ABSTRACT VOLUME Geotirol 2016 Annual Meeting DGGV | 25–28 September 2016 Innsbruck | Austria

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT VOLUME Geotirol 2016 Annual Meeting DGGV | 25–28 September 2016 Innsbruck | Austria ABSTRACT VOLUME GeoTirol 2016 Annual Meeting DGGV | 25–28 September 2016 Innsbruck | Austria Photo: Martin Reiser Annual Meeting hosting: Bodenseetagung i Recommended Citation Ortner, H. [Ed.] (2016): Abstract Volume of GeoTirol2016 - Annual Meeting of DGGV and PAN- GEO Austria, 25-28. September 2016, Innsbruck. Disclaimer and Copyright Each author is responsible for the content of his or her abstract. Imprint Publisher Institute of Geology University of Innsbruck Innrain 52f 6020 Innsbruck Editor Hugo Ortner ii This book contains the abstracts of the GeoTIROL 2016 meeting. The abstracts are sorted from A to Z according to the authors names. In the abstracts sections title, authors, organizations, the presenting authors e-mail, keywords, the abstract, the session and the type of presentati- on are given. The star indicates the presenting author in the list of contributions and the ab- stracts. List of contributions ....................................................................................................... iii - xxvii Abstracts ....................................................................................................... 1 - 366 Index of authors ....................................................................................................... 367 - 371 %3 VTUZ"796 #93/<1%I329%297 ,,, I369%B QJ I/%@ 2$%6J I 23/,7 ,)#</:%7,2<7,2*9+%,7:2#9/%1%29%9+3$OWP&36 2 /AB,2* M ,/<6%7 U I </J I9%& 23QJI 22 +J +%.,2.,29+%%6, $6, :#& </97A79%13&9+% <%62,2$3? V I%62+ 6$J I/6,#+ I "6,%/%QJ I , 2$31%2,#3J I+6,7: 2 </:$,7#,4/,2 6A 4463 #+93%> /< 9%#322%#:32"%9?%%24%61 &6379$%*6 $ :32 2$ W %%4% 9%$ 6 >,9 :32 //,$%%&361 :32 #:>,9AK # 7%79<$A&631#+2 /79 /I3<9+ A63/% 2/47I 9 /A I 3+ 22%7QJ I+6,7934+ ,27 9B>32/<79%6,2* /*36,9+1%2B<6 29%646%9 :32>32W7%,71,7#+%2 9%2 X I+31 7QJ I9%'%2 %3#+%1,# /#32796 ,297329+%*, 29 M+379%$+%1 :9%7A79%1,29+% 1%67/%A Y 63>,2#%I%79%62<796 /, I+31 7QJ I%" 7: 2JI%9%6J I 2M7,9<1,236 2$96 #%%/%1%297,27</4+,$%73&9+%9B9 /M9<" ,<2,97K(6796%7</97&631 Z 6:2 ^ 2$ I %6239QJ 8I%" 7: 2 ,%323:7M #9A/,3#%6 7M 2.,2$%637,$32,%27#+,%&%6M361 :32O3 6#,<1I [ =$$%<97#+/ 2$PK 32$%27 :327+36,B329I%14%7:93$%67<2 1,M"/ *%6<2*H M IA7%Q 323$329",379 :*6 4+A3& 1%22, 2M3<62 ,7, 2"3<2$ 6A$%437,97&631% 79%62 \ <6,$%7I<6.