Systema Naturae 2000 (Phylum, 6 Nov 2017)

Total Page:16

File Type:pdf, Size:1020Kb

Systema Naturae 2000 (Phylum, 6 Nov 2017) The Taxonomicon Systema Naturae 2000 Classification of Domain Bacteria (prokaryotes) down to Phylum Compiled by Drs. S.J. Brands Universal Taxonomic Services 6 Nov 2017 Systema Naturae 2000 - Domain Bacteria - Domain Bacteria Woese et al. 1990 1 Genus †Eoleptonema Schopf 1983, incertae sedis 2 Genus †Primaevifilum Schopf 1983, incertae sedis 3 Genus †Archaeotrichion Schopf 1968, incertae sedis 4 Genus †Siphonophycus Schopf 1968, incertae sedis 5 Genus Bactoderma Tepper and Korshunova 1973 (Approved Lists 1980), incertae sedis 6 Genus Stibiobacter Lyalikova 1974 (Approved Lists 1980), incertae sedis 7.1.1.1.1.1 Superphylum "Proteobacteria" Craig et al. 2010 1.1 Phylum "Alphaproteobacteria" 1.2.1 Phylum "Acidithiobacillia" 1.2.2.1 Phylum "Gammaproteobacteria" 1.2.2.2.1 Candidate phylum Muproteobacteria (RIF23) Anantharaman et al. 2016 1.2.2.2.2 Phylum "Betaproteobacteria" 2 Phylum "Zetaproteobacteria" 7.1.1.1.1.2 Phylum "Deltaproteobacteria_1" 7.1.1.1.2.1.1.1 Phylum "Deltaproteobacteria" [polyphyletic] 7.1.1.1.2.1.1.2.1 Phylum "Deltaproteobacteria_2" 7.1.1.1.2.1.1.2.2 Phylum "Deltaproteobacteria_3" 7.1.1.1.2.1.2 Candidate phylum Dadabacteria (CSP1-2) Hug et al. 2015 7.1.1.1.2.2.1 Candidate phylum "MBNT15" 7.1.1.1.2.2.2 Candidate phylum "Uncultured Bacterial Phylum 10 (UBP10)" Parks et al. 2017 7.1.1.2.1 Phylum "Nitrospirae_1" 7.1.1.2.2 Phylum Chrysiogenetes Garrity and Holt 2001 7.1.2.1.1 Phylum "Nitrospirae" Garrity and Holt 2001 [polyphyletic] 7.1.2.1.2.1.1 Candidate phylum Rokubacteria (CSP1-6) Hug et al. 2015 7.1.2.1.2.1.2 Candidate phylum "NC10" 7.1.2.1.2.2.1 Candidate phylum Modulibacteria (KSB3) Sekiguchi et al. 2015 7.1.2.1.2.2.2 Candidate phylum Tectomicrobia Wilson et al. 2014 7.1.2.2.1 Candidate phylum Schekmanbacteria (RIF3) Anantharaman et al. 2016 7.1.2.2.2.1 Candidatus Entotheonella Schmidt et al. 2000 7.1.2.2.2.2 Phylum "Nitrospinae" Lücker et al. 2013 7.2.1 Phylum Acidobacteria Thrash and Coates 2012 7.2.2.1 Candidate phylum Aminicenantes (OP8) Rinke et al. 2013 7.2.2.2 Candidate phylum Fischerbacteria (RIF25) Anantharaman et al. 2016 8.1.1.1 Superphylum Fibrobacteres-Chlorobi-Bacteroidetes (FCB) Gupta 2004 1.1.1.1.1.1.1 Phylum Bacteroidetes Krieg et al. 2012 1.1.1.1.1.1.2 Phylum Chlorobi Iino et al. 2010 1.1.1.1.1.2 Phylum Ignavibacteriae Podosokorskaya et al. 2013 1.1.1.1.2.1 Phylum "Calditrichaeota" Kublanov et al. 2017 1.1.1.1.2.2 Candidate phylum "KSB1" 1.1.1.2.1 Candidate phylum Marinimicrobia (SAR406 / Marine Group A) Rinke et al. 2013 1.1.1.2.2 Candidate phylum "Uncultured Bacterial Phylum 11 (UBP11)" Parks et al. 2017 1.1.2.1.1 Candidate phylum Edwardsbacteria (RIF29) Anantharaman et al. 2016 1.1.2.1.2.1 Candidate phylum Raymondbacteria (RIF7) Anantharaman et al. 2016 1.1.2.1.2.2 Phylum