Ophiolites from the Egyptian Shield: a Case for a Possible Inter-Arc Basin Origin ,' '"'!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
11Th Workshop on Alpine Geological Studies & 7Th IFAA
©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Abstract Volume Emile Argand Conference (11th Workshop on Alpine Geological Studies) 7th - 14th September 2013 Schladming, Austria Editorial: Ralf Schuster Geologische Bundesanstalt Neulinggasse 38 1030 Vienna, Austria 9 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Analysis of microseismicity in the Fribourg area (Western Swiss Molasse Basin) Abednego, M.1, Vouillamoz, N.1, Husen, St.2, Wust-Bloch, H.G.3 & Mosar, J.1 1 University of Fribourg, Departement of Geosciences, Earth Sciences, 1700 Fribourg, Switzerland ([email protected]) 2 Schweiz. Erdbebendienst (SED), 8092 Zürich, Switzerland 3 Tel Aviv University, Department of Geophysics and Planetary Sciences, 69978 Tel Aviv, Israel This study presents an analysis of microseismicity in the Fribourg area (Western Swiss Molasse Basin), a region that has recently displayed increased microseismicity (KASTRUP et al., 2007). Arrival time data of these earthquakes were used in a non-linear probabilistic earthquake relocation approach and to refine an existing three-dimensional (3-D) P-wave velocity model of the Fribourg area. Two mini-arrays (seismic navigating systems/SNS) have been deployed since 2010 to enhance seismic monitoring of the Fribourg Lineament within the Fribourg area. A comprehensive local catalogue of microseismicity was build using recordings of the two SNS and of nine permanent stations of the Swiss Digital Seismic Network and the Swiss Strong Motion Network operated by the Swiss Seismological Service (SED). Events were detected on all traces by sonogram analysis, a non-linearly scaled and noise-adaptive spectrogram (SICK et al., 2012). -
Abstracts & Field Guides
Berichte der Geologischen Bundesanstalt, 99 11th Workshop on Alpine Geological Studies & th 7 European Symposium on Fossil Algae Abstracts & Field Guides Schladming, Sept. 2013 Redaktion: Ralf Schuster Cover image: Sölk marble from the base of the Weiße Wand, Walchental (Styria, Austria) Impressum: ISSN 1017-8880 Alle Rechte für das In- und Ausland vorbehalten © Geologische Bundesanstalt (GBA) A-1030 Wien, Neulinggasse 38 www.geologie.ac.at Wien, September 2013 Medieninhaber, Herausgeber und Verleger: GBA, Wien Redaktion: Ralf Schuster (Geologische Bundesanstalt) Technische Redaktion; Christoph Janda (Geologische Bundesanstalt) Umschlag Monika Brüggemann-Ledolter Druck: Riegelnik, Offsetschnelldruck, Piaristengasse 19, A-1080 Wien Ziel der „Berichte der Geologischen Bundesanstalt“ ist die Verbreitung wissenschaftlicher Ergebnisse durch die Geologische Bundesanstalt. Die „Berichte der Geologischen Bundesanstalt“ sind im Handel nicht erhältlich. Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Content Organisation & Time Schedule 4 Abstracts Emile Argand Conference (11th Workshop on Alpine Geological Studies) Editorial: Ralf Schuster 9 Abstracts 7th European Symposium on Fossil Algae Editorial: Sigrid Missoni & Hans-Jürgen Gawlick 107 Field guide: General Introduction in the Geology of the Easter Alps Ralf Schuster 121 Field guide Excursion A1: Southern Alps of Slovenia in a nutshell: paleogeography, tectonics, and active deformation Bogomir Celarc, Marko Vrabec, Boštjan Rožič, Polona Kralj, Petra Jamšek Rupnik, -
KANOITE, (Mnh , Mg)2[Si206], a NEW CLINOPYROXENE in the METAMORPHIC ROCK from TATEHIRA, OSHIMA PENINSULA, HOKKAIDO, JAPAN
