Hydroacoustic and Geochemical Traces of Marine Gas Seepage in the North Sea
Total Page:16
File Type:pdf, Size:1020Kb
Hydroacoustic and geochemical traces of marine gas seepage in the North Sea Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jens Schneider von Deimling Kiel 2009 Referent .....................................................................Prof. Dr. Wolfgang Rabbel Korreferent ...................................................................Prof. Dr. Gregor Rehder Tag der mündlichen Prüfung .............................................................14.07.2009 Zum Druck genehmigt: Kiel, ............................................................................... Der Dekan Hiermit erkläre ich, dass die vorliegende Doktorarbeit - abgesehen von der Beratung durch den Betreuer - nach Inhalt und Form die eigene Arbeit ist. Weder diese noch eine ähnliche Arbeit wurde an einer anderen Abteilung oder Hochschule im Rahmen eines Prüfungsverfahrens vorgelegt, veröffentlicht oder zur Veröffentlichung vorgelegt. Ferner versichere ich, dass die Arbeit unter Einhaltung der Regeln guter wissenschaftlicher Praxis der Deutschen Forschungsgemeinschaft entstanden ist. Kiel, den Jens Schneider von Deimling Acknowledgement First of all, I would like to thank Prof. Wolfgang Rabbel and Prof. Gregor Rehder for accepting me as a PhD student and for their great support. The following listings do not include all but the most important other contributors to this work. The novel GasQuant device required a lot of technical understanding and adaption. Great support was offered by L3 Communications ELAC-Nautik and profound understanding about multibeam sonar was gained through intense discussions with Jörg Brockhoff and Boris Schulze, as well as through input from Wilhelm Weinrebe (IFM-GEOMAR). I also want to thank Peter Gimpel (ELAC) for his generous support as well as Sven Rohde and Frank Ritters for their programming and system adaptions. During my PhD I participated in six research cruises with an overall of 6 months on various research vessels. During that time, I worked together with more than one hundred seamen and scientists who can not be listed individually. This intense time included endless nightshifts, great success immediately followed by severe failure enclosed in a fascinating and sometimes unreal environment and overall, it was great to share this experience in cooperation that sometimes turned into friendship. Since I have learned about the challenging offshore work I have started to appreciate the experience of many seamen and scientists and especially benefitted of the wisdom about deep sea instrumentation by the great technicians Bernhard Bannert and Matthias Türk. In this context, I want to honor Peter Linke’s work on the invention of Lander system. He was the head of the project COMET and supported me very much on different fields and enabled my two months stay at the University of Victoria. Also, I want to thank the head of the underwater acoustic group, Prof. Ross Chapman, who supervised me and from whom I gained a lot of knowledge for my work. Further credit goes to Jens Greinert, Matthias Haeckel, Oliver Schmale, Nikolaus Bigalke, and Robin Keir for their scientific and technical support. I would have been lost without the help of the best office mate Christine Utecht; also I really appreciate the work of the technicians Karen Stange, Bettina Domeyer, Peggy Wevers and student help Nina Köplin. I enjoyed using the great IT structure at IFM-GEOMAR that facilitated my work a lot and I want to thank the two men behind these machines Rüdiger Kunze and Wilhelm Weinrebe. Last but not least, special thanks go to my family for supporting me under any circumstances. Preface This PhD thesis consists of a general introduction Chapter I, followed by three stand-alone Chapters II-IV, a general conclusion Chapter V, and supplemental content in the Appendix. Chapter II is the reprint of a published paper that outlines the feasibility of ship-born gas bubble detection with conventional multibeam mapping sonar and its advantages compared to single beam sounders. Chapter III consists of a submitted manuscript describing the use of a prototype in situ multibeam bubble monitoring system (GasQuant) and illustrates the device’s potential to resolve tempo-spatial variation of gas seepage. Due to technical difficulties, the aspired calibration of GasQuant failed and a quantitative analysis of the echo signals could not be accomplished. Even though, gas bubble acoustic inversion theory and principle limitations are discussed in Appendix B. Furthermore we attach a registered patented generic algorithm in Appendix A to e.g. automatically detect rising gas bubbles in sonar data. Chapter IV covers the seepage at a specific