%A I %6 /$QJ I+6,7934+LJI 6.<7J 6",9 //A4 #%$4+374+3*%2%7,7,2%$,9%66 2% 27+ //3?1 6,2%# 6"32 9%7$<6,2*9+% ] I%62%6L 1,$$/%,3#%2%329%6%A%>%29 I,//AQJ M I ,36*,3J I </:.31432%29%27A79%1%,2%6 /4,2%2 6795<%//% 1%,74,%/$%6#+? 6B%2366%2I UT ,#+ %/J I 6 /$ /<29 <9 / !.I 69 J I9 2,70 ?QJ IA/?, J $,3/ 6, 2I"%/%12,9%7I6A2+32%//,9%7 2$ 49A#+,&6319+%B - .3? $,3/ 6,9% UU I 9 /, J I",*2,%?J IBA132J 361 :32,29+%796 939A4%7%#:32I,%2,2A /,44%2%/9I3/ 2$ I ?%0 I+,/,44QJ I6<23J I 1,/ ,2%1 :#%>3/<:323&9+%%/%",93<29 ,27N# 7%79<$A&6319+%63 : 27%*1%293& UV 9+%,2 6,$%7&3/$M 2$M9+6<79"%/9> /,$ 9%$"A.,2%1 :#&36? 6$13$%/7 ŇI >3QJI<. 7J I%62+ 6$J I 4%/%3/3*,# /%>,$%2#%73&#<66%299%#932,# #:>,9A /32*1 -36& </97A79%173&9+% UW > 2. 79%62/47 I2$6% QJ I22 /,7 J I 274%9%6 ,/<6, 2 23@,#%>%297 99+%%//32%#:32O<796, P9+63<*+ 2,#+23& "6,#%A% UX I+6,7: 2QJ I %6?,* 77%77,2*&6,#:32#3%)#,%297,2&36%797&3663#.& //4634 * :3213$%//,2* UY &3 [YZ_#897 $930>1&J329&298 -v J 70P &-2DKJ 7# 7 TK J&7 0 MK 0$ 7&3>850 2/932*>B&8-29,&>5A&00-2+ 7& 3(P'7-$ Q%C2 1-$8 2%97&2%8 Z_ J &7, 7% %&5-$9&%'7318&%-1&2997 583'9,&5 89[YC& 78 J 789&2KPJ>/ 8T #7 8-@-9C3'3-0 2%3$/ 2%-98(&$9325&$- 0 &39&$,2-$ 037/8 Z` J 2 MT &A8$-&2$&-29,& 29&72 :32 0$& 2-8$3@&7C73+7 1R SL5&785&$:@&8J 2% Za $,-&@&1&29893% 9& J2%7& 8TKJ>79 0&3+&2& 2%&3+&2&/-2&1 :$83'9,&05-2&P 75 9,- 2'30%P9,>789#&09 99,&05-2&P Zb 75 9,- 297 28-:32 J1-2T 97>$9>7 0+&303+C 2%9353+7 5,-$1 55-2+3'&0 29 27-@&7# 8-2>8-2+P[ [Y 7&139&8&28-2+% 9 '37,-+,7-8/ 7& %&0-2& :32 J @-%K J03-8 K J%7- 2 K P573.&$9N,& 5P 8NQ&%>$&%-289 00 :32$3898'37+&39,&71 0,& :2+#C>8-2+ [Z J-$,&0&K J-$,&0&KJ>$KJ 7-3K 2&A%&@&035&%,& 9# 8/&98 2%%7-00-2+9&$,2-6>&8 J $6>&8KJ 3, 22&8T J>'>8 MTKJ 7-&%7-$, ,&>097 1 )$#3%C3' >%&78Q5 793'9,&%&&5&71 290&3'9,& 82 $& 2P [[ 32:2&29P97 28-:32 J 7 ,TKJ &0+&30'+ 2+K J&72&7K &$32897>$:323'%>89-25>9-2939,& 89&72&%-9&77 2& 2& >8-2+&2%1&1#&7 [\ J9&' 2K J &7, 7%K J 7:2 13%&00-2+ J 7&2&KJ 3&9DK J0 >%-3K 97>$9>7&3'9,&>55&71 290&#&2& 9,9,&058 2%5&22-2&8 88&&2#C&$&-@&7 [] J-$30 TK J&+, 2KU J&0 2% >2$:328 J 9,- 8 ?29,&7TKJ-$, &0K J2%7& K >'%&1&+D>7O+0&-$,&257 $,&N-1> 79"7>2%#&- 88&2#&A&+>2+&2M [^ J ?7+&2 2'7&% J9&(&2TK J 