Fibrobacteres Garrity and Holt 2012 1.1.2.2.1.1 Phylum Gemmatimonadetes Zhang et al. 2003 1.1.2.2.1.2 Candidate phylum Glassbacteria (RIF5) Anantharaman et al. 2016 1.1.2.2.2 Candidate phylum Latescibacteria (WS3) Rinke et al. 2013 1.2.1.1 Candidate phylum Zixibacteria (RBG-1) Castelle et al. 2013 1.2.1.2 Candidate phylum "Uncultured Bacterial Phylum 14 (UBP14)" Parks et al. 2017 1.2.1.3.1 Candidate phylum Handelsmanbacteria (RIF27) Anantharaman et al. 2016 1.2.1.3.2.1 Candidate phylum "TA06" 1.2.1.3.2.2 Candidate phylum Eisenbacteria (RIF28) Anantharaman et al. 2016 1.2.2.1 Candidate phylum "Uncultured Bacterial Phylum 1 (UBP1)" Parks et al. 2017 1.2.2.2 Candidate phylum "Uncultured Bacterial Phylum 2 (UBP2)" Parks et al. 2017 2.1.1 Candidate phylum Cloacimonetes (WWE1) Rinke et al. 2013 2.1.2 Candidate phylum Delongbacteria (RIF26) Anantharaman et al. 2016 2.2.1 Candidate phylum Fermentibacteria (Hyd24-12) Kirkegaard et al. 2016 2.2.2.1 Candidate phylum Hydrothermae (EM3) Jungbluth et al. 2017 2.2.2.2 Candidate phylum "WOR-3" 8.1.1.2.1 Superphylum Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) Wagner and Horn 2006 1.1.1.1 Phylum Verrucomicrobia Hedlund 2011 1.1.1.2 Phylum Lentisphaerae Cho et al. 2004 1.1.2 Phylum Chlamydiae Garrity and Holt 2012 1.2 Candidate phylum "Uncultured Bacterial Phylum 17 (UBP17)" Parks et al. 2017 2 Phylum "Planctomycetes" Garrity and Holt 2001 8.1.1.2.2 Candidate phylum Hydrogenedentes (NKB19) Rinke et al. 2013 8.1.2.1.1.1.1 Phylum Elusimicrobia Geissinger et al. 2010 8.1.2.1.1.1.2 Candidate phylum Firestonebacteria (RIF1) Anantharaman et al. 2016 8.1.2.1.1.1.3 Candidate phylum Desantisbacteria Probst et al. 2017 8.1.2.1.1.2.1 Candidate phylum Aerophobetes (CD12 / BHI80-139) Rinke et al. 2013 8.1.2.1.1.2.2 Candidate phylum "Uncultured Bacterial Phylum 5 (UBP5)" Parks et al. 2017 - 1 - © Universal Taxonomic Services, Zwaag, The Netherlands Systema Naturae 2000 - Domain Bacteria - 8.1.2.1.2.1.1 Candidate phylum Omnitrophica (OP3) Rinke et al. 2013 8.1.2.1.2.1.2 Candidate phylum "Uncultured Bacterial Phylum 3 (UBP3)" Parks et al. 2017 8.1.2.1.2.2 Candidate phylum "Uncultured Bacterial Phylum 4 (UBP4)" Parks et al. 2017 8.1.2.2.1 Candidate phylum Poribacteria Fieseler et al. 2004 8.1.2.2.2 Candidate phylum "BRC1" 8.2.1.1.1 Superphylum Terrabacteria Battistuzzi et al. 2004 1.1.1 Phylum Firmicutes corrig. Gibbons and Murray 1978 (Approved Lists 1980) 1.1.2.1 Phylum Armatimonadetes Tamaki et al. 2011 1.1.2.2 Candidate phylum "Uncultured Bacterial Phylum 13 (UBP13)" Parks et al. 2017 1.2.1.1 Phylum "Actinobacteria" Garrity and Holt 2001 1.2.1.2 Phylum "Deinococcus-Thermus" 1.2.2.1 Phylum Chloroflexi Garrity and Holt 2001 1.2.2.2.1 Candidate phylum "Uncultured Bacterial Phylum 9 (UBP9/SHA-109)" Parks et al. 2017 1.2.2.2.2 Candidate phylum "Uncultured Bacterial Phylum 12 (UBP12)" Parks et al. 2017 2.1 