The Geological Society of Japan JOURNAL OF THE GEOLOGICAL SOCIETY OF JAPAN, VoL 83, No.8, p. 537-542, August 1977 H KANOITE, (Mn , Mg)2[Si20 6], A NEW CLINOPYROXENE IN THE METAMORPHIC ROCK FROM TATEHIRA, OSHIMA PENINSULA, HOKKAIDO, JAPAN HIDEO KOBAYASHI* Abstract Kanoite, (Mn2+, Mgh[Si20 6], a new clinopyroxene, is monoclinic, P21/c, ao= 9.739 A, bo=8.939A, co=5.260A, p=108.56°, Z=4. The strongest diffractions in the X-ray powder pattern are 3.211(100)(220), 3.021(90)(221), 2.921(80)(311), 2.910(90)(310), 2.493 (40) (002), 1.627(40) (531). Electron microprobe and supplementary wet chemical analyses gave Si02 50.20, Al20 3 0.04, Fe20 3 0.39, FeO 2.64, MnO 31.19, MgO 15.08, CaO 0.57, Na20 0.03, K 20 0.03, total 100.17%. It is optically biaxial positive, 2V=40°-42°, refractive indices ns a= 1.715(2), p= 1.717(2), Y= 1.728(2); optical orientation b=Y, cl\Z= +42°. Colourless in thin section. It is light pinkish brown in fresh colour and with a vitreous luster. Streak white. Cleavage {1I0} perfect. Hardness(Mohs) =6. Density 3.66 g/cm3 (meas.); 3.60 g/cm3 (calc.). Polysynthetic twin on {lOO} is common. It occurs as minute grains intergrown with manganoan cummingtonite in metamorphosed manganese ore enclosed in a quartz-rich biotite-garnet gneiss exposed as a reef at the seashore near Tatehira, Oshima Peninsula, Hokkaido. The name is for Dr. Hiroshi KANO, Professor ofPetrology, Akita University, for his geological and petrographical contributions to metamorphic rocks in Japan especially those forming the basement ofJapanese Islands. -
Military Mountain Training
Federal Ministry of Defence and Sports S92011/27-Vor/2014 Supply No. 7610-10147-0714 Manual No. 1002.09 Austrian Armed Forces Field Manual (For Trial) Military Mountain Training Vienna, July 2014 Approval and Publishing Austrian Armed Forces Field Manual (for trial) Military Mountain Training Effective as of 1st December 2014 This Field Manual replaces the “Mountain Operations” Field Manual, parts I – IV, Supply number 7610-10133-0808 Approved: Vienna, 8th July 2014 For the Minister of Defence and Sports (COMMENDA, General) 2 Approval and Publication Austrian Armed Forces Field Manual (For Trial) Military Mountain Training Responsible for the Contents: SALZBURG, 27th June 2014 Chief, Air Staff, Austrian Joint Forces Command (GRUBER, BG) SAALFELDEN, 27th June 2014 Cdr (acting), Mountain Warfare Centre: (RODEWALD, Colonel) 3 PREFACE This Field Manual (FM) for trial (f.t.) serves as a basis for the training and application of mountaineering techniques within the Austrian Armed Forces (AAF) and will be distributed to the units in need of it. It is to be seen as the predecessor of the final version of the same-titled AAF FM, which will be published after the testing phase of this manual. The present FM (f.t.) was developed in cooperation with the German Bundeswehr (Bw) in order to ensure standardized training. In the Bw it is called C2-227/0-0-1550 “Gebirgsausbildung”. This FM (f.t.) is meant to provide knowledge and skills on: - geographical, geological, meteorological, and common basics for military operations in mountainous terrain, - safe and secure movements and survival in mountainous and high mountain regions, – mountain rescue, and – mountaineering equipment, which are preconditions for the accomplishment of military tasks. -
Palaeogene and Neogene
