OCTOPUS FISHERIES IMPROVEMENT PROJECTS (Fips) in the UNITED REPUBLIC of TANZANIA

Total Page:16

File Type:pdf, Size:1020Kb

OCTOPUS FISHERIES IMPROVEMENT PROJECTS (Fips) in the UNITED REPUBLIC of TANZANIA OCTOPUS FISHERIES IMPROVEMENT PROJECTS (FIPs) IN THE UNITED REPUBLIC OF TANZANIA Inception Report October, 2017 1. Background and Introduction Tanzania has a well-developed octopus fishery along the coastal regions. The fishery is exclusively artisanal and Octopus cyanea is a dominant species (Roper et al., 1984; Guard and Mgaya, 2003). This species could be identified by the presence of two ocelli (eyespots) located a few centimetres below the eye, elliptical white spots found on the dorsal side of the tentacles and zebra stripes or bands on the ventral arm face (Guard and Mgaya, 2003). Of the past few years, fishery for octopus has become more important due to the increase in its demand for the external market (Jiddawi and Ohman, 2002; Brycesonet et al. 2006) as well as local markets. The volumes of exported octopus are well known and well quantified. For example, the exported octopus into different external markets has been decreasing from 5,195Mt in 2007 to 440Mt 2016 (MALF, 2016). However, information on the status of the stock, ecology and life cycles, level of fishing intensity and traceability of the resource in the local market in Tanzania Mainland is limited. The results from a recent study on stock assessment of octopus in Tanzania Mainland (TAFIRI, 2016) and assessment by using the Benchmarking and Tracking revealed some gaps which need to be addressed for qualification of status of octopus fishery versus the MSC principles. It is expected that findings from this project will contribute the information towards raising qualifications for MSC certification. It is worthy to note that the process of Octopus cyanea certification by Marine Stewardship Council (MSC) in Tanzania Mainland began in 2005 in collaboration with the World Wildlife Fund (WWF). Under this initiative, a lot of activities were conducted as a way forward towards certification. Such activities not limited to; were pre-analysis and pre-assessment in conjunction with development of Octopus Fishery Management Plan (OFMP). This study therefore will add from the previous (TAFIRI, 2016) information on the status of the stock of O. cyanea in marine waters of Mainland Tanzania which include their abundance, distribution and their biometric information. The study will further gather information required for MSC assessment which includes Reference points and harvesting strategy for the exploitation of the Tanzanian octopus information needed for Scale Intensity Consequence Analysis (SICA) on the main by-catch species. 2. Problem statement Information on the stock status of the octopus fishery in marine waters of Mainland Tanzania is not sufficient specifically their abundance and distribution. Data on these aspects and those on population dynamics are crucial for Implementation of Octopus Fisheries Management Plan (OFMP) as well MSC certification of Tanzania Mainland Octopus. This assignment will conduct a spatial analysis of catch and effort to understand the impact of octopus exploitation on the general marine and coastal environment as well as the levels of exploitation (catch and effort) relative to the key ecological elements. Recent study by TAFIRI (2016) revealed that catch and fishing effort levels in the octopus fishery vary spatially in coastal waters of Tanzania. This study intend to validate the hypothesis on how the levels of fishing effort related to the ecosystem sensitive in particular coral reefs environment. The spatial assessment will also focus on areas with the highest fishing effort that are likely to impact octopus capture and the ecosystem. Specifically the study will elucidate: (i) The number of fishers using spears and other methods on shallow reefs and in deeper waters. (ii) Qualitatively assess the likely impact of fishers damaging coral reefs through their fishing methods. (iii) The temporal variability of fishing effort per season. However, the assessment will be supplemented with the existing data (TAFIRI, 2016) 3. Objectives of this study The specific objectives of the project are: i) To map the octopus reefs in Mafia and Kilwa ii) To assess environmental parameters on the sampling sites iii) To undertake spatial and size evaluation of Octopus catches in Tanzania iv) To address the supply chain of octopus catches at the sampling sites v) To characterize octopus fisheryand how fishing is operated and catch handled. vi) To assess and quantify primary and secondary by-catch associated with octopus fishery. vii) To find out if octopus fishers collect lobsters as a primary by-catch and document the extent. viii) To assess the impact of octopus fisheries on lobster. ix) To assess stock status of lobster in selected sites in Mafia and Kilwa. x) To assess and document the type of gears used in octopus fishing and how they impact the fishery and habitat xi) To assess the impact of octopus fishery to