Candidate phylum Coatesbacteria (RIF8) Anantharaman et al. 2016 2.2.1.1 Phylum Cyanobacteria (ex Stanier 1974) Cavalier-Smith 2002 - cyanobacteria 2.2.1.2 Candidate phylum Melainabacteria (ACD20) Wrighton et al. 2014 2.2.2.1 Candidate phylum "RBX1" 2.2.2.2 Candidate phylum "WOR1" 2.2.2.3 Candidate phylum Margulisbacteria (RIF30) Anantharaman et al. 2016 8.2.1.1.2.1.1.1 Phylum Thermotogae Reysenbach 2001 8.2.1.1.2.1.1.2 Candidate phylum Acetothermia (OP1) Rinke et al. 2013 8.2.1.1.2.1.2.1 Candidate phylum Fervidibacteria (Oct-Spa1-106) Rinke et al. 2013 8.2.1.1.2.1.2.2.1.1 Phylum Caldiserica Mori et al. 2009 8.2.1.1.2.1.2.2.1.2 Phylum "Coprothermobacteraeota" Parks et al. 2017 8.2.1.1.2.1.2.2.2 Phylum Dictyoglomi Patel 2012 8.2.1.1.2.2.1 Phylum Synergistetes Jumas-Bilak et al. 2009 8.2.1.1.2.2.2 Candidate phylum Atribacteria (OP9) Rinke et al. 2013 8.2.1.2.1 Candidate phylum "Uncultured Bacterial Phylum 16 (UBP16)" Parks et al. 2017 8.2.1.2.2 Candidate phylum "Uncultured Bacterial Phylum 15 (UBP15)" Parks et al. 2017 8.2.2.1.1.1.1 Candidate phylum Lambdaproteobacteria (RIF24) Anantharaman et al. 2016 8.2.2.1.1.1.2 Phylum "Epsilonproteobacteria" 8.2.2.1.1.2 Phylum Deferribacteres Garrity and Holt 2001 8.2.2.1.2.1.1.1.1 Phylum Aquificae Reysenbach 2001 8.2.2.1.2.1.1.1.2 Candidate phylum Calescamantes (EM19) Rinke et al. 2013 8.2.2.1.2.1.1.2 Candidate phylum Fraserbacteria (RIF31) Anantharaman et al. 2016 8.2.2.1.2.1.2.1 Phylum Fusobacteria Garrity and Holt 2012 8.2.2.1.2.1.2.2 Candidate phylum "Uncultured Bacterial Phylum 6 (UBP6)" Parks et al. 2017 8.2.2.1.2.2.1 Candidate phylum Riflebacteria (RIF32) Anantharaman et al. 2016 8.2.2.1.2.2.2 Candidate phylum Wallbacteria (RIF33) Anantharaman et al. 2016 8.2.2.2.1 Phylum "Spirochaetes" Garrity and Holt 2001 8.2.2.2.2.1.1 Candidate phylum Lindowbacteria (RIF2) Anantharaman et al. 2016 8.2.2.2.2.1.2 Phylum "Dependentiae (TM6)" Yeoh et al. 2016 8.2.2.2.2.1.3 Candidate phylum "Uncultured Bacterial Phylum 8 (UBP8)" Parks et al. 2017 8.2.2.2.2.2.1 Candidate phylum "Uncultured Bacterial Phylum 7 (UBP7)" Parks et al. 2017 8.2.2.2.2.2.2.1 "Candidate Phyla Radiation (CPR)" Brown et al. 2015 1.1 Candidate phylum Dojkabacteria (WS6) Wrighton et al. 2016 1.2.1.1.1 Candidate phylum "CPR3" Brown et al. 2015 1.2.1.1.2 Candidate phylum Woykebacteria (RIF34) Anantharaman et al. 2016 1.2.1.2.1 Candidate phylum "CPR1" Brown et al. 2015 1.2.1.2.2 Candidate superphylum Microgenomates (OP11) Brown et al. 2015 1.1 Candidate phylum Daviesbacteria Brown et al. 2015 1.2 Candidate phylum Curtissbacteria Brown et al. 2015 2.1.1.1 Candidate phylum Shapirobacteria Brown et al. 2015 2.1.1.2.1 Candidate phylum Amesbacteria Brown et al. 2015 2.1.1.2.2.1 Candidate phylum Blackburnbacteria (RIF35) Anantharaman et al.
Recommended publications
  • Genomics 98 (2011) 370–375
    Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc.
