Juan Manuel PÉREZ RÚA Hierarchical Motion-Based Video

Total Page:16

File Type:pdf, Size:1020Kb

Juan Manuel PÉREZ RÚA Hierarchical Motion-Based Video ANNÉE 2017 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Traitement du Signal et Télécommunications Ecole doctorale MathSTIC présentée par Juan Manuel PÉREZ RÚA préparée au Centre Inria Rennes - Bretagne Atlantique Thèse soutenue à Rennes Hierarchical le 4 décembre 2017 motion-based devant le jury composé de : Luce MORIN video analysis Professor, INSA Rennes/président de jury Christian WOLF Associate Professor, INSA Lyon/rapporteur with applications to Anil KOKARAM Prof./Head of Department, Trinity College Dublin/rapporteur Jean-Marc ODOBEZ video post-production. Senior Researcher, EPFL/examinateur Ivan LAPTEV Research Director, INRIA Paris/examinateur Patrick PÉREZ Distinguished Scientist, TECHNICOLOR/examinateur Patrick BOUTHEMY Research Director, INRIA Rennes/directeur de thèse Tomas CRIVELLI Senior Scientist, TECHNICOLOR/co-directeur de thèse I like the scientific spirit - the holding off, the being sure but not too sure, the willingness to surrender ideas when the evidence is against them: this is ultimately fine - it always keeps the way beyond open - always gives life, thought, affection, the whole man, a chance to try over again after a mistake - after a wrong guess. Walt Whitman ACKNOWLEDGEMENTS To my family and friends, and Asia. P.P.,P.B., and Tomas. Martin, Dmitry, Oriel, Jean, and Charlotte. It was an adventure. Thank you all for your support. i ii CONTENTS Contents 1 Résumé en français (Summary in French) 5 IPRELIMINARIES 13 1 General Introduction 15 1.1 Goals and motivations . 16 1.1.1 Hierarchical structure of natural scene motion . 16 1.1.2 Interactive and fully automatic methods for video analysis . 18 1.1.3 Motion analysis and video processing for the cinema industry 20 1.2 Organization of this thesis . 20 2 An overview of image motion analysis and its applications to the post- production pipeline 23 2.1 Motion analysis: a psychological context . 24 2.2 Computer-based motion analysis . 29 2.2.1 About optical flow . 29 2.2.2 Occlusions: issue or tool? . 32 2.2.3 Other ways to characterize motion: object tracking and motion trajectories . 33 2.3 Applications to post-production . 36 2.4 Discussion . 43 II INTERACTIVE VIDEO ANALYSIS 45 3 Object-aware dense motion estimation: Object Flow 47 3.1 Introduction . 47 3.2 Related work . 49 1 2 Contents 3.3 The compositional nature of dense motion . 51 3.4 Object flow . 55 3.4.1 A simple Object Flow implementation . 57 3.4.2 Deep object flow . 61 3.5 Experimental results . 62 3.6 Conclusions . 66 4 Rich object appearance models for rotoscoping and trimap tracking: ROAM and ROAM+ 69 4.1 Introduction . 70 4.2 Related work and motivation . 73 4.2.1 Rotoscoping and curve-based approaches . 73 4.2.2 Masks and region-based approaches . 74 4.2.3 Previous works on trimaps . 75 4.3 Introducing ROAM . 76 4.3.1 Curve-based modelling: EC ..................... 77 4.3.2 Landmark-based modelling: E L .................. 78 4.3.3 Curve-landmarks interaction: E J .................. 79 4.4 Introducing ROAM+ . 80 4.5 Using ROAM . 82 4.6 Using ROAM+ . 84 4.7 Results . 84 4.8 Conclusion . 92 III FULLY AUTOMATIC VIDEO ANALYSIS 97 5 Occlusion detection 99 5.1 Introduction . 99 5.2 On true motion and occlusion models . 101 5.3 From image reconstructions to occlusion . 104 5.4 Proposed occlusion detection . 105 5.4.1 A reconstruction-based criterion . 106 5.4.2 From motion models to occlusions without stopping by optical flow................................... 108 5.5 Experimental results . 111 5.5.1 Evaluation of the occlusion criterion . 111 5.5.2 Full system evaluation . 112 5.5.3 Failure modes . 113 5.6 Concluding remarks . 114 Contents 3 6 Hierarchical motion analysis 119 6.1 Introduction . 119 6.2 Related work . 121 6.3 Hierarchical motion decomposition . 123 6.4 A hierarchical analysis of motion from pairs of frames . 123 6.4.1 Constructing proposal motion tree M . 125 6.4.2 Estimating decomposition tree T and pixel labels . 126 6.4.3 Some visual results . 128 6.4.4 About frame-based hierarchical scene decomposition . 128 6.5 A hierarchical partition by learning structured dictionaries . 132 6.5.1 Hierarchical dictionary learning . 133 6.5.2 Hierarchical coding and clustering . 134 6.5.3 Extension to longer videos . 135 6.5.4 Experimental evaluation . 138 6.6 Discussion . 139 7 Parametric motion modeling via deep neural networks 141 7.1 Introduction and related work . 142 7.1.1 Motion2D . 144 7.1.2 Deep architectures . 145 7.2 Our model . 148 7.2.1 Optical flow outlier elimination network . 148 7.2.2 Motion2DNet . 149 7.2.3 Training schedule and datasets . 151 7.3 Experiments .................................. 154 7.4 Discussion . 157 IV CONCLUSIONS 159 8 General Conclusions 161 8.1 Our contributions and results . 162 8.1.1 On object flow . 162 8.1.2 On ROAM and ROAM+........................ 162 8.1.3 On occlusions . 163 8.1.4 On hierarchical motion analysis . 163 8.2 Current and future work . 