Types of vaccine and adverse reactions .............................................................38 Overview ...............................................................................................................................39 Types of vaccine ..................................................................................................................40 Live attenuated vaccines .....................................................................................................41 Inactivated whole-cell vaccines .........................................................................................44 Subunit vaccines ...................................................................................................................45 Toxoid vaccines .....................................................................................................................49 Combination vaccines ........................................................................................................50 3 Components of a vaccine .................................................................................................. 51 Route of administration ......................................................................................................53 Contraindications ................................................................................................................55 Anaphylaxis ..........................................................................................................................56 Immunizing the immunocompromised .............................................................................57 Immunization and pregnancy ............................................................................................58 Influenza ..................................................................................................................................58 Tetanus ....................................................................................................................................59 Vaccination associations and public concern ...............................................................60 Summary ...............................................................................................................................60 ASSESSMENT 2 .............................................................................................................................61 Assessment solutions ........................................................................................................65 MODULE 3: Adverse events following immunization .............................................................67 Overview ...............................................................................................................................68 Classification of AEFIs .......................................................................................................69 Vaccine reactions ..................................................................................................................71 Immunization error-related reaction ..................................................................................74 Immunization anxiety-related reactions ............................................................................76 Coincidental events ...............................................................................................................76 Mass vaccination campaigns ...........................................................................................78 Rates of adverse vaccine reactions ................................................................................79 Summary ...............................................................................................................................82
Recommended publications
  • SARS-Cov-2 RBD219-N1C1 Was Diluted in 20 Mm Tris, 150 Mm Nacl, Ph 7.5 (TBS Buffer) Before
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.04.367359; this version posted November 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title Page SARS‑CoV-2 RBD219-N1C1: A Yeast-Expressed SARS-CoV-2 Recombinant Receptor-Binding Domain Candidate Vaccine Stimulates Virus Neutralizing Antibodies and T-cell Immunity in Mice 1 2 3 Jeroen Pollet1,2, Wen-Hsiang Chen1,2, Leroy Versteeg1, Brian Keegan1, Bin Zhan1,2, Junfei 4 Wei1, Zhuyun Liu1, Jungsoon Lee1, Rahki Kundu1, Rakesh Adhikari1, Cristina Poveda1, 5 Maria-Jose Villar Mondragon1, Ana Carolina de Araujo Leao1, Joanne Altieri Rivera1, Portia 6 M. Gillespie1, Ulrich Strych1,2, Peter J. Hotez1,2,3,4,*, Maria Elena Bottazzi1,2,3* 7 1 Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA 8 2 Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical 9 Medicine, Baylor College of Medicine, Houston, TX, USA 10 3 Department of Biology, Baylor University, Waco, TX, USA 11 4 James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA 12 * Correspondence: 13 Corresponding Authors 14 [email protected]; [email protected] 15 16 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.04.367359; this version posted November 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Yeast-expressed SARS-CoV-2 RBD 17 Abstract 18 There is an urgent need for an accessible and low-cost COVID-19 vaccine suitable for low- and 19 middle-income countries.
    [Show full text]
  • Vaccines and Autism: What You Should Know | Vaccine Education
    Q A Vaccines and Autism: What you should know Volume& 1 Summer 2008 Some parents of children with autism are concerned that vaccines are the cause. Their concerns center on three areas: the combination measles-mumps-rubella (MMR) vaccine; thimerosal, a mercury-containing preservative previously contained in several vaccines; and the notion that babies receive too many vaccines too soon. Q. What are the symptoms of autism? Q. Does the MMR vaccine cause autism? A. Symptoms of autism, which typically appear during the A. No. In 1998, a British researcher named Andrew Wakefi eld fi rst few years of life, include diffi culties with behavior, social raised the notion that the MMR vaccine might cause autism. skills and communication. Specifi cally, children with autism In the medical journal The Lancet, he reported the stories of may have diffi culty interacting socially with parents, siblings eight children who developed autism and intestinal problems and other people; have diffi culty with transitions and need soon after receiving the MMR vaccine. To determine whether routine; engage in repetitive behaviors such as hand fl apping Wakefi eld’s suspicion was correct, researchers performed or rocking; display a preoccupation with activities or toys; a series of studies comparing hundreds of thousands of and suffer a heightened sensitivity to noise and sounds. children who had received the MMR vaccine with hundreds Autism spectrum disorders vary in the type and severity of of thousands who had never received the vaccine. They found the symptoms they cause, so two children with autism may that the risk of autism was the same in both groups.
