Ophiolites from the Egyptian Shield: a Case for a Possible Inter-Arc Basin Origin ,' '"'!

Total Page:16

File Type:pdf, Size:1020Kb

Ophiolites from the Egyptian Shield: a Case for a Possible Inter-Arc Basin Origin ,' ' MITI.ÖSTERR.MINER.GES. 148( 2003) OPHIOLITES FROM THE EGYPTIAN SHIELD: A CASE FOR A POSSIBLE INTER-ARC BASIN ORIGIN 2 A. Y. Abdel Aatl, E. S. Farahatl, G. Hoinkes & M. M. EI Mahalawil l Department of Geology Minia University, El-Minia 61 l l l, Egypt 2Jnstitute of Mineralogy and Petrology University of Graz, Universitätsplatz 2, A-8010 Graz, Austria The pyroxene and whole-rock chemistry of the ophiolitic metavolcanics of Wadi Um Seleimat (WUS) and Muweilih (MU) areas in the central Eastem Desert of Egypt are presented. WUS ophiolite suite seems to be intact where it comprises (from bottom to top): serpentinites, pyro­ xenites, metagabbros, massive diabases and pillowed metavolcanics. MU metavolcanics, about lO km to the southeast of WUS area, consists predominantly of metabasaltic-metadiabasic pillowed and massive lava flows together with the corresponding pyroclastics. These meta­ volcanics, together with their associated metagabbros and serpentinites, can be considered as a part of a dismembered ophiolite sequence. The mineral assemblage in WUS rocks is: albite, chlorite, epidote, titanite, calcite and quartz, which indicates a low greenschist facies (230-320'C) metamorphism. The mineral assemblage of MU metavolcanics includes: albite, actinolite, homblende, epidote, chlorite, titanite, calcite, quartz and ilmenite that reflectsa transitional greenschist-amphibolite facies metamorphism.Few samples of WUS contain plentiful clinopyroxene phenocrysts in plagioclase-free glassy ground­ mass. These features aretypical of rocks of boninitic affinity. Whole-rock and pyroxene chemistry demonstrate that the metavolcanics ofboth areas are mainly andesitic basalts with tholeiitic affinity. The boninitic affinity of some samples fromWUS area is shown on Ti0z-Si02/IOO-Na20 diagram of pyroxenes (Fig. l). On the other hand, clino­ pyroxenes from metavolcanics associated with the boninitic rocks plot mostly in the island-arc tholeiites and mid-ocean ridge basalt fields. TiOz Clinopyroxenes from Muweilih area plot in island-arc tholeiitic-MORB overlap area. Fig. 1 TiOrSi02"100-Na20 diagram of pyroxenes [1]. MORB: mid-oeean ridge basalts; WOPB: within ' '11 oeean plate basalts; IA T: island-are tholeiites; ,' '"'!' . BON+BA-A: boninites+basaltie andesites and ,' /I I / \ ..,.,._, .,,,. andesites from inter oeeanie fore-are regions. ,_' . e - -'� BON +BA-A - C/osed eire/es: Wa di Um Seleimat; Open squares: SiOzllOO so Muweilih. 81 The studied boninitic samples are classified as intennediate-Ti boninites [2]. On the TiOrZr diagram (Fig. 2) WUS rocks fall in volcanic-arc field and the area shared between MORB and volcanic-arc basalts, with high affinity to the latter. On the other band, MU metavolcanics plot mostly in the volcanic-arc MORB overlap area, which may refer to their back-arc basin affinity. In agreement with most of the above discussed discrimination diagrams, WUS metavolcanic MORB nonnalized pattems (Fig. 3) are generally similar to those of the immature island-arc tholeiites, with relative low HFSE and high LILES than those of MORB. In contrast, MU meta­ volcanics have MORB-nonnalized pattems with HFSE value close to unity and relative enrichment in MORB LILE (Fig. 3). These features may imply a transitional MORB-island­ arc (i.e. back-arc basin) affinity of these rocks. Fig. 2 O . J _ _ _ _ 10.__ ......... ..._....._......._........._......_...._100 _._ ....._..._....... u..i ....._. 1000 Ti02 vs. Zr discrimination diagram [3]. Zr ppm Symbols as in Fig. 1. Wadi Um Seleimat ; � l r::������������n { 1 „,. 0. 1 0. 1��_.___,___,___,___,____.___.___.