Palaeogene and Neogene MICHAEL W RASSER, MATHIAS HARZHAUSER (co-ordinators), OLGA Y. ANISTRATENKO, VITALIY V. ANISTRATENKO, DAVIDE BASSI, MIRKO BELAK, JEAN-PIERRE BERGER, GIANLUCA BIANCHINI, SAFET CICIC, VLASTA COSOVIC, NELA DOLA.KOVA., KATICA DROBNE, SORIN FILIPESCU, KARL GÜRS, SA.RKA HLADILOVA., HAZIM HRVATOVIC, BOGOMIR JELEN, _ JACEK ROBERT KASINSKI, MICHAL KOVA.C, POLONA KRALJ, TIHOMIR MARJANAC, EMÖ MA.RTON, PAOLO MIETTO, ALAN MORO, ANDRA.S NAGYMAROSY, JAMES H. NEBELSICK, SLAVOMIR NEHYBA, BOJAN OGORELEC, NESTOR OSZCZYPKO, DAVOR PAVELIC,, RAJKO PAVLOVEC, JERNEJ PAVSIC, PAVLA PETROVA, MARCIN PIWOCKI, MARIJAN POLJAK, NEVIO PUGLIESE, REJHANA REDZEPOVIC, HELENA RIFELJ, REINHARD ROETZEL, DRAGOMIR SKABERNE, VUBOMIR SLIVA, GERDA STANDKE, GIORGIO TUNIS, DIONYZ VASS, MICHAEL WAGREICH & FRANK WESSELINGH Over the last 65 Ma, our world assumed its modem shape. This Miocene to Plioeene sueeessor Lake Pannon. At its maximum timespan is divided into the Palaeogene Period, lasting from 65 extent, the Paratethys extended from the Rhöne Basin in Franee to 23 Ma and the Neogene, which extends up to the present day towards Inner Asia. Subsequently, it was partitioned into a (see Gradstein & Ogg (2004) and Gregory et al. (2005) for smaller western part eonsisting of the Western and the Central diseussion about the Quaternary). Paratethys and the larger Eastern Paratethys. The Western Throughout the Cenozoie Era, Afriea was moving towards Paratethys eomprises the Rhöne Basin and the Alpine Foreland Eurasia in a northward direetion and with a eountercloekwise Basin of Switzerland, Bavaria and Austria. The Central Para- rotation. Numerous mieroplates in the Mediterranean area were tethys extends from the Vienna Basin in the west to the eompressed, gradually fusing, and Eurasiaunderwent a shift from Carpathian Foreland in the east where it abuts the area of the a marine arehipelago to eontinental environments, related to the Eastem Paratethys. -
Appendix 1 Calculation of a Chemical Formula from a Mineral Analysis
Appendix 1 Calculation of a chemical formula from a mineral analysis Appendix 1 Magnesiohornblende analysis 3 4 2 Atomic proportion No. of anions on 1 Molecular of oxygen from basis of 24 (O,OH) 5 Wt.% of oxides proportion of oxides each molecule i.e. col. 368.3735 No. of ions in formula SiO 51.63 0.8594 1.7188 14.392 Si 7.196 2 8.00 0.804 } Al2O3 7.39 0.0725 0.2175 1.821 Al 1.214 0.410 3+ Fe2O3 2.50 0.0157 0.0471 0.394 Fe 0.263 FeO 5.30 0.0738 0.0738 0.618 Fe2+ 0.618 5.07 MnO 0.17 0.0024 0.0024 0.020 Mn 0.020 } MgO 18.09 0.4489 0.4489 3.759 Mg 3.759 CaO 12.32 0.2197 0.2197 1.840 Ca 1.840 2.00 Na2O 0.61 0.0098 0.0098 0.082 Na 0.164 } H2O+ 2.31 0.1282 0.1282 1.073 OH 2.146 2.15 Total 100.32 2.8662 24 = 8.3735 2.8662 The procedure for calculating a chemical formula is Column 5 gives the number of cations associated described by means of the above example, a with the oxygens in column 4. Thus for SiO2 there is magnesiohornblende. one silicon for two oxygens so the column 4 entry is divided by 2. For A12O3 there are two aluminiums for Column 1 lists the composition of the mineral every three oxygens so the column 4 entry is multiplied expressed in the usual manner as weight percentages by ~˜. -
A Bird's Eye View of Geology