    [Show full text]
  • Ninety-Nine De Novo Assembled Genomes from the Moose (Alces Alces) Rumen Microbiome Provide New Insights Into Microbial Plant Biomass Degradation
    The ISME Journal (2017) 11, 2538–2551 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation Olov Svartström1, Johannes Alneberg2, Nicolas Terrapon3,4, Vincent Lombard3,4, Ino de Bruijn2, Jonas Malmsten5,6, Ann-Marie Dalin6, Emilie EL Muller7, Pranjul Shah7, Paul Wilmes7, Bernard Henrissat3,4,8, Henrik Aspeborg1 and Anders F Andersson2 1School of Biotechnology, Division of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden; 2School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden; 3CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France; 4INRA, USC 1408 AFMB, 13288 Marseille, France; 5Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden; 6Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; 7Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg and 8Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes.
    [Show full text]
  • Distribution and Diversity of Members of the Bacterial Phylum Fibrobacteres in Environments Where Cellulose Degradation Occurs
    Aberystwyth University Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs. Ransom-Jones, Emma; Jones, Davey L.; Edwards, Arwyn; McDonald, J. E. Published in: Systematic and Applied Microbiology DOI: 10.1016/j.syapm.2014.06.001 Publication date: 2014 Citation for published version (APA): Ransom-Jones, E., Jones, D. L., Edwards, A., & McDonald, J. E. (2014). Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs. Systematic and Applied Microbiology, 37(7), 502-509. https://doi.org/10.1016/j.syapm.2014.06.001 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 28. Sep. 2021 G Model SYAPM-25635; No. of Pages 8 ARTICLE IN PRESS Systematic and Applied Microbiology xxx (2014) xxx–xxx Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs a b c a, Emma Ransom-Jones , David L.
    [Show full text]
  • Expanding the Chlamydiae Tree
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2040 Expanding the Chlamydiae tree Insights into genome diversity and evolution JENNAH E. DHARAMSHI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1203-3 UPPSALA urn:nbn:se:uu:diva-439996 2021 Dissertation presented at Uppsala University to be publicly examined in A1:111a, Biomedical Centre (BMC), Husargatan 3, Uppsala, Tuesday, 8 June 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Prof. Dr. Alexander Probst (Faculty of Chemistry, University of Duisburg-Essen). Abstract Dharamshi, J. E. 2021. Expanding the Chlamydiae tree. Insights into genome diversity and evolution. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2040. 87 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1203-3. Chlamydiae is a phylum of obligate intracellular bacteria. They have a conserved lifecycle and infect eukaryotic hosts, ranging from animals to amoeba. Chlamydiae includes pathogens, and is well-studied from a medical perspective. However, the vast majority of chlamydiae diversity exists in environmental samples as part of the uncultivated microbial majority. Exploration of microbial diversity in anoxic deep marine sediments revealed diverse chlamydiae with high relative abundances. Using genome-resolved metagenomics various marine sediment chlamydiae genomes were obtained, which significantly expanded genomic sampling of Chlamydiae diversity. These genomes formed several new clades in phylogenomic analyses, and included Chlamydiaceae relatives. Despite endosymbiosis-associated genomic features, hosts were not identified, suggesting chlamydiae with alternate lifestyles. Genomic investigation of Anoxychlamydiales, newly described here, uncovered genes for hydrogen metabolism and anaerobiosis, suggesting they engage in syntrophic interactions.
    [Show full text]
  • Deciphering a Marine Bone Degrading Microbiome Reveals a Complex Community Effort
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093005; this version posted November 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Deciphering a marine bone degrading microbiome reveals a complex community effort 2 3 Erik Borcherta,#, Antonio García-Moyanob, Sergio Sanchez-Carrilloc, Thomas G. Dahlgrenb,d, 4 Beate M. Slabya, Gro Elin Kjæreng Bjergab, Manuel Ferrerc, Sören Franzenburge and Ute 5 Hentschela,f 6 7 aGEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, 8 Kiel, Germany 9 bNORCE Norwegian Research Centre, Bergen, Norway 10 cCSIC, Institute of Catalysis, Madrid, Spain 11 dDepartment of Marine Sciences, University of Gothenburg, Gothenburg, Sweden 12 eIKMB, Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany 13 fChristian-Albrechts University of Kiel, Kiel, Germany 14 15 Running Head: Marine bone degrading microbiome 16 #Address correspondence to Erik Borchert, [email protected] 17 Abstract word count: 229 18 Text word count: 4908 (excluding Abstract, Importance, Materials and Methods) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093005; this version posted November 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The marine bone biome is a complex assemblage of macro- and microorganisms, however the 21 enzymatic repertoire to access bone-derived nutrients remains unknown.