__._.Y Yb Sr K Rb Ba Th Ta Nb Ce P Zr HfSm Ti Y Yb Sr K Rb Ba Th Ta Nb Ce P Zr Hf Sm Ti Fig. 3 MORB-normalized incompatible element spidergrams [3]. As modern boninites are foundonly in supra-subduction zone settings, it is inferred that ancient boninites also fonnedabove a subduction zone. In the case ofWUS metavolcanics, the previous geochemical studies [4] recognized their supra-subduction, i.e. fore-arc environment. However, the available data in the present study do not support such a model forthe followingreaso ns: a) the boninites overlie the arc-tholeiites; b) the absence of the sheeted dykes, which indicates in­ complete extension; c) the thin volcanic section of this ophiolite and d) the little pyroclastics associated. These criteria may represent primary features of ophiolite fonnation in an incipient or rifted island-arc setting where arc volcanics are separated by thinner marginal basin crust [5]. 82 Consequently, WUS tholeiites-boninite sequence appears to reftect the transgression from arc­ style to (incipient) back-arc style volcanism. If the present interpretation is correct, MU meta­ volcanics, which lie about 10 km to southeast of WUS ophiolite sequence and display a back­ arc geochemical characteristic, may represent a more advanced stage ofthis inter-arc basin while those of WUS represent their embryonic stage. The association of WUS and MU metavolcanics with ophiolitic melange, which comprises ophiolitic dismembers of serpentinesand metagabbros within the island-arc metavolcanics and volcanoclastic metasediments [6] are compatible with the above suggestion. References [l) BECCALUV A, L., MACCIOTA, G., PICCARDO, G. B. & ZEDA, 0. ( 1989): Clinopyroxene composition of ophiolitic basalts as petrogenetic indicator. - Chemical Geology, 77, 165-182. [2) BEDARD, J. H. (1999): Petrogenesis of boninites from the Betts Cove ophiolite, Newfoundland, Canada: identification of subduction source components. - Journal of Petrology, 40, 1853-1889. [3) PEARCE, J. A. ( 1982): Trace element characteristicof lavas fromdestructive plate boundaries. - In: R. S. Thorpe (Editor), Andesites. Wiley, New York, pp. 525-548. [4) ABU EL ELA, F. F. (1990): Supra-subduction zone ophiolite of Qift-Qusseir road, Eastern Desert, Egypt. - Bulletin Faculty of Science, Assiut University, 19, 51-70. [5) SHERVAIS, J. W. & KIMBROUGH, D. L. (1985): Geochemical evidence of the tectonic setting of the coast Range ophiolite: a composite island-arc- oceaniccrust terrain in Western California. - Geology, 13, 35-38. [6) AZZAZ,S. A., SABET, A. H., HASSAN, G.A. & EMAM, M. F. (1997): Ophiolites and the associatedmelange of the Abu Mereiwa area along the Qift-Quseir Road, Eastern Desert, Egypt. - Bulletin Faculty of Science, Assiut University, 26, 141-163. 83 Mrrr.ÖsTERR.MINER.GES. MB (2003) DIE ROLLE DER GEOLOGIE BEI NEUEN BERGBAUPROJEKTEN G. Anthes Technisches Büro für Geologie - GEOsolutions Weißenbach 255, A-5351 Strobl, Austria Die Neuanlage von obertägigen und/oder untertägigen Bergbauten steht heute in enger Beziehung zu wirtschaftlichen, rechtlichen, raumordnerischen und gesellschaftlichen Belangen. Daher muss die Gewinnungstätigkeit von mineralischen Rohstoffen nachhaltig und effizient geplant und durchgeführt werden. Für die Auswahl der geeignetsten Lagerstätte, der bestmöglichen Aus­ nutzung der Lagerstättenvorräte (Lagerstättenschutz) und einer optimalen Qualitätssteuerung kommt daher der Geologie eine besondere Rolle bei der Planung von neuen Bergbauprojekten zu. Die genaue Kenntnis der geologisch-lagerstättenkundlichen Verhältnisse im Rohstoffvorkommen mit einem hohen Grad der geologischen Gewissheit setzt ein detailliertes Explorations- und Pro­ spektionsprogramm voraus, dass auf die speziellen geologischen Bedingungen im Prospektions­ gebiet abgestimmt sein muss. Dazu stehen dem Geowissenschaftler eine Vielzahl von