    [Show full text]
  • Program Evaluation Key Outcomes and Addressing Remaining
    Vaccine 31S (2013) J73–J78 Contents lists available at ScienceDirect Vaccine jou rnal homepage: www.elsevier.com/locate/vaccine Key outcomes and addressing remaining challenges—Perspectives from a final ଝ evaluation of the China GAVI project a,1 a,1 a,1 a,1 b c Weizhong Yang , Xiaofeng Liang , Fuqiang Cui , Li Li , Stephen C. Hadler , Yvan J. Hutin , d a,∗ Mark Kane , Yu Wang a Chinese Center for Disease Control and Prevention, Beijing, China b Centers for Disease Control and Prevention, Atlanta, USA c Europe Center for Disease Control and Prevention, Stockholm, Sweden d Mercer Island, Washington, USA a r t a b i c s t l r e i n f o a c t Article history: During the China GAVI project, implemented between 2002 and 2010, more than 25 million children Received 6 June 2012 received hepatitis B vaccine with the support of project, and the vaccine proved to be safe and effective. Received in revised form 24 July 2012 With careful consideration for project savings, China and GAVI continually adjusted the budget, addi- Accepted 24 September 2012 tionally allowing the project to spend operational funds to support demonstration projects to improve timely birth dose (TBD), conduct training of EPI staff, and to monitor the project impact. Results from the final evaluation indicated the achievement of key outcomes. As a result of government co-investment, Keywords: human resources at county level engaged in hepatitis B vaccination increased from 29 per county on GAVI Project average in 2002 to 66 in 2009. All project counties funded by the GAVI project use auto-disable syringes Outcomes for hepatitis B vaccination and other vaccines.
    [Show full text]
  • Vaccination Certificate Information Version: 21 July 2021
    معلومات عن شهادة التطعيم، بالعربية 中文疫苗接种凭证信息 Informations sur le certificat de vaccination en FRANÇAIS Информация о сертификате вакцинации на РУССКОМ ЯЗЫКЕ Información sobre el Certificado de Vacunación en ESPAÑOL UN SYSTEM-WIDE COVID-19 VACCINATION PROGRAMME VACCINATION CERTIFICATE INFORMATION VERSION: 21 JULY 2021 ABOUT THE UN SYSTEM-WIDE COVID-19 VACCINATION PROGRAMME The UN is committed to ensuring the protection of its personnel. Tasked by the Secretary-General, the Department of Operational Support (DOS) is leading a coordinated, UN-system-wide effort to ensure the availability of vaccine to UN personnel, their dependents and implementing partners. The roll-out of the UN System-wide COVID-19 Vaccination Programme (the “Programme”) for UN personnel will provide a significant boost to the ability of personnel to stay and deliver on the Organization's mandates, to support beneficiaries in the communities they serve, and to contribute to our on-going work to recover better together from the pandemic. Information about the Programme is available at: https://www.un.org/en/coronavirus/vaccination ABOUT THE VACCINATION CERTIFICATE Upon administration of the requisite vaccine dosage, a certificate of vaccination is generated through the Programme’s registration platform (the “Platform”). The certificate generated by the Platform uses a standardized format, similar to the one used by the WHO in its “International Certificate of Vaccination or Prophylaxis” (Yellow) vaccination booklet. Note: This certificate may not dispense with travel restrictions put in place by the country(ies) of destination. As the nature of the pandemic continues to rapidly evolve, it is highly advisable to check the latest travel regulations.