164 A A method for video object segmentation 167 A.1 Introduction and background . 167 A.2 Video object segmentation . 169 4 Contents A.2.1 Motion estimation and foreground-background tracking . 170 A.2.2 MRF definition and minimization . 171 A.2.3 Bounding-box update . 172 A.3 Experimental results . 173 A.4 Discussion . 174 List of publications 175 Bibliography 177 RÉSUMÉENFRANÇAIS Nous présentons dans ce manuscrit les méthodes développées et les résultats obtenus dans notre travail de thèse sur l’analyse du contenu dynamique de scène visuelle. Nous avons considéré la configuration la plus fréquente de vision par ordinateur, à savoir caméra monoculaire et vidéos naturelles de scène extérieure. Nous nous concentrons sur des problèmes importants généraux pour la vision par ordinateur et d’un intérêt particulier pour l’industrie cinématographique, dans le cadre de la post-production vidéo. Les problèmes abordés peuvent être regroupés en deux catégories principales, en fonction d’une interaction ou non avec les utilisateurs : • Analyse interactive du contenu vidéo. • Analyse vidéo entièrement automatique Cette division est un peu schématique, mais elle est en fait liée aux façons dont les méthodes proposées sont utilisées en post-production vidéo. Ces deux grandes approches correspondent aux deux parties principales qui forment ce manuscrit, qui sont ensuite subdivisées en chapitres présentant les différentes méthodes que nous avons proposées. Néanmoins, un fil conducteur fort relie toutes nos contributions. Il s’agit d’une analyse hiérarchique compositionnelle du mouvement dans les scènes dynamiques. Nous motivons et expliquons nos travaux selon l’organisation du manuscrit résumée ci-dessous. Introduction Nous partons de l’hypothèse fondamentale de la présence d’une structure hiérarchique de mouvement dans la scène observée, avec un objectif de compréhension de la scène dynamique. Cette hypothèse s’inspire d’un grand nombre de recherches scientifiques sur la vision biologique et cognitive. Plus précisément, nous nous référons à la recherche sur la vision biologique qui a établi la présence d’unités sensorielles liées au mouvement dans le cortex visuel [Joh70, Gib77, GTJ15]. La découverte de ces unités cérébrales spécialisées a motivé les chercheurs en vision cognitive à étudier comment la locomotion des animaux (évitement des obstacles, 5 6 Contents ��������� ��� �������������� ��� ��������� ��� �������� ��� ������������� ��� ���� ����������� ��� Figure 0.1: Hiérarchie de mouvement. Illustration d’une entité mobile avec ses par- ties mobiles, et de la structure hiérarchique de la composition du mouvement. planification des chemins, localisation automatique) et d’autres tâches de niveau supérieur sont directement influencées par les perceptions liées aux mouvements. Fait intéressant, les réponses perceptuelles qui se déroulent dans le cortex visuel sont activées non seulement par le mouvement lui-même, mais par des occlusions, des désocclusions, une composition des mouvements et des contours mobiles. En outre, la vision cognitive a relié la capacité du cerveau à appréhender la nature compositionnelle du mouvement dans l’information visuelle à une compréhension de la scène de haut niveau, comme la segmentation et la reconnaissance d’objets [KS83, LHP80]. En raison de ce qui précède, nous nous sommes investis dans l’analyse hiérarchique des éléments en mouvement pour capter des aspects essentiels du mouvement dans des scènes naturelles. En effet, le mouvement dans les vidéos est trés souvent structuré de manière hiérarchique, selon les actions que les éléments de la scène effectuent. En effet, ces éléments partagent des modèles de mouvement de groupe, avec des différences se situant à un niveau d’instance plus fin. En outre, les parties d’un objet peuvent hériter des motifs de mouvement de leur racine commune, mais peuvent se différencier entre elles. L’ensemble du comportement dynamique d’une scène peut ainsi être compris comme relevant d’une nature compositionnelle du mouvement, et cette nature compositionnelle perdure dans le mouvement perçu dans la séquence vidéo. Cette structure compositionnelle du mouvement est illustrée à la figure 0.1 pour une entité animée d’un mouvement articulé. Dans cette thèse, nous commençons par effectuer des expériences initiales autour de cette idée, puis nous proposons des algorithmes qui exploitent explicitement la nature compositionnelle du mouvement des scènes dynamiques. De plus, nous nous plaçons dans le contexte des tâches liées aux mouvements qui sont utiles en postproduction vidéo. Plus exactement, dans la première partie de ce manuscrit qui concerne le traitement interactif, nous abordons les problèmes de vision numérique suivants : Contents 7 • Flot d’objet. Estimation du mouvement dense au sein d’un objet. • Suivi des contours d’objet. Ou rotoscopie, comme dénommé dans le domaine du post-traitement vidéo. Ces deux modules fonctionnent dans un mode supervisé par l’utilisateur, tout en partageant une architecture de mouvement hiérarchique, néanmoins peu profonde.