modernen, mineralogischen, petrographischen, geochemischen, strukturgeologischen und geophysikalischen Untersuchungsmethoden zur Verfügung, die sinnvoll aufeinander abgestimmt und eingesetzt werden müssen, um effizient das Prospektionsziel - die hinreichend genaue Kenntnis über Lage, Erstreckung, Aufbau, Inhalt, Struktur und Qualitätsverteilung der Lagerstätte - erreichen zu können. Diese geologisch-lagerstättenkundlichen Daten bilden die Grundlage fürdie gesamte Bergbau­ planung, insbesondere für die Konzeptionierung der Geometrie, Gewinnungs-, Förder- und Maschinentechnik sowie der Sicherheit des Abbaus. Insbesonderebei hochwertigen und seltenen mineralischen Rohstoffen stellt eine optimale Qualitätssteuerung sowohl aus betriebswirt­ schaftlichenals auch volkswirtschaftlichen (Lagerstätteneffizienz)Gründen eine wesentliche Vor­ aussetzung für einen effizientenAbbaubetrieb dar. Die Anforderungen an die Qualitätssteuerung hängen aber nicht nur von Produktanforderungen, sondern im wesentlichen auch von der Komplexität der Lagerstätte ab. Allgemein kann gesagt werden, dass eine nicht-optimale Qualitätssteuerung durch fehlende oder ungenügende geologische Kenntnis der Lagerstätte jedenfallseine Verringerung der Produktqualität und somit Erlöseinbußen zur Folge hat. Weiters kann eine Erhöhung des Anteils nicht verwertbaren Materials (und damit erhöhtes Halden­ volumen) bzw. eine Verringerung der Vorräte (Verlust hochwertiger Qualität durch unbeab­ sichtigte Vermengung mit geringwertigem Material) daraus resultieren. 84 Im Rahmen der Wirtschaftlichkeitsberechnungen, der Wertschöpfungseffekte (öffentliches Interesse) und der Einreichplanungen für die behördlichen Genehmigungsverfahren des ge­ planten Bergbauprojektes - insbesondere bei Umweltverträglichkeitsprüfungen - kommt der Geologie ebenfalls eine bedeutende Rolle zu. Dazu zählen Studien zur regionalen und über­ regionalen bis hin zu internationalen Verbreitung und Verfügbarkeit von mineralischen Roh­ stoffen, der Ersetzbarkeit und Güte des Rohstoffes sowie geologisch-hydrologisch-geotechni­ scher und gebirgsmechanischer Bewertungen des
Recommended publications
  • 11Th Workshop on Alpine Geological Studies & 7Th IFAA
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Abstract Volume Emile Argand Conference (11th Workshop on Alpine Geological Studies) 7th - 14th September 2013 Schladming, Austria Editorial: Ralf Schuster Geologische Bundesanstalt Neulinggasse 38 1030 Vienna, Austria 9 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Analysis of microseismicity in the Fribourg area (Western Swiss Molasse Basin) Abednego, M.1, Vouillamoz, N.1, Husen, St.2, Wust-Bloch, H.G.3 & Mosar, J.1 1 University of Fribourg, Departement of Geosciences, Earth Sciences, 1700 Fribourg, Switzerland ([email protected]) 2 Schweiz. Erdbebendienst (SED), 8092 Zürich, Switzerland 3 Tel Aviv University, Department of Geophysics and Planetary Sciences, 69978 Tel Aviv, Israel This study presents an analysis of microseismicity in the Fribourg area (Western Swiss Molasse Basin), a region that has recently displayed increased microseismicity (KASTRUP et al., 2007). Arrival time data of these earthquakes were used in a non-linear probabilistic earthquake relocation approach and to refine an existing three-dimensional (3-D) P-wave velocity model of the Fribourg area. Two mini-arrays (seismic navigating systems/SNS) have been deployed since 2010 to enhance seismic monitoring of the Fribourg Lineament within the Fribourg area. A comprehensive local catalogue of microseismicity was build using recordings of the two SNS and of nine permanent stations of the Swiss Digital Seismic Network and the Swiss Strong Motion Network operated by the Swiss Seismological Service (SED). Events were detected on all traces by sonogram analysis, a non-linearly scaled and noise-adaptive spectrogram (SICK et al., 2012).