High Above the Alps A Bird’s Eye View of Geology Kurt Stüwe and Ruedi Homberger Weishaupt Publishing Krems Linz Wachau Melk Munich Vienna Bratislava VOGES BLACKK FOREST Chiemsee Salzburg Kempten Lake Neusiedl Lake Constance Salzkammergut Schneeberg Berchtesgadener Alps Hochschwab Wilder Kaiser Dachstein Liezen Allgäu Alps Watzmann Zurich Karwendel Leoben Budapest Zell am See Innsbruck Lower Tauern JURA Lechtal Alps Großglockner Graz Hohe Tauern Neuchâtel Bern Napf Brenner Glarus Alps Saualpe Chur Davos Ötztaler A Rhine Alps Lienz Balaton UR Arosa Koralpe J Klagenfurt Meran Carnic Alps Fribourg Alps Maribor Eiger Lukmanier Pass Dolomites Bernese Oberland Bolzano Karavanke Pohorje Lepontine Julian Alps Steiner Alps D. Morcles Ticino Piz Bernina Bergell Tagliamento JURA High Savoy Geneva Rhone Simplon Pass Adamello Bergamo Alps Belluno Valais Alps Adige Udine Mt. Blanc Piave Mte. Rosa Aosta Valley Lake Como Zagreb Lago Maggiore Bauges Massif Triest Gran Paradiso Milan Padua Lake Garda Venice Grenoble D Krk IN A Vercors La Meije Turin RID ES MASSIF CENTRAL Ecrin M. Briancon Dauphiné Alps Monviso APENNINES ADRIA DI Bologna NA Gap RID ES Cuneo Maritime Alps Genoa APENNINES Argentera Zadar Massif D Durance INARDES Avignon I Verdon APENNINES 2 Nice Pisa Krems Linz Wachau Melk Munich Vienna Bratislava VOGES BLACKK FOREST Chiemsee Salzburg Kempten Lake Neusiedl Lake Constance Salzkammergut Schneeberg Berchtesgadener Alps Hochschwab Wilder Kaiser Dachstein Liezen Allgäu Alps Watzmann Zurich Karwendel Leoben Budapest Zell am See Innsbruck Lower Tauern JURA Lechtal Alps Großglockner Graz Hohe Tauern Neuchâtel Bern Napf Brenner Glarus Alps Saualpe Chur Davos Ötztaler A Rhine Alps Lienz Balaton UR Arosa Koralpe J Klagenfurt Meran Carnic Alps Fribourg Alps Maribor Eiger Lukmanier Pass Dolomites Bernese Oberland Bolzano Karavanke Pohorje Lepontine Julian Alps Steiner Alps D. -
Fliessgewässer-Naturräume Österreichs
Federal Environment Agency – Austria FLIESSGEWÄSSER-NATURRÄUME ÖSTERREICHS Max H. Fink Otto Moog Reinhard Wimmer MONOGRAPHIEN Band 128 M-128 Wien, 2000 Projektverantwortlicher im Umweltbundesamt Andreas Chovanec Autoren Max H. Fink (Büro für angewandte Geographie, Klosterneuburg) Otto Moog (Universität für Bodenkultur, Institut für Wasservorsorge, Gewässerökologie und Abfallwirtschaft, Abteilung Hydrobiologie, Fischereiwirtschaft & Aquakultur, Wien Reinhard WIMMER (ORCA – Angewandte Gewässerökologie, Wissenschaftliches Tauchen, Videodokumentation, Wien) Kapitel 3: Österreichs Anteil an den europäischen Ökoregionen Otto MOOG (s.o.) Thomas OFENBÖCK (Universität für Bodenkultur, Institut für Wasservorsorge, Gewässerökologie und Abfallwirtschaft, Abteilung Hydrobiologie, Fischereiwirtschaft & Aquakultur, Wien) Satz/Layout Brigitte Nerger Titelphoto Der Lech im Bereich der Errachau bei Forchach, Tirol, mit weitflächiger Schotterakkumulation (Naturraum 1.2.1), © M. H. Fink. Photos M. H. Fink Impressum Medieninhaber und Herausgeber: Umweltbundesamt GmbH (Federal Environment Agency Ltd) Spittelauer Lände 5, A-1090 Wien (Vienna), Austria Druck: Berger, Horn © Umweltbundesamt GmbH, Wien, 2000 Alle Rechte vorbehalten (all rights reserved) ISBN 3-85457-558-0 Fließgewässer-Naturräume Österreichs – Zusammenfassung 3 FLIESSGEWÄSSER-NATURRÄUME ÖSTERREICHS Zusammenfassung Die „EU-Wasserrahmenrichtlinie“ (WRRL) wird der künftige Ordnungsrahmen für Maßnah- men der Gemeinschaft im Bereich der Wasserpolitik. Vergleichbar dem österreichischen Ansatz der „ökologischen -
Towards an Excursion Flora for Austria and All the Eastern Alps