    [Show full text]
  • Global Dynamics of a Vaccination Model for Infectious Diseases with Asymptomatic Carriers
    MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2016019 AND ENGINEERING Volume 13, Number 4, August 2016 pp. 813{840 GLOBAL DYNAMICS OF A VACCINATION MODEL FOR INFECTIOUS DISEASES WITH ASYMPTOMATIC CARRIERS Martin Luther Mann Manyombe1;2 and Joseph Mbang1;2 Department of Mathematics, Faculty of Science University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon 1;2;3; Jean Lubuma and Berge Tsanou ∗ Department of Mathematics and Applied Mathematics University of Pretoria, Pretoria 0002, South Africa (Communicated by Abba Gumel) Abstract. In this paper, an epidemic model is investigated for infectious dis- eases that can be transmitted through both the infectious individuals and the asymptomatic carriers (i.e., infected individuals who are contagious but do not show any disease symptoms). We propose a dose-structured vaccination model with multiple transmission pathways. Based on the range of the explic- itly computed basic reproduction number, we prove the global stability of the disease-free when this threshold number is less or equal to the unity. Moreover, whenever it is greater than one, the existence of the unique endemic equilibrium is shown and its global stability is established for the case where the changes of displaying the disease symptoms are independent of the vulnerable classes. Further, the model is shown to exhibit a transcritical bifurcation with the unit basic reproduction number being the bifurcation parameter. The impacts of the asymptomatic carriers and the effectiveness of vaccination on the disease transmission are discussed through through the local and the global sensitivity analyses of the basic reproduction number. Finally, a case study of hepatitis B virus disease (HBV) is considered, with the numerical simulations presented to support the analytical results.
    [Show full text]
  • Information and Communication Guide on Vaccines
    Module 2 EUROPEAN NURSE Information and Communication Guide ON VACCINES The European Specialist Nurses Organisation (ESNO) is a non-profit organisation with the goal to facilitate and provide an effective framework for communication and co-operation between the European Specialist Nurses Organisations and its constituent members. ESNO represents the mutual interests and benefits of these organisations to the wider European community in the interest of the public health. Members of ESNO consist of individual European specialist nurses member organizations and associates, both institutional and individual. The organisation focusses on enhancing the capacity and capability of specialists nurses to deliver hight quality healthcare by raising and harmonise specialist nursing education standards and actively contribute to health themes and threats, providing the best possible expertise, both national and in European cross border context. A publication from the European Specialist Nurses Organisation April 2021 - www.esno.org Copyright: ©2021 European Specialist Nurses Organisation. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. CONTENTS Vaccination 1 Introduction 5 2 Principles of vaccination 6 2.1 Principle
    [Show full text]
  • Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP)
    Morbidity and Mortality Weekly Report Recommendations and Reports February 8, 2002 / Vol. 51 / No. RR-2 General Recommendations on Immunization Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP) INSIDE: Continuing Education Examination Centers for Disease Control and Prevention SAFER • HEALTHIER • PEOPLETM MMWR CONTENTS The MMWR series of publications is published by the Introduction ......................................................................... 1 Epidemiology Program Office, Centers for Disease Timing and Spacing of Immunobiologics .............................. 2 General Principles for Vaccine Scheduling ......................... 2 Control and Prevention (CDC), U.S. Department of Spacing of Multiple Doses of the Same Antigen ................ 2 Health and Human Services, Atlanta, GA 30333. Simultaneous Administration ............................................ 4 Nonsimultaneous Administration ...................................... 5 Spacing of Antibody-Containing Products and Vaccines ..... 6 SUGGESTED CITATION Interchangeability of Vaccines from Different Manufacturers 8 Centers for Disease Control and Prevention. General Lapsed Vaccination Schedule ............................................ 8 recommendations on immunization: recom- Unknown or Uncertain Vaccination Status ......................... 8 mendations of the Advisory Committee on Contraindications and Precautions ....................................... 8 Immunization Practices and the
    [Show full text]
  • Vaccines 101 the Very Last Day That I Was a Pediatric Resident. Um, Many
