Pulling It All Together: Geological Techniques and Analyses For

Total Page:16

File Type:pdf, Size:1020Kb

Pulling It All Together: Geological Techniques and Analyses For Wireline log signatures Pulling it all Together: Geological Techniques and Analyses for Correlation Depth Porosity GR TVD NPHI Evaluating Potential Sites for CO2 Storage Reservoirs in Ohio 0 GAPI 200 30 PU -10 RHOB 2 G/C3 3 1300 Sunbury Shale Berea Sandstone 1400 1500 1600 1700 Wireline logging truck on location of a drill rig in operation. 1800 1900 Chagrin Shale Member 2000 2100 2200 2300 1 inch Thin section photo (photomicrograph) of the Lower Huron Shale Member of the Ohio Shale interval. Note the absence of any porosity (void space) 2400 Core photo of the Devonian Shale interval. within the rock matrix. 2500 2600 Lower Huron Shale Member Guernsey County Knox Township Large vugs Permit No. 3923 2700 No. 1 Ringer 2800 Java Formation Pipe Creek Member 2900 Angola Shale Member Beekmantown 3000 ÒB PorosityÓ zone Caverns Rhinestreet Shale Member 3100 Hamilton Group Marcellus Shale Onondaga Limestone 3200 Tables summarizing results of routine core analyses. This data includes measurements such as the porosity (the total volume of empty space [pore space] in a material, usually expressed as a percentage), permeability Wireline log signature of the Devonian Shale interval. This is (the degree to which a material allows fluids to pass through it via an interconnected network of pores one of the primary confining intervals (caprock/seal) for the FMI (Formation Microscanner Image) of the Beekmantown dolomite exhibiting large vugs and cracks). and cavern-size voids. underlying reservoirs for potential CO2 sequestration. Thin section photos (photomicrographs) of the Beekmantown Correlation Depth Porosity dolomite. Note the well-developed porosity or void space (blue GR TVD RHOB epoxy) between and within the individual dolomite grains. 0 GAPI 200 23G/C3 NPHI 30 PU -10 6600 ÒGull RiverÓ Wells Creek Formation 6700 Knox Unconformity Beekmantown dolomite 6800 Core barrel extends out of the rotary sidewall coring tool. Rose Run sandstone 6900 7000 Copper Ridge dolomite .25 inch Thin section photos (photomicrographs) of the Rose Run sandstone interval. Note the presence of good porosity (P) 7100 Sidewall core photos of the Rose Run sandstone. development indicated by the blue epoxy within the individual quartz grains (Q). Courtesy Schlumberger Small sidewall cores. Wireline log signature of the Beekmantown dolomite, Rose Run sandstone, and Copper Ridge sandstone (Knox) intervals. These are potential reservoirs for CO2 sequestration..
Recommended publications
  • Geoloaic District. Subsequent Stratigraphic Studies in This Area
    DEVONIAN STRATA AND PALEOENVIRONMENTS: CHAUTAUQUA COUNTY REGION: NEW YORK STATE GORDON C. BAIRD and GARY G. LASH Department of Geosciences State University of New York College at Fredonia Fredonia, New York 14063 INTRODUCTION The history of the study of the Paleozoic stratigraphic divisions in New York State spans, at least, two centuries, and it records the early development of important concepts centrally germane to the study of sedimentary basins worldwide (see Tesmer, 1989). The works of James Hall, John Clarke, HenryS. Williams, Joseph Barrell, and George Chadwick are well known to most sedimentary workers, as are those of numerous subsequent workers. In particular, the sedimentary sequences of the Allegheny Plateau Region (••southern Tier" region) served as important sources of information for refinement of the fac ies concept ar.d for the widespread recognition of the westwardly prograding Catskill Delta Complex which is the primary Paleozoic story recorded in Southern Tier bedrock deposits (see Chadwick, 1924, 1933; Cooper, et al., 1942; Caster, 1934; Woodrow, 1985). ---- The first significant geologic work relating to the Chautauqua County region was presented in James Hall's (1843) Survey of the Fourth Geoloaic District. Subsequent stratigraphic studies in this area inclu e Clarke (1903), Chadwick (1923, 1924), Caster (1934), Pepper and de Witt (1950, 1951) and de Witt and Colton (1953). In northwest Pennsylvania, significant synthetic contributions include I.C. White (1881), Butts (1906-1908), Chadwick (1925), Caster ·(1934), Pepper et al. (1954). In Ohio, deposits equivalent to parts of the New York and -­ Pennsylvania Upper Devonian section (Chagrin Shale) have been the subject of recent paleoenvironmental studies (see Weidner and Feldmann, 1983; Schwimmer and Feldmann, 1990).