    [Show full text]
  • Species Tree Inference and Update on Very Large Datasets Using Approximation, Randomization, Parallelization, and Vectorization
    Species tree inference and update on very large datasets using approximation, randomization, parallelization, and vectorization Siavash Mirarab Electrical and Computer Engineering University of California at San Diego 1 Phylogenetic reconstruction from data Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG 2 Phylogenetic reconstruction from data CTGCACACCG CTGCACACCG CTGCACACGG Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG 2 Phylogenetic reconstruction from data CTGCACACCG CTGCACACCG CTGCACACGG Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG 2 Phylogenetic reconstruction from data CTGCACACCG CTGCACACCG CTGCACACGG Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG Gorilla ACTGCACACCG Human ACTGC-CCCCG Chimpanzee AATGC-CCCCG Orangutan -CTGCACACGG D 2 Phylogenetic reconstruction from data CTGCACACCG CTGCACACCG CTGCACACGG Gorilla Human Chimpanzee Orangutan ACTGCACACCG ACTGCCCCCG AATGCCCCCG CTGCACACGG Orangutan Chimpanzee Gorilla ACTGCACACCG Human ACTGC-CCCCG Chimpanzee AATGC-CCCCG Orangutan -CTGCACACGG Gorilla Human D P (D T ) T | 2 Applications: HIV forensic Texas case Washington case Scaduto et al., PNAS, 2010 3 Applications: microbiome https://www.nytimes.com/2017/11/06/well/live/ unlocking-the-secrets-of-the-microbiome.html 4 Applications: microbiome https://www.nytimes.com/2017/11/06/well/live/ unlocking-the-secrets-of-the-microbiome.html Morgan, Xochitl C., Nicola Segata, and Curtis Huttenhower. "Trends in genetics (2013) 4 Applications: food safety Tracking the source of a listeriosis outbreak Jackson, Brendan R., et al. Reviews of Infectious Diseases (2016) 5 Fig. 3. Molecular dating of the 2014 outbreak. (A) BEAST dating of the separation of the 2014 lineage from Middle African lineages (SL = Sierra Leone; GN = Guinea; DRC = Democratic Republic of Congo; tMRCA: Sep 2004, 95% HPD: Oct 2002 - May 2006).
    [Show full text]
  • Zygote Gene Expression and Plasmodial Development in Didymium Iridis
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Summer 8-25-2019 Zygote gene expression and plasmodial development in Didymium iridis Sean Schaefer DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Schaefer, Sean, "Zygote gene expression and plasmodial development in Didymium iridis" (2019). College of Science and Health Theses and Dissertations. 322. https://via.library.depaul.edu/csh_etd/322 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Zygote gene expression and plasmodial development in Didymium iridis A Thesis presented in Partial fulfillment of the Requirements for the Degree of Master of Biology By Sean Schaefer 2019 Advisor: Dr. Margaret Silliker Department of Biological Sciences College of Liberal Arts and Sciences DePaul University Chicago, IL Abstract: Didymium iridis is a cosmopolitan species of plasmodial slime mold consisting of two distinct life stages. Haploid amoebae and diploid plasmodia feed on microscopic organisms such as bacteria and fungi through phagocytosis. Sexually compatible haploid amoebae act as gametes which when fused embark on an irreversible developmental change resulting in a diploid zygote. The zygote can undergo closed mitosis resulting in a multinucleated plasmodium. Little is known about changes in gene expression during this developmental transition. Our principal goal in this study was to provide a comprehensive list of genes likely to be involved in plasmodial development.
