Spongipellis Unicolor (Schwein.) Murrill Syn: Polyporus Obtusus Berk

Total Page:16

File Type:pdf, Size:1020Kb

Spongipellis Unicolor (Schwein.) Murrill Syn: Polyporus Obtusus Berk Spongipellis unicolor (Schwein.) Murrill Syn: Polyporus obtusus Berk. Profile Group: Basidiomycota, Polyporales, Polyporaceae shape Dimidiate; ungulate to applanate size Up to 10 x 18 x 13 cm texture Finely hispid to tometose or finally glabrous pileus Cinnamon buff or ochraceous tawny with age stipe N/A characters context Pale buff Macroscopic pore surface Pale buff to ochraceous pores Circular to angular; often daedaleoid; 1-2 mm in diameter tube layer(s) Concolorous and continuous with the context, up to 2 cm thick hyphal system Monomitic clamp connections On thick walled generative hyphae sterile elements None characters Microscopic Microscopic basidiospores Ovoid to ellipsoid; hyaline; smooth; 7-9 x 6-7 um substrate/host Commonly on living oaks but occasionally on hosts in other genera seasonality Annual type of decay White trunk rot of living hardwoods Habitat characters range To be expected throughout the range of oaks in North America. Common in Arizona and New Mexico. Known only in North America. Notes Readily recognized in the field by the thick, pale brownish, sessile basidiocarps with large pores. Microscopically the monomitic hyphal system with thick-walled generative hyphae with abundant clamps and ellipsoid spores are distinctive. References Overholts, 1953; Gilbertson & Ryvarden, 1986. Species distribution in North Carolina Spongipellis unicolor profile, page 1 of 3 Last update: 09 March, 2011 by B.R. Cody Mycological Herbarium NCSU Last review: 11 March, 2011 by L.F. Grand Spongipellis unicolor (Schwein.) Murrill Habit of Basidiocarps Habit of Basidiocarps Habit of Basidiocarps Basidiospores – 1000 X Spongipellis unicolor profile, page 2 of 3 Last update: 09 March, 2011 by B.R. Cody Mycological Herbarium NCSU Last review: 11 March, 2011 by L.F. Grand Thick Walled Generative Hyphae with Clamps – 400 X Thick Walled Generative Skeletal Hyphae – 400 X Thick Walled Generative Skeletal Hyphae – 400 X Spongipellis unicolor profile, page 3 of 3 Last update: 09 March, 2011 by B.R. Cody Mycological Herbarium NCSU Last review: 11 March, 2011 by L.F. Grand .
Recommended publications
  • Annotated Check List and Host Index Arizona Wood
    Annotated Check List and Host Index for Arizona Wood-Rotting Fungi Item Type text; Book Authors Gilbertson, R. L.; Martin, K. J.; Lindsey, J. P. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 28/09/2021 02:18:59 Link to Item http://hdl.handle.net/10150/602154 Annotated Check List and Host Index for Arizona Wood - Rotting Fungi Technical Bulletin 209 Agricultural Experiment Station The University of Arizona Tucson AÏfJ\fOTA TED CHECK LI5T aid HOST INDEX ford ARIZONA WOOD- ROTTlNg FUNGI /. L. GILßERTSON K.T IyIARTiN Z J. P, LINDSEY3 PRDFE550I of PLANT PATHOLOgY 2GRADUATE ASSISTANT in I?ESEARCI-4 36FZADAATE A5 S /STANT'" TEACHING Z z l'9 FR5 1974- INTRODUCTION flora similar to that of the Gulf Coast and the southeastern United States is found. Here the major tree species include hardwoods such as Arizona is characterized by a wide variety of Arizona sycamore, Arizona black walnut, oaks, ecological zones from Sonoran Desert to alpine velvet ash, Fremont cottonwood, willows, and tundra. This environmental diversity has resulted mesquite. Some conifers, including Chihuahua pine, in a rich flora of woody plants in the state. De- Apache pine, pinyons, junipers, and Arizona cypress tailed accounts of the vegetation of Arizona have also occur in association with these hardwoods. appeared in a number of publications, including Arizona fungi typical of the southeastern flora those of Benson and Darrow (1954), Nichol (1952), include Fomitopsis ulmaria, Donkia pulcherrima, Kearney and Peebles (1969), Shreve and Wiggins Tyromyces palustris, Lopharia crassa, Inonotus (1964), Lowe (1972), and Hastings et al.