    [Show full text]
  • Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1
    Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1 THOMAS L. LEWIS, Department of Geological Sciences, Cleveland State University, Cleveland, OH 44115 ABSTRACT. Clastic sediments, derived from southeastern, eastern and northeastern sources, prograded west- ward into a shallow basin at the northwestern margin of the Appalachian Basin in Late Devonian and Early Mississippian time. The western and northwestern boundary of the basin was the submerged Cincinnati Arch. The marine clastic wedges provided a northwest paleoslope and a distal, gentle shelf-edge margin that controlled directional emplacement of coarse elastics. Rising sea levels coupled with differences in sedimen- tation rates and localized soft-sediment deformation within the basin help explain some features of the Bedford and Berea Formations. The presence of sand-filled mudcracks and flat-topped symmetrical ripple marks in the Berea Formation attest to very shallow water deposition and local subaerial exposure at the time of emplacement of part of the formation. Absence of thick, channel-form deposits eastward suggests loss of section during emergence. OHIO J. SCI. 88 (1): 23-39, 1988 INTRODUCTION The Bedford Formation (Newberry 1870) is the most The Ohio Shale, Bedford, and Berea Formations of lithologically varied formation of the group. It is com- northern Ohio are clastic units which record prograda- prised of gray and red mudshales, siltstone, and very tional and transgressional events during Late Devonian fine-grained sandstone. The Bedford Formation thins and Early Mississippian time. The sequence of sediments both to the east and west and reaches its maximum is characterized by (1) gray mudshale, clayshale, siltstone, thickness in the Cleveland area.
    [Show full text]
  • A2 and B2: Upper Devonian Kellwasser Extinction Events in New York and Pennsylvania: Offshore to Onshore Transect Across the F
    A2 AND B2: UPPER DEVONIAN KELLWASSER EXTINCTION EVENTS IN NEW YORK AND PENNSYLVANIA: OFFSHORE TO ONSHORE TRANSECT ACROSS THE FRASNIAN-FAMENNIAN BOUNDARY ON THE EASTERN MARGIN OF THE APPALACHIAN BASIN ANDREW M. BUSH AND J. ANDREW BEARD Geosciences & Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 GORDON BAIRD Department of Geosciences, SUNY Fredonia, Fredonia, NY 14063 D. JEFFREY OVER Department of Geological Sciences, SUNY Geneseo, Geneseo, NY 14454 with contributions by KATHERINE TUSKES Department of Geological Sciences, Atmospheric, Ocean, and Earth Science, George Mason University, Manassas, VA 20110 SARAH K. BRISSON AND JALEIGH Q. PIER Geosciences & Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 INTRODUCTION Earth-system perturbations caused a series of mass extinction events during the Devonian Period, including the Taghanic event in the Givetian, the Lower and Upper Kellwasser events in the Frasnian, and the Hangenberg event in the Famennian (House, 2002; Bambach, 2006). These extinctions occurred against the backdrop of orbitally forced sea-level fluctuations, the Acadian Orogeny (Averbuch et al., 2005), the expansion of plants and animals on land (Algeo et al., 1995), and ecological changes in the marine biosphere (Signor and Brett, 1984; Bambach, 1999). The Frasnian-Famennian boundary in particular represents a significant global crisis, considered one of the “big five” mass extinctions (Raup and Sepkoski, 1982) that led to the demise of the widespread and diverse Devonian
    [Show full text]
  • Changes in Stratigraphic Nomenclature by the U.S. Geological Survey
    Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, By GEORGE V. COHEE, ROBERT G. BATES, and WILNA B. WRIGHT CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1294-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Listing of nomenclatural changes- --- ----- - - ---- -- -- -- ------ --- Ortega Quartzite and the Big Rock and Jawbone Conglomerate Members of the Kiawa Mountain Formation, Tusas Mountains, New Mexico, by Fred Barker---------------------------------------------------- Reasons for abandonment of the Portage Group, by Wallace de Witt, Jr-- Tlevak Basalt, west coast of Prince of Wales Island, southeastern Alaska, by G. Donald Eberlein and Michael Churkin, Jr Formations of the Bisbee Group, Empire Mountains quadrangle, Pima County, Arizona, by Tommy L. Finnell---------------------------- Glance Conglomerate- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Willow Canyon Formation ....................................... Apache Canyon Formation-- ................................... Shellenberger Canyon Formation- - --__----- ---- -- -- -- ----------- Turney Ranch Formation---- ------- ------ -- -- -- ---- ------ ----- Age--_------------------------------------------------------- Pantano Formation, by Tommy L. Finnell----------_-----------------
    [Show full text]
  • Assessing the Petroleum Geology and Future Development of the Clendenin Gas Field in Kanawha County, West Virginia
    Assessing the Petroleum Geology and Future Development of the Clendenin Gas Field in Kanawha County, West Virginia By: Jonathan Prevatte August 2020 Director of Thesis: Donald W. Neal Major Department: Geological Sciences Petroleum is one of the main sources for energy production in the US and is therefore important for the continuation of economic growth. Future development of petroleum resources in the US to meet supply demands is equally important. Understanding the controls on petroleum production will help in determining where and how to development these resources for maximum production. West Virginia is home to many gas fields and is underlain by one of the more prominent gas producing shales, the Marcellus Shale. The Clendenin Gas Field in Kanawha County is one of the historical gas producing areas found in West Virginia. This assessment is focused on the Devonian strata throughout the field including the Marcellus Shale. Using available geophysical logs, production data, and historic well records obtained from the West Virginia Geologic and Economic Survey (WVGES), cross-sections, isopach maps, and structure contour maps were created to give a visual representation of the subsurface geology across the field. Construction of the cross-sections and maps in conjunction with production and well record data aided in the identification of controls influencing production throughout the field. Applying the findings of this assessment to future production may reduce costs and improve yields of future petroleum wells. Results of this study indicate several options should be considered when planning for future production wells within the field. Target areas include the areas to the east of the field where formations tend to thicken.
    [Show full text]
  • Geology of Fairfield County, Ohio
    This dissertation has been 61—5134 microfilmed exactly as received WOLFE, Edward Winslow, 1936- GEOLOGY OF FAIRFIELD COUNTY, OHIO. The Ohio State University, Ph.D., 1961 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF FAIRFIELD COUNTY, OHIO DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Edward Winslow Wolfe, B. A. The Ohio State University 1961 Approved by Department of Geology ! ACKNOWLEDGMENTS Thanks are due Mr. R. J. Bernhagen, State Geologist, who suggest­ ed the need for an investigation of the geology of Fairfield County. The writer is particularly indebted to Dr. Aurele La Rooque who di­ rected the investigation and guided the writer throughout the prepara­ tion of this report. Many others gave freely of their time in dis­ cussing with the writer the geology of Fairfield County. Among these, special thanks are due Dr. Jane L. Forsyth of the Ohio Division of Geological Survey, Mr. George J. Franklin, who is presently completing a report on the geology of Licking County, and the writer's colleagues in the Department of Geology at the College of Wooster. The writer thanks several members of the Ohio Division of Geological Survey, in­ cluding Miss Pauline Smyth, Mr. Karl V. Hoover, and Mr. Harold J. Flint, for their valuable assistance. Most helpful, too, was the as­ sistance of Mr. Jon S. Galehouse during the summer of i960. The field work was sponsored and financed by the Ohio Division of Geological Survey. Additional financial aid, in the form of a William H.