3, 22&8,7-8935,&7 %&2:)$ :323'' $9378$3297300-2++73>2%A 9&70&@&08-2 $, 2+-2+&2@-7321&29 [_ J 2-&0TKJ 7/>8 $3>50&%13%&0-2+ 5573 $,93 88&889,&8>7' $&A 9&7P+73>2%A 9&7-29&7 $:328'37 [` 9,&-%%0&0#&327&+-32 08$ 0& J322CTK J2%7& K J !238KJ 38D&'K 73A9,%C2 1-$83'+&39,&71 0$ 7#32 9&8$ 0-2+8L 37&28-$89>%-&8# 8&%32,-+,P [a J0#7&$,9K J3#- 8KJ<0 K J 7:2 7&830>:321-2&7 03+-$ 0V+&3$,&1-$ 0 2 0C8&8 J322CTK J- 2'&2+KJ 09&7K J3#- 8K J 7 +32-9&P$ 0$-9&@&-21-2&7 0-D :328'7319,&O7D#&7+N-732P37&1-2&L %-31&97-$ [b &K J 22&8K J0#7&$,9K J 037- 2K J % :2+J,C%73+&3$,&1-$ 0V2&39&$932-$$32897 -298 7:2 J 49DTK J,8 2K J 7&2& 7+&P$ 0&&-81-$2-839735C>2%&79,&058 \Y &2 XVW\"796 #92/=0&I219&197 v I 9+ 6,1 SJ I &6(6,&%J IB/.&J 21C&4:21&//&7+B%62*&2/2*,7#+&72%&//6&C&19&6 77&1"&@&*=1*&1 0&,74,&/%&6 YW I=%@,* 0" #+&6/ ,.&=1% 2#+&"&1&I /C"=6*I79&66&,#+L I ,1&6SJI&242/%J I 6:1J ,%%/&6, 77,#4 / &29&#921,# 1%( #, //,1.7"&9@&&1=%? 21&Q219&1&*62R 1% YX I,#+ 2=9+&61/47L I&11,(&6SJI /9&6 ,#62796=#9=6 /2"7&6? :21721+B%629+&60 /?&,172(,9&WZWZI A4&%,:21YZZ YY Q XR I&11,(&6SJI /9&6J I=69J I 16 ?&/,1*9+&9+&60 /&?2/=:212(,9&WZWZ"B79 "/&,72924& 1%)=,%,1#/=7,21 YZ B/? ,1 1 /B7&7I A4&%,:21YZZ I/6,#+S B%62*&2/2*,7#+&74&.9&"&,0 =%&76&11&6 7,79=11&/7 Y[ I+20 7SJ I &60 11J I &6 /% + //2@O@ ?& 1%O@ ?&7&,70,#,0 *,1*2(2?&6%&&4&1&% /4,1&796=#9=6&7 Y\ I2"&69SJ I ,1&6J I+,/,44& 279O ,61 1: 1Q/ 9&796%2?,#, 1O& 6/B,/=6, 1R&1?,6210&197,1 9+,24, K ,679&?,%&1#& Y] (6207&%,0&192/2*B 1%4 /B12/2*B I1%6& 71- 1SJ I=/( 21*O9&6021,926,1*2(,74/ #&0&197"B,*,9 / 0 *&1 /B7,7 Y^ I/&.7 1%&6SJ I& Y_ I/&.7 1%&6SJ I& ZV I&1'S 3*/,#+.&,9&1=1% 6&1C&1 O*&79>9C9&6 =920 :7#+&6"/&,9=1*?212/,1&1 =7 ZW ,O*&1&6,&69&1,*,9 /&1 &/!1%&02%&//&1P 6( +6=1*&1 =7%&66 A,7 I9-&4 1SJI+6,7: 1J I 1% 1 J I ,&96 :*6 4+,&=1% /!23.2/2*,&%&6&,9+ . /.&,07>%/,#+&1,&1&6&#.&1 =7%&6 ZX &6+ 6%J IA&/J 8 I ",1&JI >19&6 2+6=1*6=#.1&=%26( VX I9-&4 1SJI+6,7: 1 *&6, 1# /# 6&2=71 112(277,/7 1%(26 0,1,(&67Q4 /&2&#2/2*B 1%",2796 :*6 4+BR(620 ZY 9+&269+/4,1& 26&/ 1% 7,12(44&6=796, I 6#,1SJ I #&.J I +&&*ł2@ 0&9 #21*/20&6 9&QM <&/5= 6C,9NI2/ 1%RK 72=6#&2(#21),#:1* ZZ &61+ 6%J I11 0,#62796=#9=6 /,19&646&9 :2177,1#&9+& %?&192(02%&61( "6,# 1 /B7,7"B6=12 1%&6 $I 6:1SJI&242/%J I ,1&6J ,%%/&6, 77,##6,12,%( =1 (620=9260 1I=%? 21&Q72=9+&61219&1&*62R Z[ I,#+ !/ PNOT3525/,9-!C/.5!.53 v) C!( )JD C/->D C!..)DC .