    [Show full text]
  • Abstracts & Field Guides
    Berichte der Geologischen Bundesanstalt, 99 11th Workshop on Alpine Geological Studies & th 7 European Symposium on Fossil Algae Abstracts & Field Guides Schladming, Sept. 2013 Redaktion: Ralf Schuster Cover image: Sölk marble from the base of the Weiße Wand, Walchental (Styria, Austria) Impressum: ISSN 1017-8880 Alle Rechte für das In- und Ausland vorbehalten © Geologische Bundesanstalt (GBA) A-1030 Wien, Neulinggasse 38 www.geologie.ac.at Wien, September 2013 Medieninhaber, Herausgeber und Verleger: GBA, Wien Redaktion: Ralf Schuster (Geologische Bundesanstalt) Technische Redaktion; Christoph Janda (Geologische Bundesanstalt) Umschlag Monika Brüggemann-Ledolter Druck: Riegelnik, Offsetschnelldruck, Piaristengasse 19, A-1080 Wien Ziel der „Berichte der Geologischen Bundesanstalt“ ist die Verbreitung wissenschaftlicher Ergebnisse durch die Geologische Bundesanstalt. Die „Berichte der Geologischen Bundesanstalt“ sind im Handel nicht erhältlich. Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Content Organisation & Time Schedule 4 Abstracts Emile Argand Conference (11th Workshop on Alpine Geological Studies) Editorial: Ralf Schuster 9 Abstracts 7th European Symposium on Fossil Algae Editorial: Sigrid Missoni & Hans-Jürgen Gawlick 107 Field guide: General Introduction in the Geology of the Easter Alps Ralf Schuster 121 Field guide Excursion A1: Southern Alps of Slovenia in a nutshell: paleogeography, tectonics, and active deformation Bogomir Celarc, Marko Vrabec, Boštjan Rožič, Polona Kralj, Petra Jamšek Rupnik,
    [Show full text]
  • KANOITE, (Mnh , Mg)2[Si206], a NEW CLINOPYROXENE in the METAMORPHIC ROCK from TATEHIRA, OSHIMA PENINSULA, HOKKAIDO, JAPAN
    The Geological Society of Japan JOURNAL OF THE GEOLOGICAL SOCIETY OF JAPAN, VoL 83, No.8, p. 537-542, August 1977 H KANOITE, (Mn , Mg)2[Si20 6], A NEW CLINOPYROXENE IN THE METAMORPHIC ROCK FROM TATEHIRA, OSHIMA PENINSULA, HOKKAIDO, JAPAN HIDEO KOBAYASHI* Abstract Kanoite, (Mn2+, Mgh[Si20 6], a new clinopyroxene, is monoclinic, P21/c, ao= 9.739 A, bo=8.939A, co=5.260A, p=108.56°, Z=4. The strongest diffractions in the X-ray powder pattern are 3.211(100)(220), 3.021(90)(221), 2.921(80)(311), 2.910(90)(310), 2.493 (40) (002), 1.627(40) (531). Electron microprobe and supplementary wet chemical analyses gave Si02 50.20, Al20 3 0.04, Fe20 3 0.39, FeO 2.64, MnO 31.19, MgO 15.08, CaO 0.57, Na20 0.03, K 20 0.03, total 100.17%. It is optically biaxial positive, 2V=40°-42°, refractive indices ns a= 1.715(2), p= 1.717(2), Y= 1.728(2); optical orientation b=Y, cl\Z= +42°. Colourless in thin section. It is light pinkish brown in fresh colour and with a vitreous luster. Streak white. Cleavage {1I0} perfect. Hardness(Mohs) =6. Density 3.66 g/cm3 (meas.); 3.60 g/cm3 (calc.). Polysynthetic twin on {lOO} is common. It occurs as minute grains intergrown with manganoan cummingtonite in metamorphosed manganese ore enclosed in a quartz-rich biotite-garnet gneiss exposed as a reef at the seashore near Tatehira, Oshima Peninsula, Hokkaido. The name is for Dr. Hiroshi KANO, Professor ofPetrology, Akita University, for his geological and petrographical contributions to metamorphic rocks in Japan especially those forming the basement ofJapanese Islands.