    [Show full text]
  • Xsec A-A Sht1of2 Layout FINAL V
    U.S. DEPARTMENT OF THE INTERIOR SCIENTIFIC INVESTIGATIONS MAP 3425 U.S. GEOLOGICAL SURVEY (SHEET 1 OF 2) Explanatory pamphlet accompanies map A Ontario Allegheny Lowlands Plateau province province SEVERNE WATKINS-BEAVER LODI POINT FIRTREE DAMS ALPINE VAN ETTEN ANTICLINE ANTICLINE ANTICLINE ANTICLINE ANTICLINE ANTICLINE GLENORA SYNCLINE UNNAMED COHOCTON CORBETT POINT ENFIELD CAYUTA SYNCLINE SYNCLINE SYNCLINE SYNCLINE SYNCLINE Bend in section Bend in section Bend in section New York W SE Oatka Genesee NW SE Canisteo NW SW Pennsylvania Black Creek River Canaseraga River Tuscarora Creek Creek Creek FEET MILES 0 10 20 30 40 50 60 70 80 90 3,000 1 2 3 4 5 6 William Duchscherer, Jr. E.F. Blair and Associates NYS Natural Gas Company E.F. Blair and Associates Bowdoin Storage Service Inc. NYS Natural Gas Company No. 1 J. Klotzbach No. 1 L. Tyler No. 1 Albert McClurg No. 1 Arthur N. Kennedy No. 1 Hubbard No. 1 Robert Olin API No. 31-037-05117 API No. 31-037-04593 API No. 31-051-04552 API No. 31-051-04630 API No. 31-101-21496 API No. 31-101-03924 Genesee Co., New York Genesee Co., New York Livingston Co., New York Livingston Co., New York Steuben Co., New York Steuben Co., New York Perrysburg Formation Dunkirk Dunkirk Shale Shale 2,000 Member Wiscoy Sandstone Member Java Perrysburg West River Shale, Nunda Wiscoy Sandstone Member Formation Formation Genundewa Sandstone Member unnamed Pipe Creek 0 Pipe Creek shale member Limestone, Penn Member Shale Member Shale Member Perrysburg Yan Shale, and rmation Formation 0 Dun West River Shale, Java Fo kirk
    [Show full text]
  • 2019 Blood Baird Andotherses
    A note from the Authors: The following is a post-meeting revision to the “Upper Devonian paleoenvironmental, diagenetic, and tectonic enigmas in the western Appalachian Basin: new discoveries and emerging questions associated with the Frasnian-Famennian boundary and end-Devonian disturbances in central Ohio” guidebook supplied to the 2019 Eastern Section Annual Meeting of the American Association of Petroleum Geologists fieldtrip attendees. We hope that this revised edition supplies the reader with a more complete understanding of end Devonian events in Ohio and an opportunity to explore these key outcrops at your leisure. In using this guidebook we ask that you respect the various landowners by obtaining permission to access those exposures on private property, and the necessary permits to access and collect within public parks. Cover Photos: Upper Left: Contact of the Upper Olentangy Shale with the Huron Shale bearing large septarian carbonate concretions, Highbanks Metropark, Worthington, OH; Upper Right: Red Bedford Shale exposed at Blendon Woods Metropark, New Albany, OH; Bottom: Massive ball-and-pillow seismite deformation in the Berea Sandstone, Sunbury, OH. Upper Devonian paleoenvironmental, diagenetic, and tectonic enigmas in the western Appalachian Basin: new discoveries and emerging questions associated with the Frasnian-Famennian boundary and end-Devonian disturbances in central Ohio October 12th, 2019 David R. Blood, [email protected], President, DRB Geological Consulting, New Brighton, PA, 15066 Gordon C. Baird, [email protected], Professor Emeritus, Department of Geology & Environmental Science, S.U.N.Y. Fredonia, Fredonia, NY 14063 Erika M. Danielsen, [email protected], Geologist, Division of Geological Survey, Ohio Department of Natural Resources, Columbus, OH, 43229 Carlton E.
