Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics Christian Rinke1, Serene Low1, Ben J. Woodcroft1, Jean-Baptiste Raina2, Adam Skarshewski1, Xuyen H. Le1, Margaret K. Butler1, Roman Stocker3, Justin Seymour2, Gene W. Tyson1,4 and Philip Hugenholtz1,5 1 Australian Centre for Ecogenomics/School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia 2 Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia 3 Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland 4 Advanced Water Management Centre, University of Queensland, Brisbane, QLD, Australia 5 Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia ABSTRACT High-throughput sequencing libraries are typically limited by the requirement for nanograms to micrograms of input DNA. This bottleneck impedes the microscale analysis of ecosystems and the exploration of low biomass samples. Current methods for amplifying environmental DNA to bypass this bottleneck introduce considerable bias into metagenomic profiles. Here we describe and validate a simple modification of the Illumina Nextera XT DNA library preparation kit which allows creation of shotgun libraries from sub-nanogram amounts of input DNA. Community composition was reproducible down to 100 fg of input DNA based on analysis of a mock community comprising 54 phylogenetically diverse Bacteria and Archaea. The Submitted 14 June 2016 main technical issues with the low input libraries were a greater potential for Accepted 24 August 2016 Published 22 September 2016 contamination, limited DNA complexity which has a direct effect on assembly and binning, and an associated higher percentage of read duplicates. We recommend a Corresponding authors Christian Rinke, lower limit of 1 pg (∼100–1,000 microbial cells) to ensure community composition
[email protected] fidelity, and the inclusion of negative controls to identify reagent-specific Philip Hugenholtz, contaminants.