Recommended publications
  • Appendix: Supplementary Tables and Raw Data
    Appendix: Supplementary tables and raw data Evolutionary genetic analysis of an invasive population of sculpins in the Lower Rhine I n a u g u r a l - D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Arne W. Nolte aus Oldenburg Köln, 2005 Data formats and access: According to the guidelines of the University of Cologne, electronic publication of PhD Theses requires compound documents in PDF–format. On the other hand a simple file format, as for instance ascii-text files, are desirable to have an easy access to datasets. In this appendix, data are formatted as simle text documents and then transformed into PDF format. Thus, one can easily use the “Select Text” option in a PDF viewer (adobe acrobat reader) to copy datasets and paste them into text files. Tables are saved row by row with fields separated by semicolons. Ends of rows are marked by the insertion of “XXX”. Note: In order to recreate a comma separated file (for import into Microsoft Excel) from the texts saved here: 1) all line breaks have to be removed and then 2) the triple XXX has to be replaced by a line break (can be done in a text editor). Otherwise, datasets are composed as indicated in the individual descriptions. Chapter 1 - Supplementary Table 1: Sampled Populations, localities with coordinate data, river basins and references to other studies. Drainage No. Locality GIS References System Volckaert et al. 50°47′N 4°30′ 1 River Neet, S.
    [Show full text]
  • Gewässerforschung Am Bodensee 69-77 © Verein Zum Schutz Der Bergwelt E.V
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Jahrbuch des Vereins zum Schutze der Alpenpflanzen und - Tiere Jahr/Year: 1974 Band/Volume: 39_1974 Autor(en)/Author(s): Prandner Kurt Artikel/Article: Gewässerforschung am Bodensee 69-77 © Verein zum Schutz der Bergwelt e.V. download unter www.vzsb.de/publikationen.php und www.zobodat.at Gewässerforschung am Bodensee Von Kurt Prandner, Lindau Inhalt 1. Der See und seine Zuflüsse 2. Grundvorgänge im Stoffwedtselgeschehen des Sees 3. Seenalterung 4. Die biologischen Veränderungen im Bodensee 5. Zur Verölung des Bodensees 6. Der Bodensee als Trinkwasserspeicher 7. Zusammenfassung 1. Der See und seine Zuflüsse rst in den letzten Jahren ist der Bevölkerung des Bodenseeraumes und den vielen E Gästen, die die Bodenseelandschaft als Erholungsraum schätzen, bewußt geworden, welche Gefahr dem größten deutschen See droht. Wahrscheinlich haben wir es hauptsächlich der Tatsache, daß der See als Trinkwasser­ speicher dient, zu verdanken, daß in letzter Minute Maßnahmen ergriffen worden sind, um den Bodensee zu retten. Wenn wir auf die Probleme des Bodensees eingehen wollen, müssen wir uns zuerst mit Art und Größe dieses Gewässers und mit seinen Zuflüssen befassen. Der Bodensee besteht aus dem übersee und dem überlinger See mit einer Fläche von zusammen 476 km! und dem Untersee mit einer Fläche von 62 kml • Die maximale Tiefe des Obersees beträgt 252 m, die mittlere Tiefe 100 m und der Inhalt 47,6 km3• Der Untersee besitzt eine maximale Tiefe von 46 m, eine mittlere Tiefe von 13 mund einen Inhalt von 1,8 km'. Der Rhein verbindet die beiden Seeteile.