    [Show full text]
  • Beaver Valley, Units 1 & 2, Davis-Besse & Perry, Response To
    FENOC 76 South Main Street Fi/rstEn Akron. Ohio 44308 SamuelL. Belcher Senior Vice President and Chief Operating Officer September11,2013 L-13-245 10cFR 50.54(f) ATTN: DocumentControl Desk U.S.Nuclear Regulatory Commission 11555 Rockville Pike Rockville,MD 20852 SUBJECT. BeaverValley Power Station, Unit Nos. 1 and2 DocketNo. 50-334, License No. DPR-66 DocketNo. 50-412, License No. NPF-73 Davis-BesseNuclear Power Station DocketNo. 50-346, License No. NPF-3 PerryNuclear Power Plant DocketNo. 50-440, License No. NPF-58 FirstEnergyNuclear Operatinq Companv (FENOC) Response to NRCRequest for InformationPursuant to 10CFR 50.54(fl Reqarding_the Seismic Aspects of Recommendation2.1 of the Near-TermTask Force (NTTF) Review of Insiqhtsfrom the FukushimaDai-ichi Accident - 1.5Year Response for CEUS Sites On March12,2012, the Nuclear Regulatory Commission (NRC) issued a fettertitled, "Requestfor InformationPursuant to Title10 of the Codeof FederalRegulations 50.54(f)Regarding Recommendations 2.1, 2.3, and 9.3 of the Near-TermTask Force Reviewof Insightsfrom the FukushimaDai-ichi Accident," to all powerreactor licensees andholders of constructionpermits in activeor deferredstatus. Enclosure 1 of the 10 CFR50.54(0 letter contains a requestfor each addressee in the Centraland Eastern UnitedStates (CEUS) to submita writtenresponse consistent with the requested seismichazard evatuation information (items 1 through7) within 1.5 years of thedate of the 10CFR 50.54(0 letter (by September 12,2013). By letterdated February 15,2013, the NRCendorsed the Electrical Power Research Institute (EPRI) Report 1025287, SersmicEvaluation Guidance: Screening, Prioritization and lmplementationDetails (SPID)for the Resolutionof FukushimaNear-Term Task Force Recommendation 2.1: Seismic,dated November 2012 (hereafter referred to asthe SPID report) Section 4 of theSPID report identifies the detailed information to be included in the seismic hazard evaluationsubmittals BeaverValley Power Station, Unit Nos.
    [Show full text]
  • US EPA Proposal to Reissue an Exemption to AK Steel Corporation
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590 REPLY TO THE ATTENTION OF: WU-16J PROPOSAL TO REISSUE AN EXEMPTION TO AK STEEL CORPORATION FOR THE CONTINUED INJECTION OF HAZARDOUS WASTE SUBJECT TO THE LAND DISPOSAL RESTRICTIONS OF THE HAZARDOUS AND SOLID WASTE AMENDMENTS OF 1984 Action: Notice of Intent to Grant an Exemption for the Injection of Certain Hazardous Wastes to AK Steel Corporation for Two Injection Wells Located at 1801 Crawford Street, Middletown, Ohio. Summary: Through this notice, the United States Environmental Protection Agency (U.S. EPA), Region 5, Chicago office, proposes to grant an exemption from the ban on disposal of hazardous wastes through injection wells to AK Steel Corporation (AK Steel) of Middletown, OH. If the exemption is granted, AK Steel may continue to inject hazardous wastes as designated under the Resource Conservation and Recovery Act (RCRA), 42 U.S.C. §§ 6901-6992k, by waste code K062 through waste disposal wells UIC Well No. 1 and UIC Well No. 2. On March 6, 2006, AK Steel submitted a petition to the U.S. EPA seeking an exemption from the ban based on a showing under 40 C.F.R. § 148.20(a)(1)(i) that any fluids injected will not migrate vertically out of the injection zone or laterally to a point of discharge or interface with an underground source of drinking water (USDW) within 10,000 years. U.S. EPA has conducted a comprehensive review of the petition, its revisions, and other materials submitted and has determined that the petition submitted by AK Steel, as revised on August 9 and December 12, 2007, meets the requirements of 40 C.F.R.