    [Show full text]
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Tree of Life Marula Oil in Africa
    HerbalGram 79 • August – October 2008 HerbalGram 79 • August Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert The Journal of the American Botanical Council Number 79 | August – October 2008 Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert • Herbs of the Painted Bronchitis for Osteoarthritis Disease • Rosehips for • Pelargonium Thyroid Herbs and www.herbalgram.org www.herbalgram.org US/CAN $6.95 Tree of Life Marula Oil in Africa www.herbalgram.org Herb Pharm’s Botanical Education Garden PRESERVING THE FULL-SPECTRUM OF NATURE'S CHEMISTRY The Art & Science of Herbal Extraction At Herb Pharm we continue to revere and follow the centuries-old, time- proven wisdom of traditional herbal medicine, but we integrate that wisdom with the herbal sciences and technology of the 21st Century. We produce our herbal extracts in our new, FDA-audited, GMP- compliant herb processing facility which is located just two miles from our certified-organic herb farm. This assures prompt delivery of freshly-harvested herbs directly from the fields, or recently HPLC chromatograph showing dried herbs directly from the farm’s drying loft. Here we also biochemical consistency of 6 receive other organic and wildcrafted herbs from various parts of batches of St. John’s Wort extracts the USA and world. In producing our herbal extracts we use precision scientific instru- ments to analyze each herb’s many chemical compounds. However, You’ll find Herb Pharm we do not focus entirely on the herb’s so-called “active compound(s)” at fine natural products and, instead, treat each herb and its chemical compounds as an integrated whole.
    [Show full text]
  • Diversity of Polyporales in the Malay Peninsular and the Application of Ganoderma Australe (Fr.) Pat
    DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS MOHAMAD HASNUL BIN BOLHASSAN THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: MOHAMAD HASNUL BIN BOLHASSAN (I.C No: 830416-13-5439) Registration/Matric No: SHC080030 Name of Degree: DOCTOR OF PHILOSOPHY Title of Project Paper/Research Report/Disertation/Thesis (“this Work”): DIVERSITY OF POLYPORALES IN THE MALAY PENINSULAR AND THE APPLICATION OF GANODERMA AUSTRALE (FR.) PAT. IN BIOPULPING OF EMPTY FRUIT BUNCHES OF ELAEIS GUINEENSIS. Field of Study: MUSHROOM DIVERSITY AND BIOTECHNOLOGY I do solemnly and sincerely declare that: 1) I am the sole author/writer of this work; 2) This Work is original; 3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledge in this Work; 4) I do not have any actual
    [Show full text]
  • ชุดโครงการวิจัย และพัฒนาเห็ด Research and Development on Mushroom
    1 รายงานชุดโครงการวิจัย ชุดโครงการวิจัย และพัฒนาเห็ด Research and Development on Mushroom หัวหน้าชุดโครงการวิจัย อลงกรณ์ กรณ์ทอง Alongkorn Korntong ปี พ.ศ. 2558 2 รายงานชุดโครงการวิจัย ชุดโครงการวิจัย และพัฒนาเห็ด Research and Development on Mushroom หัวหน้าชุดโครงการวิจัย อลงกรณ์ กรณ์ทอง Alongkorn Korntong ปี พ.ศ. 2558 3 คําปรารภ กรมวิชาการเกษตรมีภารกิจเกี่ยวกับการศึกษา วิจัย และพัฒนาพืชให้ได้พืชพันธุ์ดี เพื่อถ่ายทอด เทคโนโลยีการผลิตพืชสู่กลุ่มเปูาหมายทั้งภาครัฐ เอกชน และเกษตรกร ซึ่งการวิจัยและพัฒนาเห็ดก็เป็น ภารกิจหนึ่งของกรมที่ดําเนินการมาตลอด ชุดโครงการวิจัย และพัฒนาเห็ด ประกอบด้วยโครงการวิจัย 3 โครงการคือ โครงการวิจัยและพัฒนา เห็ดเศรษฐกิจสายพันธุ์ใหม่ โครงการวิจัยและพัฒนาการอารักขาเห็ด และ โครงการวิจัยและพัฒนา เทคโนโลยีการใช้วัสดุและอาหารเสริมเพาะเห็ดเศรษฐกิจ ทั้งนี้เพื่อคัดเลือก ผสมพันธุ์ ประเมินสายพันธุ์เห็ด ต่างๆ ให้ได้สายพันธุ์ที่มีคุณภาพและผลผลิตสูงเพื่อส่งเสริมให้เกษตรกรในแต่ละพื้นที่เป็นทางเลือก และ พัฒนาวิธีการเพาะเห็ดที่เหมาะสมในแต่ละพื้นที่และแบบการผลิต ตลอดจนการศึกษาการเก็บรักษาเชื้อพันธุ์ และการศึกษาความหลากหลายของเห็ดในธรรมชาติ อีกทั้งยังศึกษาการใช้วัสดุเหลือใช้ทางการเกษตรและ อุตสาหกรรมอีกหลายชนิด เพื่อเป็นวัสดุเพาะหลักหรืออาหารเสริมสําหรับเพาะเลี้ยงเห็ดทําให้ผู้เพาะเห็ดมี ทางเลือกปัจจัยด้านการผลิตได้เพิ่มขึ้น และรวมการศึกษาวิจัยวิธีการปูองกันกําจัดศัตรูเห็ดที่มีประสิทธิภาพ ซึ่งไม่มีผลกระทบต่อการเจริญและคุณภาพของเห็ด นําไปจัดการกับปัญหาศัตรูเห็ดในระดับฟาร์มเพาะเห็ดได้ เริ่มดําเนินการตั้งแต่ปีงบประมาณ 2554 และสําเร็จลุล่วงในปี 2558 ต้องขอขอบคุณกรมวิชาการเกษตรที่ สนับสนุนงบประมาณ คณะกรรมการที่ปรึกษาวิชาการกรมวิชาการเกษตรและของหน่วยงานต้นสังกัดในการ