    Vaccines 101 The very last day that I was a pediatric resident. Um, many years ago, a toddler walked into the emergency room and uh, and progressively got sicker and sicker. That's Dr. Katherine Edwards, a world expert in pediatric infectious disease in vaccinology. She's also a professor of pediatrics at Vanderbilt university and she's been working on vaccines for 40 years. I did a spinal tap on her and realized that she had Haemophilus influenza, typ e B meningitis, Haemophilus influenza, type B or HIB is it bacteria normally found in our nose and throat that can lead to very serious life threatening infections and no matter what I did in that day and into the night in terms of prompt antibiotics and she'd just been sick a few hours and, and fluids and all the, you know, ventilators and all the best things that modern medicine, she died, the vaccine for hip was not available until the 1990s. And until it did become available, hip disease affected approximately 25,000 children each year with things like meningitis, pneumonia, and bloodstream infections. And at that time in the hospital that I was practicing at any one time, there were generally five or six patients that had Haemophilus meningitis or invasive disease or some complication of this particular infection. And we knew that from the basic science that if you had antibody to the capsule or to the coat of the organism, that you were protected from disease. But we really didn't know how to make little kids make antibody.
    [Show full text]
  • COVID-19 Vaccines: Update on Allergic Reactions, Contraindications, and Precautions
    Centers for Disease Control and Prevention Center for Preparedness and Response COVID-19 Vaccines: Update on Allergic Reactions, Contraindications, and Precautions Clinician Outreach and Communication Activity (COCA) Webinar Wednesday, December 30, 2020 Continuing Education Continuing education will not be offered for this COCA Call. To Ask a Question ▪ All participants joining us today are in listen-only mode. ▪ Using the Webinar System – Click the “Q&A” button. – Type your question in the “Q&A” box. – Submit your question. ▪ The video recording of this COCA Call will be posted at https://emergency.cdc.gov/coca/calls/2020/callinfo_123020.asp and available to view on-demand a few hours after the call ends. ▪ If you are a patient, please refer your questions to your healthcare provider. ▪ For media questions, please contact CDC Media Relations at 404-639-3286, or send an email to [email protected]. Centers for Disease Control and Prevention Center for Preparedness and Response Today’s First Presenter Tom Shimabukuro, MD, MPH, MBA CAPT, U.S. Public Health Service Vaccine Safety Team Lead COVID-19 Response Centers for Disease Control and Prevention Centers for Disease Control and Prevention Center for Preparedness and Response Today’s Second Presenter Sarah Mbaeyi, MD, MPH CDR, U.S. Public Health Service Clinical Guidelines Team COVID-19 Response Centers for Disease Control and Prevention National Center for Immunization & Respiratory Diseases Anaphylaxis following mRNA COVID-19 vaccination Tom Shimabukuro, MD, MPH, MBA CDC COVID-19 Vaccine
    [Show full text]
  • Considerations for Causality Assessment of Neurological And
    Occasional essay J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2021-326924 on 6 August 2021. Downloaded from Considerations for causality assessment of neurological and neuropsychiatric complications of SARS- CoV-2 vaccines: from cerebral venous sinus thrombosis to functional neurological disorder Matt Butler ,1 Arina Tamborska,2,3 Greta K Wood,2,3 Mark Ellul,4 Rhys H Thomas,5,6 Ian Galea ,7 Sarah Pett,8 Bhagteshwar Singh,3 Tom Solomon,4 Thomas Arthur Pollak,9 Benedict D Michael,2,3 Timothy R Nicholson10 For numbered affiliations see INTRODUCTION More severe potential adverse effects in the open- end of article. The scientific community rapidly responded to label phase of vaccine roll- outs are being collected the COVID-19 pandemic by developing novel through national surveillance systems. In the USA, Correspondence to SARS- CoV-2 vaccines (table 1). As of early June Dr Timothy R Nicholson, King’s roughly 372 adverse events have been reported per College London, London WC2R 2021, an estimated 2 billion doses have been million doses, which is a lower rate than expected 1 2LS, UK; timothy. nicholson@ administered worldwide. Neurological adverse based on the clinical trials.6 kcl. ac. uk events following immunisation (AEFI), such as In the UK, adverse events are reported via the cerebral venous sinus thrombosis and demyelin- MB and AT are joint first Coronavirus Yellow Card reporting website. As of ating episodes, have been reported. In some coun- authors. early June 2021, approximately 250 000 Yellow tries, these have led to the temporary halting of BDM and TRN are joint senior Cards have been submitted, equating to around authors.