    [Show full text]
  • Basin-Centered Gas Systems of the U.S. by Marin A
    Basin-Centered Gas Systems of the U.S. By Marin A. Popov,1 Vito F. Nuccio,2 Thaddeus S. Dyman,2 Timothy A. Gognat,1 Ronald C. Johnson,2 James W. Schmoker,2 Michael S. Wilson,1 and Charles Bartberger1 Columbia Basin Western Washington Sweetgrass Arch (Willamette–Puget Mid-Continent Rift Michigan Basin Sound Trough) (St. Peter Ss) Appalachian Basin (Clinton–Medina Snake River and older Fms) Hornbrook Basin Downwarp Wasatch Plateau –Modoc Plateau San Rafael Swell (Dakota Fm) Sacramento Basin Hanna Basin Great Denver Basin Basin Santa Maria Basin (Monterey Fm) Raton Basin Arkoma Park Anadarko Los Angeles Basin Chuar Basin Basin Group Basins Black Warrior Basin Colville Basin Salton Mesozoic Rift Trough Permian Basin Basins (Abo Fm) Paradox Basin (Cane Creek interval) Central Alaska Rio Grande Rift Basins (Albuquerque Basin) Gulf Coast– Travis Peak Fm– Gulf Coast– Cotton Valley Grp Austin Chalk; Eagle Fm Cook Inlet Open-File Report 01–135 Version 1.0 2001 This report is preliminary, has not been reviewed for conformity with U. S. Geological Survey editorial standards and stratigraphic nomenclature, and should not be reproduced or distributed. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U. S. Government. 1Geologic consultants on contract to the USGS 2USGS, Denver U.S. Department of the Interior U.S. Geological Survey BASIN-CENTERED GAS SYSTEMS OF THE U.S. DE-AT26-98FT40031 U.S. Department of Energy, National Energy Technology Laboratory Contractor: U.S. Geological Survey Central Region Energy Team DOE Project Chief: Bill Gwilliam USGS Project Chief: V.F.
    [Show full text]
  • Oil and Gas Fields Map of Ohio
    STA5&0'0)*0 t %&PARTMENT OF NA563"-3&4063$&4 t %*7*4*0/0'(&0LOGICAL SUR7EY OIL AND GAS FIELDS MAP OF OHIO ASHTABULA ERIE WILLIAMS FULTON LUCAS LAKE GEAUGA OTTAWA LAKE WOOD TRUMBULL HENRY CUYAHOGA SANDUSKY DEFIANCE ERIE LORAIN PORTAGE HURON MEDINA SUMMIT PAULDING SENECA PUTNAM HANCOCK MAHONING VAN WERT WYANDOT CRAWFORD RICHLAND ASHLAND WAYNE ALLEN STARK COLUMBIANA HARDIN MERCER CARROLL MARION AUGLAIZE HOLMES MORROW TUSCARAWAS KNOX LOGAN JEFFERSON SHELBY UNION COSHOCTON HARRISON DELAWARE DARKE LICKING CHAMPAIGN MIAMI GUERNSEY MUSKINGUM BELMONT FRANKLIN MADISON CLARK PREBLE FAIRFIELD PERRY NOBLE MONTGOMERY MONROE GREENE PICKAWAY MORGAN FAYETTE BUTLER WARREN HOCKING WASHINGTON CLINTON ROSS ATHENS HIGHLAND VINTON HAMILTON CLERMONT PIKE MEIGS JACKSON N BROWN ADAMS GALLIA 0 10 20 30 40 miles SCIOTO 0 10 20 30 40 50 kilometers LAWRENCE EXPLANATION OIL FIELD GAS FIELD COALBED METHANE PRODUCING HORIZON(S) GROUPED BY STRATIGRAPHIC INTERVAL Pennsylvanian undifferentiated sandstones and coals Mississippian undifferentiated sandstones and Maxville Limestone Devonian Berea Sandstone and Cussewago Sandstone Devonian Ohio Shale and siltstones Silurian-Devonian “Big Lime” interval Silurian “Clinton/Medina” sandstone and “Packer Shell” Ordovician fractured shale, Trenton Limestone, Black River Group, and Wells Creek Formation Cambrian-Ordovician Knox Dolomite Recommended citation: Ohio Division of Geological Survey, 2004, Oil and gas fields map of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map PG-1, generalized page-size version with text, 2 p., scale 1:2,000,000. [Updated 2014.] OIL AND GAS FIELDS MAP OF OHIO Ohio has a rich history of oil-and-gas production that began as a natural seep. It is the trapped occurrences of hydrocarbons nearly 150 years ago.
    [Show full text]