42 (1): (2018) 5-33 Review article Towards an Excursion Flora for Austria and all the Eastern Alps Manfred A. Fischer✳ Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria ABSTRACT: This is on the one hand an announcement of the two-volume Fourth Edition of the Excursion Flora for Austria expanded by also including the remaining parts of the Eastern Alps (chapter 1), and on the other hand a rough survey of the flora of the Eastern Alps in connection with the main vegetation types (chapter 2). The geographical scope includes, besides Austria, the entire Eastern Alps from the Rhine valley in E Switzerland (Grisons) to the Vipava valley in SW Slovenia. Volume 1 mainly contains comprehensive introductory chapters like introductions to plant morphology, taxonomy, and nomenclature, as well as a sketch of ecomorphology and habitat ecology, a survey of vegetation types (phytosociology) and floristic peculiarities of the different natural regions, a rough history of floristic research, a detailed glossary including the meaning of epithets, etc., and drawings of several plant species characteristic of the flora covered. The structure of the keys concentrated in volume 2 is explained: besides the descriptive traits, they include for each taxon comprehensive ecological and plant geographical data, as well as information about Red Lists of the countries involved, plant uses, and taxonomical problems. Genus names are given not only in German, but also in the Romansh (Rumantsch Grischun), Italian, and Slovenian languages. In chapter 2, some important chorotypes including endemics are characterised, and an overview of floristic diversity (lists of exemplary taxa) in accordance with the main and most characteristic vegetation types is presented. -
ALPBIONET2030 Integrative Alpine Wildlife and Habitat Management for the Next Generation
ALPBIONET2030 Integrative Alpine wildlife and habitat management for the next generation Super Strategic Connectivity Areas in and around the Alps Integrative Alpine wildlife and habitat management for the next generation The ´Super-SACA´ approach – very important areas for [ecological] connectivity in the Alps 1) Strategic Alpine Connectivity Areas - a basis for the Super SACA identification The ALPBIONET2030 project tried to bring together, analyse and combine a series of different indicators influencing ecological connectivity at different levels in order to illustrate the current situation of connectivity in the alpine and EUSALP territory and to elaborate, through a collection of the maps, a concrete foundation for planning a sustainable strategy of land use in the Alpine Space. The project integrated essential factors of such a strategy by defining Strategic Alpine Connectivity Areas (SACA) with an especially dedicated tool (JECAMI 2.0), evaluating wildlife management and human-nature conflict management aspects and generating recommendations. The extent of the project encompassed, for the first time in this thematic field, the whole area of the European Strategy of the Alpine Region (EUSALP). Map1: Strategic Alpine Connectivity Areas in the Alps and EUSALP 2 Integrative Alpine wildlife and habitat management for the next generation Map N°1 displays all three of the different types of Strategic Alpine Connectivity Areas at once. The map clearly illustrates that the Ecological Intervention Areas (EIA) constitute the largest percentage of the Strategic Alpine Connectivity Areas. The EIA act as linkages between Ecological Conservation Areas (ECA) as well as buffer zones. Looking at the Alpine and EUSALP picture, it appears that the ECA, mostly located in the higher Alpine areas, are, to a large extent, already benefiting from an existing protection measure (some category of protected area) and therefore need commitment to long term preservation of this status without any degradation of ecological functioning. -