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • A Checklist of Polypores from Northeast China
    Karstenia 40: 23- 29, 2000 A checklist of polypores from Northeast China YU-CHENG DAI DAI, Y.C. 2000: A checklist of polypores from Northeast China. - Karstenia 40: 23- 29. Helsinki. ISSN 0453-3402. This paper summarizes the polypores (Basidiomycota) recorded during the investiga­ tions made by the author in 1993- 1999 in northeastern China. The study is based on ca. 2500 specimens collected, but additional data was obtained from the critical re­ examination of the previously collected herbarium material. Altogether 261 polypore species were recorded from the study area and are listed here. Fifteen species are new to China. In addition, nine species found in the Russian Far East are included. The checklist provides a taxonomically sound basis for future studies on poroid wood­ inhabiting fungi in the area. Taxonomy of some noteworthy species is outlined, and the following new combinations are proposed: Jnocutis levis (P. Karst.) Y.C. Dai, lnonotopsis exilispora (Y.C. Dai & Niemela) Y.C. Dai, and Trichaptum polycystidia­ tum (Pilat) Y.C. Dai. Key words: Basidiomycota, checklist, Northeast China, polypores, taxonomy Yu-Cheng Dai, Botanical Museum (Mycology), PO. Box 47, FIN-00014 University of Helsinki, Finland Introduction The checklist of polypores from Changbai was specimens were collected during the field trips. Addi­ published in 1996 (Dai 1996), and species in the tional data was obtained by critical re-rexamination the previously collected material in the herbaria HMAS (Be­ paper were found from the Changbai Mountain ijing, China), HBNNU (Changchun, China), IFP (Shen­ Range only, which is located mostly in Jilin Prov­ yang, China), NEFI (Harbin, China), and 0 (Oslo, Nor­ ince.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • <I>Rhomboidia Wuliangshanensis</I> Gen. & Sp. Nov. from Southwestern
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2019 October–December 2019—Volume 134, pp. 649–662 https://doi.org/10.5248/134.649 Rhomboidia wuliangshanensis gen. & sp. nov. from southwestern China Tai-Min Xu1,2, Xiang-Fu Liu3, Yu-Hui Chen2, Chang-Lin Zhao1,3* 1 Yunnan Provincial Innovation Team on Kapok Fiber Industrial Plantation; 2 College of Life Sciences; 3 College of Biodiversity Conservation: Southwest Forestry University, Kunming 650224, P.R. China * Correspondence to: [email protected] Abstract—A new, white-rot, poroid, wood-inhabiting fungal genus, Rhomboidia, typified by R. wuliangshanensis, is proposed based on morphological and molecular evidence. Collected from subtropical Yunnan Province in southwest China, Rhomboidia is characterized by annual, stipitate basidiomes with rhomboid pileus, a monomitic hyphal system with thick-walled generative hyphae bearing clamp connections, and broadly ellipsoid basidiospores with thin, hyaline, smooth walls. Phylogenetic analyses of ITS and LSU nuclear RNA gene regions showed that Rhomboidia is in Steccherinaceae and formed as distinct, monophyletic lineage within a subclade that includes Nigroporus, Trullella, and Flabellophora. Key words—Polyporales, residual polyporoid clade, taxonomy, wood-rotting fungi Introduction Polyporales Gäum. is one of the most intensively studied groups of fungi with many species of interest to fungal ecologists and applied scientists (Justo & al. 2017). Species of wood-inhabiting fungi in Polyporales are important as saprobes and pathogens in forest ecosystems and in their application in biomedical engineering and biodegradation systems (Dai & al. 2009, Levin & al. 2016). With roughly 1800 described species, Polyporales comprise about 1.5% of all known species of Fungi (Kirk & al.