the reef system. xii) To assess the impact of octopus fishery to the ecosystem. Study the trophic impact of removal of octopus and lobster on the coral reef. xiii) To assess the impacts of octopus fishery on Endangered, Threatened, and Protected Species (ETP) xiv) To assess the likelihood that sea cucumbers are illegally targeted by octopus fishers. xv) To assess the effectiveness of sea cucumber fishing ban on the population recovery. Find out which species of sea cucumber is under CITES list of species. xvi) To gather information on sea cucumber stock status. Check existing biological and ecological information related to sea cucumbers. Document effectiveness of data collection for sea cucumbers. xvii) To synthesize information on the current reef status. xviii) To check if Ecosystem Approach to Fisheries is applied to Octopus Fishery Management Plan and implemented. xix) To develop a Structured Research Programme on Tanzanian Octopus xx) To develop capacity building packages in artisanal fisheries data collection and statistics in both English and Swahili versions Kindly note that ‘‘assessment of leakeages, propose solutions and mechanisms to obtain total mortality and improve traceability of octopus catches in the sampling sites and traceability aspects of the octopus‘‘ which were expected to be done under this project (activity iv) will not be possible with the available funds and time. Instead only the supply chain of the octopus will be assessed. Whenever additional funds will be available, a study of these aspects will be conducted. 4. Scope of the work Obtaining a rigorous stock assessment of the O. cyanea is essential for sustainable management and development of the octopus fishery in the mainland Tanzania taking into consideration of MSC certification as well as livelihood security for the local communities who depend on coastal and marine resources. This study will gather information concerning the stock status of the octopus fishery in marine waters of Mainland Tanzania including their abundance and population dynamics. The study will also take into consideration of the distribution of octopus species in Tanzania Mainland. Supplemented with the findings by TAFIRI (2016), the project will tell on the seasonal abundance and distribution of the octopus. The study will be conducted to differentiate between the target species (Octopus cyanae) and the by-catch species caught. Quantitative data on the by-catch species of octopus (e.g. sea cucumber and lobsters) will be collected. The by-catch species may either be defined as “primary” or “secondary” by-catch. It is likely that to assess the status of these species, a Risk-Based Framework will be used as well as the SICA tables. The spatial maps shall as well be in the position to relate proximity of octopus catches to vulnerable species such as Endangered, Threatened and Protected (ETP) species. 5. APPROACH AND METHODOLOGY 5.1 Study Site This study will be conducted in two sites along the coast of Tanzania Mainland includes Somanga and Songosongo Island (Kilwa region); Bwejuu and Jibondo (Mafia Island) 1 2 Figure 1: A map of Tanzania showing the proposed study sites namely; 1 = Mafia, 2 = Kilwa 5.2 Data Collection Catch-effort data of O. cyanea will be collected from the landing sites each month during spring tide for three months in collaboration with enumerators (trained fishers/BMU) while the District Fisheries Officers (DFOs) in a respective site will act as the supervisors. Catch-effort data to be collected include the following: i. Time of departure from village ii. Time of arrival at the fishing site iii. Name of fishing site iv. Total area of the fishing site (coral reef) in Km2 v. Time of start fishing vi. Time of end fishing vii. Time of return viii. Length of time actively spent in fishing ix. Number of fishers x. Total catch of the octopus in weight (kg) and number xi. By-catch species in weight (kg) and number Except for the total area of the fishing site which will be obtained through GIS mapping, the above data will be collected using a structured interviews (standardised interviews) with the buyers/agents and fishers at the fish landing sites immediately after they return from fishing. Geo-reference catch-effort data will be used to calculate Catch per Unit Effort (CPUE). Other data to be collected will include, number of days spent fishing per month, fishing regime (Rotational or repeatedly) and marketing aspects for octopus [supply, market destinations (at different levels)]. Further, iinformation on exploited octopus and number of fishermen by gender with specifications on level of engagement of these fishermen in octopus fisheries will be recorded. Catch-effort
Recommended publications
  • Educators' Resource Guide
    EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p
    [Show full text]
  • Petition to List the Black Teatfish, Holothuria Nobilis, Under the U.S. Endangered Species Act
    Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle,WA98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats.