    [Show full text]
  • First Genomic Insights Into Members of a Candidate Bacterial Phylum Responsible for Wastewater Bulking
    First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking Yuji Sekiguchi1, Akiko Ohashi1, Donovan H. Parks2, Toshihiro Yamauchi3, Gene W. Tyson2,4 and Philip Hugenholtz2,5 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan 2 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia 3 Administrative Management Department, Kubota Kasui Corporation, Minato-ku, Tokyo, Japan 4 Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, Australia 5 Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia ABSTRACT Filamentous cells belonging to the candidate bacterial phylum KSB3 were previously identified as the causative agent of fatal filament overgrowth (bulking) in a high-rate industrial anaerobic wastewater treatment bioreactor. Here, we obtained near complete genomes from two KSB3 populations in the bioreactor, including the dominant bulking filament, using diVerential coverage binning of metagenomic data. Fluorescence in situ hybridization with 16S rRNA-targeted probes specific for the two populations confirmed that both are filamentous organisms. Genome-based metabolic reconstruction and microscopic observation of the KSB3 filaments in the presence of sugar gradients indicate that both filament types are Gram-negative, strictly anaerobic fermenters capable of
    [Show full text]
  • Evolution Génomique Chez Les Bactéries Du Super Phylum Planctomycetes-Verrucomicrobiae-Chlamydia
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE : SCIENCE DE LA VIE ET DE LA SANTE THESE Présentée et publiquement soutenue devant LA FACULTE DE MEDECINE DE MARSEILLE Le 15 janvier 2016 Par Mme Sandrine PINOS Née à Saint-Gaudens le 09 octobre 1989 TITRE DE LA THESE: Evolution génomique chez les bactéries du super phylum Planctomycetes-Verrucomicrobiae-Chlamydia Pour obtenir le grade de DOCTORAT d'AIX-MARSEILLE UNIVERSITE Spécialité : Génomique et Bioinformatique Membres du jury de la Thèse: Pr Didier RAOULT .................................................................................Directeur de thèse Dr Pierre PONTAROTTI ....................................................................Co-directeur de thèse Pr Gilbert GREUB .............................................................................................Rapporteur Dr Pascal SIMONET............................................................................................Rapporteur Laboratoires d’accueil Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes – UMR CNRS 6236, IRD 198 I2M - UMR CNRS 7373 - EBM 1 Avant propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master de Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de le commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Resilience of Microbial Communities After Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms
    microorganisms Article Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms Tim Piel 1,†, Giovanni Sandrini 1,†,‡, Gerard Muyzer 1 , Corina P. D. Brussaard 1,2 , Pieter C. Slot 1, Maria J. van Herk 1, Jef Huisman 1 and Petra M. Visser 1,* 1 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; [email protected] (T.P.); [email protected] (G.S.); [email protected] (G.M.); [email protected] (C.P.D.B.); [email protected] (P.C.S.); [email protected] (M.J.v.H.); [email protected] (J.H.) 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-5257073 † These authors have contributed equally to this work. ‡ Current address: Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands. Abstract: Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little Citation: Piel, T.; Sandrini, G.; is known about the impacts of these H2O2 treatments on other members of the microbial com- Muyzer, G.; Brussaard, C.P.D.; Slot, munity. In this study, we investigated changes in microbial community composition during two P.C.; van Herk, M.J.; Huisman, J.; −1 lake treatments with low H2O2 concentrations (target: 2.5 mg L ) and in two series of controlled Visser, P.M.
    [Show full text]
  • Distribution of Arsenite-Oxidizing Bacteria and Its Correlation with Environmental Factors in Geothermal Areas of Tengchong, Yunnan, China
    E3S Web of Conferences 98, 02002 (2019) https://doi.org/10.1051/e3sconf/20199802002 WRI-16 Distribution of arsenite-oxidizing bacteria and its correlation with environmental factors in geothermal areas of Tengchong, Yunnan, China Ping Li1,*, Dawei Jiang1, and Zhou Jiang1,2 1State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China 2School of Environmental Studies, China University of Geosciences, Wuhan, China Abstract. Arsenic (As) is an ubiquitous constituent in geothermal water. Arsenite (AsIII) is oxidized via microbial processes as the waters equilibrate with oxygen in the geothermal effluent. The distribution of arsenite oxdizing bacteria and its correlation with environment factors were studied in Tengchong geothermal areas of Yunnan, China. A total of 230 aioA clone sequences were obtained and these sequences were affiliated with four phyla: Betaproteobacteria, Alphaproteobacteria, Deinococcus- Thermus and Aquificae. Temperature was negatively correlated with aioA diversity and was the only environment factor that had correlation with diversity index. Betaproteobacteria was mainly distributed in low temperature (T = 28 to 43 oC) and circumneutral or light alkaline (pH = 7 to 9) springs; Alphaproteobacteria was mainly predominant in low pH (pH = 3.3 to 3.6) springs; Deinococcus-Thermus and Aquificae mainly inhabited in high temperature (T=55 to 78 oC) springs with a wide range of pH. Usually, Deinococcus-Thermus was dominant when springs had a pH within 4.0 to 8.0. Aquificae was dominated in springs with pH > 8.0 or pH < 4.0. 1 Diversity of aioA gene A total of 230 aioA gene clone sequences from 10 sample sites were subjected to sequence similarity analysis.
    [Show full text]