    [Show full text]
  • Military Mountain Training
    Federal Ministry of Defence and Sports S92011/27-Vor/2014 Supply No. 7610-10147-0714 Manual No. 1002.09 Austrian Armed Forces Field Manual (For Trial) Military Mountain Training Vienna, July 2014 Approval and Publishing Austrian Armed Forces Field Manual (for trial) Military Mountain Training Effective as of 1st December 2014 This Field Manual replaces the “Mountain Operations” Field Manual, parts I – IV, Supply number 7610-10133-0808 Approved: Vienna, 8th July 2014 For the Minister of Defence and Sports (COMMENDA, General) 2 Approval and Publication Austrian Armed Forces Field Manual (For Trial) Military Mountain Training Responsible for the Contents: SALZBURG, 27th June 2014 Chief, Air Staff, Austrian Joint Forces Command (GRUBER, BG) SAALFELDEN, 27th June 2014 Cdr (acting), Mountain Warfare Centre: (RODEWALD, Colonel) 3 PREFACE This Field Manual (FM) for trial (f.t.) serves as a basis for the training and application of mountaineering techniques within the Austrian Armed Forces (AAF) and will be distributed to the units in need of it. It is to be seen as the predecessor of the final version of the same-titled AAF FM, which will be published after the testing phase of this manual. The present FM (f.t.) was developed in cooperation with the German Bundeswehr (Bw) in order to ensure standardized training. In the Bw it is called C2-227/0-0-1550 “Gebirgsausbildung”. This FM (f.t.) is meant to provide knowledge and skills on: - geographical, geological, meteorological, and common basics for military operations in mountainous terrain, - safe and secure movements and survival in mountainous and high mountain regions, – mountain rescue, and – mountaineering equipment, which are preconditions for the accomplishment of military tasks.
    [Show full text]
  • Palaeogene and Neogene
    Palaeogene and Neogene MICHAEL W RASSER, MATHIAS HARZHAUSER (co-ordinators), OLGA Y. ANISTRATENKO, VITALIY V. ANISTRATENKO, DAVIDE BASSI, MIRKO BELAK, JEAN-PIERRE BERGER, GIANLUCA BIANCHINI, SAFET CICIC, VLASTA COSOVIC, NELA DOLA.KOVA., KATICA DROBNE, SORIN FILIPESCU, KARL GÜRS, SA.RKA HLADILOVA., HAZIM HRVATOVIC, BOGOMIR JELEN, _ JACEK ROBERT KASINSKI, MICHAL KOVA.C, POLONA KRALJ, TIHOMIR MARJANAC, EMÖ MA.RTON, PAOLO MIETTO, ALAN MORO, ANDRA.S NAGYMAROSY, JAMES H. NEBELSICK, SLAVOMIR NEHYBA, BOJAN OGORELEC, NESTOR OSZCZYPKO, DAVOR PAVELIC,, RAJKO PAVLOVEC, JERNEJ PAVSIC, PAVLA PETROVA, MARCIN PIWOCKI, MARIJAN POLJAK, NEVIO PUGLIESE, REJHANA REDZEPOVIC, HELENA RIFELJ, REINHARD ROETZEL, DRAGOMIR SKABERNE, VUBOMIR SLIVA, GERDA STANDKE, GIORGIO TUNIS, DIONYZ VASS, MICHAEL WAGREICH & FRANK WESSELINGH Over the last 65 Ma, our world assumed its modem shape. This Miocene to Plioeene sueeessor Lake Pannon. At its maximum timespan is divided into the Palaeogene Period, lasting from 65 extent, the Paratethys extended from the Rhöne Basin in Franee to 23 Ma and the Neogene, which extends up to the present day towards Inner Asia. Subsequently, it was partitioned into a (see Gradstein & Ogg (2004) and Gregory et al. (2005) for smaller western part eonsisting of the Western and the Central diseussion about the Quaternary). Paratethys and the larger Eastern Paratethys. The Western Throughout the Cenozoie Era, Afriea was moving towards Paratethys eomprises the Rhöne Basin and the Alpine Foreland Eurasia in a northward direetion and with a eountercloekwise Basin of Switzerland, Bavaria and Austria. The Central Para- rotation. Numerous mieroplates in the Mediterranean area were tethys extends from the Vienna Basin in the west to the eompressed, gradually fusing, and Eurasiaunderwent a shift from Carpathian Foreland in the east where it abuts the area of the a marine arehipelago to eontinental environments, related to the Eastem Paratethys.