    [Show full text]
  • Traditional Ecological Knowledge in Andavadoaka, Southwest Madagascar
    BLUE VENTURES CONSERVATION REPORT Josephine M. Langley Vezo Knowledge: Traditional Ecological Knowledge in Andavadoaka, southwest Madagascar 52 Avenue Road, London N6 5DR [email protected] Tel: +44 (0) 208 341 9819 Fax: +44 (0) 208 341 4821 BLUE VENTURES CONSERVATION REPORT Andavadoaka, 2006 © Blue Ventures 2006 Copyright in this publication and in all text, data and images contained herein, except as otherwise indicated, rests with Blue Ventures. Recommended citation: Langley, J. (2006). Vezo Knowledge: Traditional Ecological Knowledge in Andavadoaka, southwest Madagascar. BLUE VENTURES CONSERVATION REPORT Summary Many fisheries and marine conservation management (ii) Knowledge of marine resources is passed orally from projects throughout the world have been dogged by generation to generation failure as a result of a lack of acceptance of (iii) Traditional laws, taboos and ceremonies are commonly management interventions by local communities. used in natural resource management Evaluation of these failed studies has produced (iv) Lifestyle, food security and housing are all dependent extensive guidelines, manuals and new fields of study on natural resources and the use of coastal and marine (Bunce and Pomeroy, 2004). Community engagement, resources form an essential part of this participatory research, and promoting the use of local (v) The arrival of the Catholic Mission has reduced the knowledge have repeatedly emerged as steps necessary proportion of villagers adhering to traditional ancestor to address the problem of managing the development of worship people and their economies while simultaneously (vi) There has been a change in recent years from a barter protecting the environment (Berkes et al, 2001; Bunce and subsistence economy to a market-driven cash- based economy and Pomeroy, 2004; Wibera et al, 2004; Scholz et al, (vii) Increased income for some members of the 2004).
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • Biology of Echinoderms
    Echinoderms Branches on the Tree of Life Programs ECHINODERMS Written and photographed by David Denning and Bruce Russell Produced by BioMEDIA ASSOCIATES ©2005 - Running time 16 minutes. Order Toll Free (877) 661-5355 Order by FAX (843) 470-0237 The Phylum Echinodermata consists of about 6,000 living species, all of which are marine. This video program compares the five major classes of living echinoderms in terms of basic functional biology, evolution and ecology using living examples, animations and a few fossil species. Detailed micro- and macro- photography reveal special adaptations of echinoderms and their larval biology. (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE VIDEO PROGRAM) Summary of the Program: Introduction - Characteristics of the Class Echinoidea phylum. spine adaptations, pedicellaria, Aristotle‘s lantern, sand dollars, urchin development, Class Asteroidea gastrulation, settlement skeleton, water vascular system, tube feet function, feeding, digestion, Class Holuthuroidea spawning, larval development, diversity symmetry, water vascular system, ossicles, defensive mechanisms, diversity, ecology Class Ophiuroidea regeneration, feeding, diversity Class Crinoidea – Topics ecology, diversity, fossil echinoderms © BioMEDIA ASSOCIATES (1 of 7) Echinoderms ... ... The characteristics that distinguish Phylum Echinodermata are: radial symmetry, internal skeleton, and water-vascular system. Echinoderms appear to be quite different than other ‘advanced’ animal phyla, having radial (spokes of a wheel) symmetry as adults, rather than bilateral (worm-like) symmetry as in other triploblastic (three cell-layer) animals. Viewers of this program will observe that echinoderm radial symmetry is secondary; echinoderms begin as bilateral free-swimming larvae and become radial at the time of metamorphosis. Also, in one echinoderm group, the sea cucumbers, partial bilateral symmetry is retained in the adult stages -- sea cucumbers are somewhat worm–like.