seep site in the North Sea combining acoustic and geochemical methods. Thus, the source strength of the respective seep field could be determined and the further fate of methane seepage in the North Sea is discussed. This Chapter is again in the form of a manuscript for a peer reviewed journal and will be submitted shortly. Two peer-reviewed Co-authorship publications abstracts related to this work can additionally be found in the Appendix C and Appendix D. The titles, authors and the state of each paper and manuscript are briefly listed below Chapter II Flare imaging with multibeam systems: Data processing for bubble detection at seeps Authors J. Schneider von Deimling, J. Brockhoff, J. Greinert Status published in G-cubed (2007), doi:10.1029/2007GC001577 Chapter III Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles under control of variable currents Authors J. Schneider von Deimling, J. Greinert, N.R. Chapman, W. Rabbel, P. Linke Status under review at Limnology & Oceanography Methods Chapter IV A multidisciplinary approach to quantify methane gas seepage at Tommeliten Authors J. Schneider von Deimling, G. Rehder, D.F. McGinnis, J. Greinert, P. Linke Status ready for submission to Continental Shelf Research Appendix A* Patentanmeldung 10 2009 033 724.5 Teilchendetektions- und Identifikationsverfahren in bekanntem Strömungsmilieu Status submitted to Deutsches Patent- und Markenamt Appendix B Seep bubble acoustics – the inversion of bubble backscatter into gas flux and principle limitations Status in preparation for future publication Appendix C** Shallow Microbial Recycling of Deep-Sourced Carbon in Gulf of Cadiz Mud Volcanoes Authors M. Nuzzo, Edward R. C. Hornibrook, C. Hensen, R. Parkes, C. John, A. Barry, J. Rinna, J. Schneider von Deimling, S. Sommer, V. Magalhaes, A. Reitz, W. Brückmann Status published in Geomicrobiology Journal (2008), doi: 10.1080/01490450802258196 Appendix D** Sea be d me thane e mission from the Ca ptain Arutyunov mud volcano (Gul f of Cadiz) – a tubeworm dominated seep ecosystem Authors S. Sommer, O. Pfannkuche, P. Linke, T. Schleicher, J. Schneider von Deimling, M. Haeckel, S. Flögel, A. Reitz, C. Hensen Status published in Marine Ecology Progress Series (2009), doi: 10.3354/meps07956 *patent was submitted to “Deutsches Patentamt München” by the PVA Schleswig Holstein **The contribution to the publications include high precision multibeam surveying, postprocessing and visualization of the soundings; CTD casting and water sampling, methane concentration measurements and interpretation of the data, and general review of the contents of the papers. Zusammenfassung Methan ist das zweitstärkste anthropogene Treibhausgas auf der Erde und trägt damit wesentlich zur globalen Strahlungsbilanz bei. Der letzte Sachstandsbericht des Weltklimarats (IPCC Report, 2007) ordnet geologischen Emissionen eine nicht zu vernachlässigende Quellstärke zu. Diese Arbeit konzentriert sich auf geologische Methanquellen am Meeresboden in der Nordsee. Auf Grund der erschwerten Zugänglichkeit im Vergleich zu terrestrischen Quellen sind marine Methanquellen am Meeresboden schlecht untersucht und wurden bisher quantitativ kaum oder gar nicht erfasst. Des Weiteren werden die Prozesse, die den quantitativen Transport des Methans vom Meeresboden an die Grenzschicht Ozean/Atmosphäre steuern, nur unzureichend in die Betrachtungen mit einbezogen. Zur Untersuchung von natürlichen Gasaustrittsgebieten (Seepages) haben sich Sonarsysteme bewährt, mit deren Hilfe methanhaltige Gasblasen selbst in Wassertiefen von über 2000 m nachgewiesen werden können. Die technische Entwicklung der letzten Jahre hat das Fernerkundungspotential sogenannter Fächerecholotsysteme in Hinblick auf Gasblasendetektion in der Wassersäule stark verbessert. Jedoch erfordern Daten aus der Wassersäule, die mit solchen Sonarsystemen aufgezeichnet werden, spezielle Methoden für deren wissenschaftliche Auswertung. Diese Arbeit zeigt exemplarisch einige Möglichkeiten auf, solche Systeme effizient zur Gasblasendetektion zu verwenden. Hierzu wurde eine anthropogene Gasaustrittsstelle in der Nordsee mittels eines solchen Fächerecholots akustisch untersucht. Der Vorteil der hierbei verwendeten Technologie besteht in der größeren räumlichen Überdeckung (im Vergleich zu Einstrahlsonaren), in der dreidimensionalen Kartierung der Gasaustritte sowie in der exakten Lokalisierung der Gasaustrittsstellen. Ferner wird der Einsatz des „GasQuant“ Prototyps behandelt - eines Systems zur in situ Untersuchung von Gasaustritten auf Grundlage eines Fächerecholots. Dieses System wurde für mehrere Tage in dem Tommeliten-Gasfeld (zentrale Nordsee) mit aktiven Gasaustritten eingesetzt. Neben kleineren Systemanpassungen wurden zahlreiche Routinen zur Verbesserung der Datenqualität