    [Show full text]
  • Appendix 1 Calculation of a Chemical Formula from a Mineral Analysis
    Appendix 1 Calculation of a chemical formula from a mineral analysis Appendix 1 Magnesiohornblende analysis 3 4 2 Atomic proportion No. of anions on 1 Molecular of oxygen from basis of 24 (O,OH) 5 Wt.% of oxides proportion of oxides each molecule i.e. col. 368.3735 No. of ions in formula SiO 51.63 0.8594 1.7188 14.392 Si 7.196 2 8.00 0.804 } Al2O3 7.39 0.0725 0.2175 1.821 Al 1.214 0.410 3+ Fe2O3 2.50 0.0157 0.0471 0.394 Fe 0.263 FeO 5.30 0.0738 0.0738 0.618 Fe2+ 0.618 5.07 MnO 0.17 0.0024 0.0024 0.020 Mn 0.020 } MgO 18.09 0.4489 0.4489 3.759 Mg 3.759 CaO 12.32 0.2197 0.2197 1.840 Ca 1.840 2.00 Na2O 0.61 0.0098 0.0098 0.082 Na 0.164 } H2O+ 2.31 0.1282 0.1282 1.073 OH 2.146 2.15 Total 100.32 2.8662 24 = 8.3735 2.8662 The procedure for calculating a chemical formula is Column 5 gives the number of cations associated described by means of the above example, a with the oxygens in column 4. Thus for SiO2 there is magnesiohornblende. one silicon for two oxygens so the column 4 entry is divided by 2. For A12O3 there are two aluminiums for Column 1 lists the composition of the mineral every three oxygens so the column 4 entry is multiplied expressed in the usual manner as weight percentages by ~˜.
    [Show full text]
  • A Bird's Eye View of Geology
    High Above the Alps A Bird’s Eye View of Geology Kurt Stüwe and Ruedi Homberger Weishaupt Publishing Krems Linz Wachau Melk Munich Vienna Bratislava VOGES BLACKK FOREST Chiemsee Salzburg Kempten Lake Neusiedl Lake Constance Salzkammergut Schneeberg Berchtesgadener Alps Hochschwab Wilder Kaiser Dachstein Liezen Allgäu Alps Watzmann Zurich Karwendel Leoben Budapest Zell am See Innsbruck Lower Tauern JURA Lechtal Alps Großglockner Graz Hohe Tauern Neuchâtel Bern Napf Brenner Glarus Alps Saualpe Chur Davos Ötztaler A Rhine Alps Lienz Balaton UR Arosa Koralpe J Klagenfurt Meran Carnic Alps Fribourg Alps Maribor Eiger Lukmanier Pass Dolomites Bernese Oberland Bolzano Karavanke Pohorje Lepontine Julian Alps Steiner Alps D. Morcles Ticino Piz Bernina Bergell Tagliamento JURA High Savoy Geneva Rhone Simplon Pass Adamello Bergamo Alps Belluno Valais Alps Adige Udine Mt. Blanc Piave Mte. Rosa Aosta Valley Lake Como Zagreb Lago Maggiore Bauges Massif Triest Gran Paradiso Milan Padua Lake Garda Venice Grenoble D Krk IN A Vercors La Meije Turin RID ES MASSIF CENTRAL Ecrin M. Briancon Dauphiné Alps Monviso APENNINES ADRIA DI Bologna NA Gap RID ES Cuneo Maritime Alps Genoa APENNINES Argentera Zadar Massif D Durance INARDES Avignon I Verdon APENNINES 2 Nice Pisa Krems Linz Wachau Melk Munich Vienna Bratislava VOGES BLACKK FOREST Chiemsee Salzburg Kempten Lake Neusiedl Lake Constance Salzkammergut Schneeberg Berchtesgadener Alps Hochschwab Wilder Kaiser Dachstein Liezen Allgäu Alps Watzmann Zurich Karwendel Leoben Budapest Zell am See Innsbruck Lower Tauern JURA Lechtal Alps Großglockner Graz Hohe Tauern Neuchâtel Bern Napf Brenner Glarus Alps Saualpe Chur Davos Ötztaler A Rhine Alps Lienz Balaton UR Arosa Koralpe J Klagenfurt Meran Carnic Alps Fribourg Alps Maribor Eiger Lukmanier Pass Dolomites Bernese Oberland Bolzano Karavanke Pohorje Lepontine Julian Alps Steiner Alps D.