    [Show full text]
  • ASMI Monthly Marketing Update December 2020
    Email not displaying properly? View as webpage now >> ALASKA SEAFOOD MONTHLY UPDATE | DEC 2020 ALASKASEAFOOD.ORG | WILDALASKASEAFOOD.COM Foodservice Retail International Nutrition Resources Happy Holidays From the ASMI Team! Thank you, from all of us, for your shared commitment to increasing the value of Alaska's seafood resource. We look forward to continuing our mission on behalf of our state and our industry in the next year! Announcements A Successful Virtual All Hands On Deck! Thank you for joining ASMI for the 2020 All Hands on Deck Virtual Conference. Recordings and materials from of all committee and board meetings can be found found at www.alaskaseafood.org/all-hands-on-deck/. Extended: USDA Seafood Trade Relief Program The USDA has extended its deadline for its Seafood Trade Relief Program. Fishermen can now sign up for the program through Jan. 15, 2021. More details can be found online. Extended: Alaska Direct Marketers Survey ASMI is looking to better understand the needs of Alaska's direct marketers through a short online survey. If you are a direct marketer, take the survey before Jan. 1, 2021 for a chance to win $100. ASMI appreciates your thoughtful answers to help guide our strategy. TAKE THE SURVEY NOW ASMI Technical Program Update Michael Kohan recently departed ASMI to pursue a new opportunity within the industry. We are grateful for Michael's five years of dedication to the Alaska seafood industry in her role as Seafood Technical Director and wish her all the best in her future endeavors! For all technical or seafood quality questions, please contact ASMI Seafood Technical Coordinator, John Burrows.
    [Show full text]
  • Sea Cucumber Trade from Africa to Asia
    September 2020 A RAPID ASSESSMENT OF THE SEA CUCUMBER TRADE FROM AFRICA TO ASIA Simone Louw Markus Bűrgener SEA CUCUMBER TRADE DYNAMICS FROM AFRICA TO ASIA 1 SHORT REPORT TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. Reproduction of material appearing in this report requires written permission from the publisher. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. AuthorS Simone Louw Markus Bűrgener PROJECT Supervisor Camilla Floros Published by: TRAFFIC International, Cambridge, United Kingdom. Dried sea cucumbers destined for export, confiscated by the South African Postal Service in 2016 SUGGESTED CITATION Louw, S., Bűrgener, M., (2020). A Rapid Assessment of the Sea Cucumber trade from Africa to Asia. © TRAFFIC 2020. Copyright of material published in this report is vested in TRAFFIC. ACKNOWLEDGEMENTS ISBN: 978-1-911646-27-3 UK Registered Charity No. 1076722 The authors thank Camilla Floros, Glenn Sant, Nicola Okes, David Newton, Julie Thomson, Martin Andimile, Linah Clifford, Design Thomasina Oldfield, and Stephanie Pendry for their valued inputs Marcus Cornthwaite and helpful review of this document. The study was undertaken through the ReTTA (Reducing Trade Threats to Africa’s wild species and ecosystems) project, which is funded by Arcadia—a charitable fund of Lisbet Rausing and Peter Baldwin.