Environmental Mineralogy Honours Shortcourse
CRCLEME Cooperative Research Centre for OPEN FILE Landscape Environments and Mineral Exploration REPORT SERIES ENVIRONMENTAL MINERALOGY HONOURS SHORTCOURSE Presented by: Mehrooz Aspandiar, Tony Eggleton and Ulrike Troitzsch CRC LEME OPEN FILE REPORT 206 18 - 22 June 2007 Department of Earth and Marine Sciences, ANU CRCLEME FOR THE MINERALS TERTIARY EDUCATION COUNCIL CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land & Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Primary Industries and Minerals Council of Australia, established and supported under the Australian Government’s Cooperative Research Centres Program. CRCLEME Cooperative Research Centre for Landscape Environments and Mineral Exploration ENVIRONMENTAL MINERALOGY HONOURS SHORTCOURSE Presented by: Mehrooz Aspandiar, Tony Eggleton and Ulrike Troitzsch CRC LEME OPEN FILE REPORT 206 18 - 22 June 2007 Department of Earth and Marine Sciences, ANU FOR THE MINERALS TERTIARY EDUCATION COUNCIL © Cooperative Research Centre for Landscape Environments and Mineral Exploration 2007. This book is copyright. Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Enquiries should be addressed to the publisher. CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land & Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Primary Industries and Minerals Council of Australia. Headquarters: CRC LEME c/o CSIRO Exploration and Mining, PO Box 1130, Bentley WA 6102, Australia Electronic copies of the publication in PDF format can be downloaded from the CRC LEME website: http://crcleme.org.au/Pubs/OFRIndex.html. -
Towards an Excursion Flora for Austria and All the Eastern Alps
42 (1): (2018) 5-33 Review article Towards an Excursion Flora for Austria and all the Eastern Alps Manfred A. Fischer✳ Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria ABSTRACT: This is on the one hand an announcement of the two-volume Fourth Edition of the Excursion Flora for Austria expanded by also including the remaining parts of the Eastern Alps (chapter 1), and on the other hand a rough survey of the flora of the Eastern Alps in connection with the main vegetation types (chapter 2). The geographical scope includes, besides Austria, the entire Eastern Alps from the Rhine valley in E Switzerland (Grisons) to the Vipava valley in SW Slovenia. Volume 1 mainly contains comprehensive introductory chapters like introductions to plant morphology, taxonomy, and nomenclature, as well as a sketch of ecomorphology and habitat ecology, a survey of vegetation types (phytosociology) and floristic peculiarities of the different natural regions, a rough history of floristic research, a detailed glossary including the meaning of epithets, etc., and drawings of several plant species characteristic of the flora covered. The structure of the keys concentrated in volume 2 is explained: besides the descriptive traits, they include for each taxon comprehensive ecological and plant geographical data, as well as information about Red Lists of the countries involved, plant uses, and taxonomical problems. Genus names are given not only in German, but also in the Romansh (Rumantsch Grischun), Italian, and Slovenian languages. In chapter 2, some important chorotypes including endemics are characterised, and an overview of floristic diversity (lists of exemplary taxa) in accordance with the main and most characteristic vegetation types is presented.