    [Show full text]
  • Fliessgewässer-Naturräume Österreichs
    Federal Environment Agency – Austria FLIESSGEWÄSSER-NATURRÄUME ÖSTERREICHS Max H. Fink Otto Moog Reinhard Wimmer MONOGRAPHIEN Band 128 M-128 Wien, 2000 Projektverantwortlicher im Umweltbundesamt Andreas Chovanec Autoren Max H. Fink (Büro für angewandte Geographie, Klosterneuburg) Otto Moog (Universität für Bodenkultur, Institut für Wasservorsorge, Gewässerökologie und Abfallwirtschaft, Abteilung Hydrobiologie, Fischereiwirtschaft & Aquakultur, Wien Reinhard WIMMER (ORCA – Angewandte Gewässerökologie, Wissenschaftliches Tauchen, Videodokumentation, Wien) Kapitel 3: Österreichs Anteil an den europäischen Ökoregionen Otto MOOG (s.o.) Thomas OFENBÖCK (Universität für Bodenkultur, Institut für Wasservorsorge, Gewässerökologie und Abfallwirtschaft, Abteilung Hydrobiologie, Fischereiwirtschaft & Aquakultur, Wien) Satz/Layout Brigitte Nerger Titelphoto Der Lech im Bereich der Errachau bei Forchach, Tirol, mit weitflächiger Schotterakkumulation (Naturraum 1.2.1), © M. H. Fink. Photos M. H. Fink Impressum Medieninhaber und Herausgeber: Umweltbundesamt GmbH (Federal Environment Agency Ltd) Spittelauer Lände 5, A-1090 Wien (Vienna), Austria Druck: Berger, Horn © Umweltbundesamt GmbH, Wien, 2000 Alle Rechte vorbehalten (all rights reserved) ISBN 3-85457-558-0 Fließgewässer-Naturräume Österreichs – Zusammenfassung 3 FLIESSGEWÄSSER-NATURRÄUME ÖSTERREICHS Zusammenfassung Die „EU-Wasserrahmenrichtlinie“ (WRRL) wird der künftige Ordnungsrahmen für Maßnah- men der Gemeinschaft im Bereich der Wasserpolitik. Vergleichbar dem österreichischen Ansatz der „ökologischen
    [Show full text]
  • Towards an Excursion Flora for Austria and All the Eastern Alps
    42 (1): (2018) 5-33 Review article Towards an Excursion Flora for Austria and all the Eastern Alps Manfred A. Fischer✳ Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria ABSTRACT: This is on the one hand an announcement of the two-volume Fourth Edition of the Excursion Flora for Austria expanded by also including the remaining parts of the Eastern Alps (chapter 1), and on the other hand a rough survey of the flora of the Eastern Alps in connection with the main vegetation types (chapter 2). The geographical scope includes, besides Austria, the entire Eastern Alps from the Rhine valley in E Switzerland (Grisons) to the Vipava valley in SW Slovenia. Volume 1 mainly contains comprehensive introductory chapters like introductions to plant morphology, taxonomy, and nomenclature, as well as a sketch of ecomorphology and habitat ecology, a survey of vegetation types (phytosociology) and floristic peculiarities of the different natural regions, a rough history of floristic research, a detailed glossary including the meaning of epithets, etc., and drawings of several plant species characteristic of the flora covered. The structure of the keys concentrated in volume 2 is explained: besides the descriptive traits, they include for each taxon comprehensive ecological and plant geographical data, as well as information about Red Lists of the countries involved, plant uses, and taxonomical problems. Genus names are given not only in German, but also in the Romansh (Rumantsch Grischun), Italian, and Slovenian languages. In chapter 2, some important chorotypes including endemics are characterised, and an overview of floristic diversity (lists of exemplary taxa) in accordance with the main and most characteristic vegetation types is presented.