    [Show full text]
  • Different Types of COVID-19 Vaccines
    Pfizer-BioNTech Help stop the pandemic Type of vaccine: Messenger RNA, or mRNA, a genetic Different Types material that tells your body how to make proteins that by getting vaccinated triggers an immune response inside our bodies of COVID-19 Effectiveness: 95% based on clinical trials Even if you are undocumented Common side effects: Pain and/or swelling in the arm and/or don’t have insurance, you and tiredness, headache, muscle pain, chills, fever, or can get the vaccine—for free. Vaccines: nausea in the body that may last two days Recommended Ages: 16 and older (currently testing the vaccine in kids ages 12-15) Understanding How Dosage: Two shots, 21 days apart They Work Visit VaccinateALL58.com Moderna for the newest information about when and where the vaccine Type of vaccine: Messenger RNA, or mRNA, a genetic will be available to you. material that tells your body how to make proteins that triggers an immune response inside our bodies Sign up at myturn.ca.gov or Effectiveness: 94.1% based on clinical trials call 1-833-422-4255 to find out Common side effects: Pain and/or swelling in the arm if it’s your turn to get vaccinated and and tiredness, headache, muscle pain, chills, fever, or schedule vaccination appointments. nausea in the body that may last two days Recommended Ages: 18 years and older (currently testing the vaccine in kids ages 12-17) Dosage: Two shots, 28 days apart Johnson & Johnson Follow us on social media for more COVID-19 tips and information. Type of vaccine: A viral vector, it uses a harmless version of a different
    [Show full text]
  • MCBH 20191105 Submittedmat
    From: John Robinson To: Christopher Weisgram Subject: Fw: [SUSPECTED SPAM] Marathon County Board Meeting 10/1/19 - Public Comment; Kayla Gorman Date: Tuesday, October 22, 2019 9:16:09 AM Attachments: PIC Immunocompromised Children.pdf PIC Waning Immunity & Measles.pdf PIC Measles Info.pdf From: kkHAL <[email protected]> Sent: Monday, September 30, 2019 12:11 PM Subject: [SUSPECTED SPAM] Marathon County Board Meeting 10/1/19 - Public Comment; Kayla Gorman Good Afternoon, I am writing to express my concerns and opposition to the resolution that supports the removal of the personal conviction vaccine exemption that will be voted on during tomorrows Marathon County Board Meeting. I've included my detailed comments below, along with references and educational handouts from Physicians for Informed Consent that further support my comments below. Please vote NO and leave this decision between parents and their health care provider. My name is Kayla Gorman and I am a mother to a 19-month-old and have another baby on the way. The one size fits all vaccine policies and laws, which fail to respect biodiversity and force everyone to be treated the same, places an unfair risk on a minority of unidentified individuals that are unable to survive vaccination without being harmed. Parents can, in partnership with their child’s health care provider, make informed decisions that best suits their family and their own medical history, whether that decision be to fully vaccinate according to the CDC schedule, partially vaccinate, vaccinate on an alternative schedule or not vaccinate at all. Prior to any medical procedure, the U.S.
    [Show full text]