    [Show full text]
  • Hydnoid Basidiomycetes New to Brazil
    ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 116, pp. 183–189 April–June 2011 doi: 10.5248/116.183 Hydnoid basidiomycetes new to Brazil Alice da Cruz Lima Gerlach & Clarice Loguercio-Leite Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, 88040-900, Florianópolis, SC, Brazil Correspondence to: [email protected] & [email protected] Abstract ⎯ A survey of wood-decaying fungi from an Araucaria forest in the state of Santa Catarina in southern Brazil yielded numerous species of Agaricomycetes. Three hydnaceous species collected (Mycobonia brunneoleuca, Mycoacia aurea and Spongipellis africana) represent first records from Brazil. Illustrations and keys to the Brazilian species of Mycobonia, Mycoacia, and Spongipellis are provided. Key words ⎯ Polyporales, corticioid, fungal distribution Introduction The Atlantic Forest is still common in the state of Santa Catarina, where secondary forest dominates much of the landscape and 23% of the original vegetation cover remains (SOS Mata Atlântica/INPE 2009). The most outstanding feature of this subtropical region is the large extent of mixed Araucaria forests that cover the inner plateaus of southern Brazil and the Misiones Province in Argentina (Oliveira-Filho et al. 2009). These forests are easily recognized by their canopies, which are dominated by the chandelier- like crowns of Araucaria angustifolia (Bertol.) Kuntze (Sonego et al. 2007), and form complex mosaics with grasslands at higher altitudes (Jarenkow & Budke 2009). Previous surveys and reviews of hydnoid species from Brazil were published by Rick (1932a,b, 1959), Bononi (1979, 1981), Bononi et al. (1981, 2008), Hjortstam & Bononi (1986a,b, 1987), Capelari & Maziero (1988), Sótão et al.
    [Show full text]
  • Polyporales, Basidiomycota), a New Polypore Species and Genus from Finland
    Ann. Bot. Fennici 54: 159–167 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 18 April 2017 © Finnish Zoological and Botanical Publishing Board 2017 Caudicicola gracilis (Polyporales, Basidiomycota), a new polypore species and genus from Finland Heikki Kotiranta1,*, Matti Kulju2 & Otto Miettinen3 1) Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, FI-00251 Helsinki, Finland (*corresponding author’s e-mail: [email protected]) 2) Biodiversity Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland 3) Finnish Museum of Natural History, Botanical Museum, P.O. Box 7, FI-00014 University of Helsinki, Finland Received 10 Jan. 2017, final version received 23 Mar. 2017, accepted 27 Mar. 2017 Kotiranta H., Kulju M. & Miettinen O. 2017: Caudicicola gracilis (Polyporales, Basidiomycota), a new polypore species and genus from Finland. — Ann. Bot. Fennici 54: 159–167. A new monotypic polypore genus, Caudicicola Miettinen, Kotir. & Kulju, is described for the new species C. gracilis Kotir., Kulju & Miettinen. The species was collected in central Finland from Picea abies and Pinus sylvestris stumps, where it grew on undersides of stumps and roots. Caudicicola gracilis is characterized by very fragile basidiocarps, monomitic hyphal structure with clamps, short and wide tramal cells, smooth ellipsoid spores, basidia with long sterigmata and conidiogenous areas in the margins of the basidiocarp producing verrucose, slightly thick-walled conidia. The genus belongs to the residual polyporoid clade of the Polyporales in the vicinity of Steccherinaceae, but has no known close relatives. Introduction sis taxicola, Pycnoporellus fulgens and its suc- cessional predecessor Fomitopsis pinicola, and The species described here was found when deciduous tree trunks had such seldom collected Heino Kulju, the brother of the second author, species as Athelopsis glaucina (on Salix) and was making a forest road for tractors.
    [Show full text]