    [Show full text]
  • Browsing and Non-Browsing Extant and Extinct Giraffids Evidence From
    Browsing and non-browsing extant and extinct giraffids Evidence from dental microwear textural analysis Gildas Merceron, Marc Colyn, Denis Geraads To cite this version: Gildas Merceron, Marc Colyn, Denis Geraads. Browsing and non-browsing extant and extinct giraffids Evidence from dental microwear textural analysis. Palaeogeography, Palaeoclimatology, Palaeoecol- ogy, Elsevier, 2018, 505, pp.128-139. 10.1016/j.palaeo.2018.05.036. hal-01834854v2 HAL Id: hal-01834854 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01834854v2 Submitted on 6 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Browsing and non-browsing extant and extinct giraffids: evidence from dental microwear 2 textural analysis. 3 4 Gildas MERCERON1, Marc COLYN2, Denis GERAADS3 5 6 1 Palevoprim (UMR 7262, CNRS & Université de Poitiers, France) 7 2 ECOBIO (UMR 6553, CNRS & Université de Rennes 1, Station Biologique de Paimpont, 8 France) 9 3 CR2P (UMR 7207, Sorbonne Universités, MNHN, CNRS, UPMC, France) 10 11 1Corresponding author: [email protected] 12 13 Abstract: 14 15 Today, the family Giraffidae is restricted to two genera endemic to the African 16 continent, Okapia and Giraffa, but, with over ten genera and dozens of species, it was far 17 more diverse in the Old World during the late Miocene.
    [Show full text]
  • Present-Day Uplift of the European Alps Evaluating Mechanisms And
    Earth-Science Reviews 190 (2019) 589–604 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Invited review Present-day uplift of the European Alps: Evaluating mechanisms and models T of their relative contributions ⁎ Pietro Sternaia, ,1, Christian Sueb, Laurent Hussonc, Enrico Serpellonid, Thorsten W. Beckere, Sean D. Willettf, Claudio Faccennag, Andrea Di Giulioh, Giorgio Spadai, Laurent Jolivetj, Pierre Vallac,k, Carole Petitl, Jean-Mathieu Nocquetm, Andrea Walpersdorfc, Sébastien Castelltorta a Département de Sciences de la Terre, Université de Genève, Geneva, Switzerland b Chrono-Environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France c Université Grenoble Alpes, CNRS, IRD, IFSTAR, ISTERRE, Université Savoie Mont Blanc, Grenoble 38000, France d Istituto Nazionale di Geofisica e Vulcanologia, Centro Nazionale Terremoti, Bologna, Italy e Institute for Geophysics, Department of Geological Sciences, Jackson School of Geosciences, The University Texas at Austin, Austin, TX, USA f Erdwissenschaften, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland g Dipartimento di Scienze, Università di Roma III, Rome, Italy h Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, Pavia, Italy i Università degli Studi di Urbino “Carlo Bo”, Urbino, Italy j Sorbonne Université, Paris, France k Institute of Geological Sciences, Oeschger Center for Climate Research, University of Bern, Switzerland l Geoazur, IRD, Observatoire de la Côte d'Azur, CNRS, Université de Nice Sophia-Antipolis, Valbonne, France m Institut de Physique du Globe de Paris, Paris, France ARTICLE INFO ABSTRACT Keywords: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical European Alps velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western Vertical displacement rate and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps.