    [Show full text]
  • Sea Cucumbers
    5. SEA CUCUMBERS Overview of the Fishery Sea cucumbers have been harvested in parts of the western Pacific for hundreds of years, and more recently the fisheries have expanded worldwide, involving the harvest of nearly 50 species. Two species of sea cucumbers are fished in California: the California sea cucumber, Parastichopus californicus, also known as the giant red sea cucumber, and the warty sea cucumber, P. parvimensis. The warty sea cucumber is fished almost exclusively by divers, while the California sea cucumber is caught principally by trawling in southern California, but is also occasionally targeted by divers in northern California. There is an artisanal dive fishery for warty sea cucumbers in Baja California, Mexico, and commercial dive fisheries are conducted for California sea cucumbers in Washington, Oregon, Alaska, and the coast of British Columbia, Canada. The first recorded commercial landings of sea cucumbers in California were made in 1978 at Los Angeles area ports (Figure 5.1 and Table 5.1). Divers fishing warty sea cucumbers at Santa Catalina Island were the first to make landings, but they were soon joined by trawl vessels. Combined annual landings remained under 100,000 pounds (45 metric tons) until 1982, when the principal fishing area shifted to the Santa Barbara Channel. In that year, 140,000 pounds (64 metric tons) were landed with an ex-vessel value of about $25,000. Recorded landings fluctuated from 52,000 to 160,000 pounds (24 to 73 metric tons) over the next eight years, and in 1991 reached more than 577,000 pounds (262 metric tons).
    [Show full text]
  • Final Report
    FINAL REPORT REHABILITATION AND CONSERVATION THE SEAGRASS MEADOWS AT CAM HAI DONG, CAM RANH BAY, KHANH HOA PROVINCE, CENTRAL VIETNAM. Pham Huu Tri Institute of Oceanography Nhatrang, Vietnam NHATRANG, JUNE 2008 Table of Contents 1. INTRODUCTION: 3 2. OBJECTIVES: 4 3. MATERIALS AND METHODS: 4 3.1 Research methods: 4 3.2 Project sites: 4 3. 3 Duration of the project: 6 3.4 Planting techniques: 6 3.4.1 Seagrasses: 6 3.4.2 Sea-horse and sea-cucumber: 7 3.4.3 Methods of study the leaf growth rate and leaf production: 7 3.4.4 Management and taking care of the rehabilitated area at Cam Hai Dong, Cam Ranh ba: 7 4. RESULTS: 7 4.1 The natural environmental elements in the rehabilitated area – Cam Hai Dong- Cam Ranh: 7 4.2 Species diversity of seagrasses in the rehabilitated area: 8 4.3 Transplantation the Enhalus acoroides for planting: 9 4.3.1 For the shoots method: 9 4.3.2 For the seedlings methods: 11 4. 4 Results of restoration the sea-horse at the rehabilitated area: 13 4.5 Results of restoration the sea-cucumber at the rehabilitated area: 14 5. CONCLUSION: 15 6. RECOMMENDATION: 15 LITERATURE CITED: 16 APPENDIX: 17 2 1. INTRODUCTION: Khanh Hoa is the coastal province in southern central Vietnam, situated between 11°45’02’’ to 13°02’ 10’’ North latitude and from 108045’10’’to 109045’06’’ East longitude, the length of the coast lines about 300km. The shallow coastal area of Khanh Hoa province is often covered by seagrass beds especially in Cam Ranh bay area where the seagrass beds have concentrated distribution with the superficies up to more than 1000 ha, there are 6 common species of seagrasses have been found there, among them Enhalus acoroides which has long leaves (1-2 m), dense density (40- 100 shoots/m2) and high cover (70-100%) is dominant.