    [Show full text]
  • ALPBIONET2030 Integrative Alpine Wildlife and Habitat Management for the Next Generation
    ALPBIONET2030 Integrative Alpine wildlife and habitat management for the next generation Super Strategic Connectivity Areas in and around the Alps Integrative Alpine wildlife and habitat management for the next generation The ´Super-SACA´ approach – very important areas for [ecological] connectivity in the Alps 1) Strategic Alpine Connectivity Areas - a basis for the Super SACA identification The ALPBIONET2030 project tried to bring together, analyse and combine a series of different indicators influencing ecological connectivity at different levels in order to illustrate the current situation of connectivity in the alpine and EUSALP territory and to elaborate, through a collection of the maps, a concrete foundation for planning a sustainable strategy of land use in the Alpine Space. The project integrated essential factors of such a strategy by defining Strategic Alpine Connectivity Areas (SACA) with an especially dedicated tool (JECAMI 2.0), evaluating wildlife management and human-nature conflict management aspects and generating recommendations. The extent of the project encompassed, for the first time in this thematic field, the whole area of the European Strategy of the Alpine Region (EUSALP). Map1: Strategic Alpine Connectivity Areas in the Alps and EUSALP 2 Integrative Alpine wildlife and habitat management for the next generation Map N°1 displays all three of the different types of Strategic Alpine Connectivity Areas at once. The map clearly illustrates that the Ecological Intervention Areas (EIA) constitute the largest percentage of the Strategic Alpine Connectivity Areas. The EIA act as linkages between Ecological Conservation Areas (ECA) as well as buffer zones. Looking at the Alpine and EUSALP picture, it appears that the ECA, mostly located in the higher Alpine areas, are, to a large extent, already benefiting from an existing protection measure (some category of protected area) and therefore need commitment to long term preservation of this status without any degradation of ecological functioning.
    [Show full text]
  • Environmental Mineralogy Honours Shortcourse
    CRCLEME Cooperative Research Centre for OPEN FILE Landscape Environments and Mineral Exploration REPORT SERIES ENVIRONMENTAL MINERALOGY HONOURS SHORTCOURSE Presented by: Mehrooz Aspandiar, Tony Eggleton and Ulrike Troitzsch CRC LEME OPEN FILE REPORT 206 18 - 22 June 2007 Department of Earth and Marine Sciences, ANU CRCLEME FOR THE MINERALS TERTIARY EDUCATION COUNCIL CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land & Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Primary Industries and Minerals Council of Australia, established and supported under the Australian Government’s Cooperative Research Centres Program. CRCLEME Cooperative Research Centre for Landscape Environments and Mineral Exploration ENVIRONMENTAL MINERALOGY HONOURS SHORTCOURSE Presented by: Mehrooz Aspandiar, Tony Eggleton and Ulrike Troitzsch CRC LEME OPEN FILE REPORT 206 18 - 22 June 2007 Department of Earth and Marine Sciences, ANU FOR THE MINERALS TERTIARY EDUCATION COUNCIL © Cooperative Research Centre for Landscape Environments and Mineral Exploration 2007. This book is copyright. Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Enquiries should be addressed to the publisher. CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land & Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Primary Industries and Minerals Council of Australia. Headquarters: CRC LEME c/o CSIRO Exploration and Mining, PO Box 1130, Bentley WA 6102, Australia Electronic copies of the publication in PDF format can be downloaded from the CRC LEME website: http://crcleme.org.au/Pubs/OFRIndex.html.
    [Show full text]
  • Towards an Excursion Flora for Austria and All the Eastern Alps
    42 (1): (2018) 5-33 Review article Towards an Excursion Flora for Austria and all the Eastern Alps Manfred A. Fischer✳ Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria ABSTRACT: This is on the one hand an announcement of the two-volume Fourth Edition of the Excursion Flora for Austria expanded by also including the remaining parts of the Eastern Alps (chapter 1), and on the other hand a rough survey of the flora of the Eastern Alps in connection with the main vegetation types (chapter 2). The geographical scope includes, besides Austria, the entire Eastern Alps from the Rhine valley in E Switzerland (Grisons) to the Vipava valley in SW Slovenia. Volume 1 mainly contains comprehensive introductory chapters like introductions to plant morphology, taxonomy, and nomenclature, as well as a sketch of ecomorphology and habitat ecology, a survey of vegetation types (phytosociology) and floristic peculiarities of the different natural regions, a rough history of floristic research, a detailed glossary including the meaning of epithets, etc., and drawings of several plant species characteristic of the flora covered. The structure of the keys concentrated in volume 2 is explained: besides the descriptive traits, they include for each taxon comprehensive ecological and plant geographical data, as well as information about Red Lists of the countries involved, plant uses, and taxonomical problems. Genus names are given not only in German, but also in the Romansh (Rumantsch Grischun), Italian, and Slovenian languages. In chapter 2, some important chorotypes including endemics are characterised, and an overview of floristic diversity (lists of exemplary taxa) in accordance with the main and most characteristic vegetation types is presented.
    [Show full text]