    [Show full text]
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • Tachinid Times Issue 29
    Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • Rapid Formation and Exhumation of the Youngest Alpine Eclogites: a Thermal Conundrum to Barrovian Metamorphism
    Earth and Planetary Science Letters 306 (2011) 193–204 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Rapid formation and exhumation of the youngest Alpine eclogites: A thermal conundrum to Barrovian metamorphism Andrew J. Smye a,⁎, Mike J. Bickle a, Tim J.B. Holland a, Randall R. Parrish b, Dan J. Condon b a Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK b NERC National Isotope Geoscience Laboratories, Kinglsey Dunhem Centre, Keyworth, Nottingham, NG12 5GG, UK article info abstract Article history: Eclogite facies metamorphic rocks provide critical information pertaining to the timing of continental collision Received 15 December 2010 in zones of plate convergence. Despite being amongst Earth's best studied orogens, little is understood about Received in revised form 28 March 2011 the rates of Alpine metamorphism within the Eastern Alps. We present LA–MC–ICPMS and ID–TIMS U–Pb Accepted 29 March 2011 ages of metamorphic allanite from the Eclogite Zone, Tauern Window, which when coupled with rare earth Available online 30 April 2011 element analysis and thermobarometric modelling, demonstrate that the European continental margin was – fi Editor: R.W. Carlson subducted to between 8 and 13 kbar (30 45 km) by 34.2±3.6 Ma. These data de ne: (i.) an upper limit on the timing of eclogite facies metamorphism at 26.2±1.8 kbar (70–80 km) and 553±12 °C, (ii.) plate velocity −1 Keywords: (1–6 cm·a ) exhumation of the Eclogite Zone from mantle to mid-crustal depths, and (iii.) a maximum eclogite duration of 10 Ma (28–38 Ma) for juxtaposition of Alpine upper-plate and European basement units and Barrovian metamorphism subsequent conductive heating thought to have driven regional Barrovian (re)crystallisation at ca.
    [Show full text]
  • Geological Excursion BASE-Line Earth
    Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17
    [Show full text]
  • Variability of Hydraulic Conductivity and Sorption in a Heterogeneous Aquifer
    VARIABILITY OF HYDRAULIC CONDUCTIVITY AND SORPTION IN A HETEROGENEOUS AQUIFER by GRACE HARRIET FOSTER-REID B.S. Civil Engineering, Rice University (1992) Submitted to the Department of Civil and Environmental Engineering in Partial Fulfillment of the Degree of MASTER OF SCIENCE IN CIVIL AND ENVIRONMENTAL ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY March 1994 © 1994 Grace H. Foster-Reid All rights reserved The author hereby grants to M.I.T permission to reproduce and to distribute copies of this thesis document in whole or in part. ~ 7 Signature of the Author _ _ Department of Civil and Environmental Engineering March 16. 1994 Certified by Lynn W. Gelhar Professor of Civil and Environmental Engineering - r) Thesis Supervisor Accepted by n Sus osseforPJoseph ment Graduater Committee Barker Enr VARIABILITY OF HYDRAULIC CONDUCTIVITY AND SORPTION IN A HETEROGENEOUS AQUIFER by GRACE HARRIET FOSTER-REID Submitted to the Department of Civil and Environmental Engineering March, 1994 In Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil and Environmental Engineering ABSTRACT The variability of the hydraulic conductivity (K) and the sorption coefficient (Kd) and the correlation between these two variables leads to the enhanced dispersion of contaminants. Seventy-three (73) samples, at a spacing of 0.5 m, were taken from a horizontal transect, and 26 samples, at a sampling interval of 0.15 m, were taken from a vertical transect on a vertical undisturbed face at the Handy Cranberry Bog on Cape Cod, Massachussetts. The soils at this site, Mashpee Pitted Plain Deposits, are composed of the same glaciofluvial outwash sediments as the soils at the USGS test site.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • 51 20 Sommerfaltkarte EN.Indd