    [Show full text]
  • Sea Cucumber.Pdf
    Cover photograph: Underwater photograph of an adult brown sea cucumber Isostichopus fuscus (Ludwig, 1875) at Santa Cruz, Galápagos Islands, Ecuador; courtesy Steven W. Purcell. FAO FISHERIES AND Managing sea cucumber AQUACULTURE TECHNICAL fisheries with an ecosystem PAPER approach 520 By Steven W. Purcell FAO Consultant National Marine Science Centre Southern Cross University Coffs Harbour, NSW, Australia Edited and compiled by Alessandro Lovatelli Fishery Resources Officer (Aquaculture) Fisheries and Aquaculture Resources Use and Conservation Division FAO Fisheries and Aquaculture Department Rome, Italy Marcelo Vasconcellos FAO Consultant Institute of Oceanography Federal University of Rio Grande Rio Grande, RS, Brazil and Yimin Ye Senior Fishery Resources Officer Fisheries and Aquaculture Resources Use and Conservation Division FAO Fisheries and Aquaculture Department Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the authors and do not necessarily reflect the views of FAO. ISBN 978-92-5-106489-4 All rights reserved.
    [Show full text]
  • Tuna Be, Or Not Tuna Be: Using Catch Data to Observe the Ecological Impacts of Commercial Tuna Fisheries in the Pacific Ocean at Varying Spatial Scales
    TUNA BE, OR NOT TUNA BE: USING CATCH DATA TO OBSERVE THE ECOLOGICAL IMPACTS OF COMMERCIAL TUNA FISHERIES IN THE PACIFIC OCEAN AT VARYING SPATIAL SCALES by Laurenne Louise Schiller B.Sc. (Hons.), University of Guelph, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate and Postdoctoral Studies (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2014 © Laurenne Louise Schiller, 2014 ABSTRACT Tuna are arguably the world’s most valuable, versatile, yet vulnerable fishes. With current landings over 4 million tonnes annually, all species of tuna from all three major ocean basins are caught, traded, and consumed at various intensities around the globe. Understanding the implications of such an extensive industry is paramount to protecting the long-term health and sustainability of both the tuna fisheries as well as the ecosystems in which they operate. Given that the Pacific Ocean accounts for roughly two-thirds of the global commercial tuna catch, this thesis assesses the trends and ecological impacts of commercial tuna fishing at both the artisanal and industrial scale in this ocean. To observe the importance of tuna fisheries at a local scale, a case study of the Galápagos Islands is presented. In this context, it was observed that over-fishing and the subsequent depletion of large, low fecund serranids has resulted in a high level of ‘fishing down’ within the near- shore ecosystem. Consequently, as fishers are forced to expand to regions off-shore, tuna and coastal scombrids are becoming increasingly targeted. With regard to industrial fishing, tuna vessels (especially distant-water longliners) are known to generate a substantial amount of associated bycatch and discards.
    [Show full text]
  • The Colonization of a Multi-Functional Artificial Reef Designed for the American Lobster, Homarus Americanus
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Spring 5-8-2020 The Colonization of a Multi-functional Artificial Reef Designed for the American Lobster, Homarus Americanus Christopher Roy University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Recommended Citation Roy, Christopher, "The Colonization of a Multi-functional Artificial Reef Designed for the American Lobster, Homarus Americanus" (2020). Electronic Theses and Dissertations. 3205. https://digitalcommons.library.umaine.edu/etd/3205 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE COLONIZATION OF A MULTIFUNCTIONAL ARTIFICIAL REEF DESIGNED FOR THE AMERICAN LOBSTER, HOMARUS AMERICANUS By Christopher Roy A.A. University of Maine, Augusta, ME. 2006 B.S. University of Maine, 2004 A THESIS SuBmitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Animal Science) The Graduate School The University of Maine May 2020 Advisory Committee: Robert Bayer, Professor of Food and Agriculture, ADvisor Ian Bricknell, Professor of Marine Sciences Timothy BowDen, Associate Professor of Aquaculture © 2020 Christopher Roy All Rights ReserveD ii THE COLONIZATION OF A MULTIFUNCTIONAL ARTIFICIAL REEF DESIGNED FOR THE AMERICAN LOBSTER, HOMARUS AMERICANUS By Christopher Roy Thesis Advisor: Dr. Bob Bayer An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (Animal Science) May 2020 HaBitat loss anD DegraDation causeD By the installation of infrastructure relateD to coastal population increase removes vital habitat necessary in the lifecycles of benthic and epibenthic species.
    [Show full text]