    Want to see the towns and villages on the map? Please turn over! 1 Good to know 2 Region & people 1.1 Tourism Boards Long-distance hiking MTB Climbing Families X 1.2 Travelling to Tirol 2.1 Tirol‘s Mountains XX 2.3 Food & Drink Telephone number & Towns and villages in this region e-mail address Webseite Region good for ARRIVING BY TRAIN coming from Switzerland Tirol is a land of mountains, home to more than 500 summits International Intercity via St. Anton am Arlberg. over 3,000 metres. The northern part of Tirol is dominated by 1 Achensee Tourismus Achenkirch, Maurach, Pertisau, +43.5246.5300-0 www.achensee.com trains run by the ÖBB Drivers using Austrian the Northern Limestone Alps, which include the Wetterstein Steinberg am Rofan [email protected] (Austrian Federal Rail- motorways must pay a and Kaiser Mountains, the Brandenberg and Lechtal Alps, the ways) are a comfortable way toll charge. Toll stickers Karwendel Mountains and the Mieming Mountains. The Sou- 2 Alpbachtal Alpbach, Brandenberg, Breitenbach am Inn, +43.5337.21200 www.alpbachtal.at to get to Tirol. The central (Vignetten) can be bought Brixlegg, Kramsach, Kundl, Münster, Radfeld, [email protected] thern Limestone Alps run along the borders with Carinthia Rattenberg, Reith im Alpbachtal train station in Innsbruck from Austrian automobile and Italy. They comprise the Carnic and Gailtal Alps as well serves as an important hub associations as well as at as the Lienz Dolomites. The Limestone Alps were formed long 3 Erste Ferienregion Aschau, Bruck am Ziller, Fügen, Fügenberg, +43.5288.62262 www.best-of-zillertal.at im Zillertal Gerlos, Hart, Hippach, Hochfügen, Kaltenbach, [email protected] and so do the stations at petrol stations and border ago by sediments of an ancient ocean.
    [Show full text]
  • Upper Carboniferous–Lower Permian Buildups of the Carnic Alps, Austria–Italy 201 Upper Carboniferous–Lower Permian Buildups of the Carnic Alps, Austria–Italy
    Published in "SEPM Special Publication No. 78: 201-217, 2003" which should be cited to reference this work. UPPER CARBONIFEROUS–LOWER PERMIAN BUILDUPS OF THE CARNIC ALPS, AUSTRIA–ITALY 201 UPPER CARBONIFEROUS–LOWER PERMIAN BUILDUPS OF THE CARNIC ALPS, AUSTRIA–ITALY ELIAS SAMANKASSOU Université de Fribourg, Département de Géosciences, Géologie et Paléontologie, Pérolles, CH-1700 Fribourg, Switzerland e-mail: [email protected] ABSTRACT: A variety of buildup types occur in the upper Paleozoic Auernig and Rattendorf Groups, Carnic Alps, at the present-day Austrian–Italian border, including coral, diverse algal (Anthracoporella, Archaeolithophyllum, Rectangulina, and phylloid green), bryozoan, brachiopod, and sponge buildups. Thin mounds and banks have a diverse fossil association (e.g., Archaeolithophyllum–bryozoan– brachiopod mounds) and occur in siliciclastic-dominated intervals, as do coral buildups. Some of the biodiverse thin mounds occur in strata that were deposited in cooler water. However, the thickest mounds are nearly monospecific (e.g., Anthracoporella mounds) and grew in carbonate-dominated, warm-water environments. Most of the mounds considered in this paper, particularly algal mounds, grew in quiet-water environments below wave base but within the photic zone. Mound growth was variously stopped by siliciclastic input, e.g., auloporid coral mounds, sea-level rise, e.g., the drowning of Anthracoporella mounds of the Rattendorf Group, influence of cool water, e.g., algal mounds of the Auernig Group overlain by limestone of cool-water biotic association, or sea-level fall, e.g., phylloid algal mounds that were subsequently exposed subaerially. There is no indication of ecological succession during mound growth. Growth, dimensions, biotic association, and termination of mounds seem to have been controlled by extrinsic factors, mainly sea level and water temperature.
    [Show full text]