Recommended publications
  • Rotoscoping Software
    JOB ROLE – ROTO ARTIST Sector – Media and Entertainment Sector (Qualification Pack Code: MES/Q3504) ( Class-XI ) PSS Central Institute of Vocational Education Shyamla Hills, Bhopal – 462 013 , Madhya Pradesh, India _________________________________________________________ www.psscive.ac.in 1 UNIT 2: CREATIVE AND TECHNICAL REQUIREMENT Chapter 7: Rotoscoping Software 2 Content Title Slide No. Chapter Objectives 04 Introduction 05 Rotoscoping Software 06-07 Adobe After Effects 08-13 System requirement for Adobe after Effects 14 Advantage of Adobe After Effects in Rotoscoping 15 Silhouette 2020 16- 19 System requirement of Silhouette 2020 20 Nuke 21-24 Minimum System Requirement of Nuke 25 Summary 26 3 Chapter Objectives The students will be able to: ❑ Define Rotoscoping Software, ❑ Explain Adobe After Effects software, its key features, ❑ Prepare System requirement for Adobe after Effects CC2019, ❑ Describe advantage of Adobe After Effects in Rotoscoping, ❑ Explain SilhouetteFX software, its Key features with rotoscoping feature and advantages, ❑ Prepare System requirement of Silhouette 2020, ❑ Explain Nuke, its Key feature and Advantage, ❑ Prepare Minimum System Requirement of Nuke. 4 Introduction Shifting from traditional to digital rotoscopy started in 1990s, Bob sabiston, a computer scientist made a program named ‘Rotoshop’. The technique of rotoshop is adopted from sketching, where artist traced first image and then copied it for next movement. It saves the time of sketching the second image. Another program ‘Matador’ was used for rotoscopy on hundred of feature film between 1990s to early 2000 including Jurassic park, forest gump and hulk. Matador was a paint application. Its main characteristics were paint, mask creation, animation, image stabilization and tracking. In comparison to traditional roto artist, a digital roto artist can do the eight time more work in 1/4th of time.
    [Show full text]
  • Silhouette 5 User Guide • • About This Guide• 2 • • • ABOUT THIS GUIDE
    Silhouette 5 User Guide • • About this Guide• 2 • • • ABOUT THIS GUIDE This User Guide is a reference for Silhouette and is available as an Acrobat PDF file. You can read from start to finish or jump around as you please. Copyright No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written consent of SilhouetteFX, LLC. Copyright © SilhouetteFX, LLC 2014. All Rights Reserved June 23, 2014 About Us SilhouetteFX brings together the unbeatable combination of superior software designers and visual effects veterans. Add an Academy Award for Scientific and Technical Achievement, 3 Emmy Awards and experience in creating visual effects for hundreds of feature films, commercials and television shows and you have a recipe for success. • • • Silhouette User Guide• • • • • About this Guide• 3 • • • • • • Silhouette User Guide• • • • • Table of Contents• 4 • • • Table of Contents • • • • • • About this Guide.............................................................................. 2 Copyright ...................................................................................... 2 About Us....................................................................................... 2 Table of Contents............................................................................. 4 Silhouette Features.......................................................................... 11 Roto.............................................................................................
    [Show full text]
  • ROAM: a Rich Object Appearance Model with Application to Rotoscoping
    ROAM: a Rich Object Appearance Model with Application to Rotoscoping Ondrej Miksik1∗ Juan-Manuel Perez-R´ ua´ 2∗ Philip H. S. Torr1 Patrick Perez´ 2 1University of Oxford 2Technicolor Research & Innovation Figure 1: ROAM for video object segmentation. Designed to help rotoscoping, the proposed object appearance model allows the automatic delineation of a complex object in a shot, starting from an initial outline provided by the user. Abstract 1. Introduction Modern high-end visual effects (vfx) and post-production Rotoscoping, the detailed delineation of scene elements rely on complex workflows whereby each shot undergoes through a video shot, is a painstaking task of tremendous a succession of artistic operations. Among those, rotoscop- importance in professional post-production pipelines. While ing is probably the most ubiquitous and demanding one pixel-wise segmentation techniques can help for this task, [6, 16]. Rotoscoping amounts to outlining accurately one professional rotoscoping tools rely on parametric curves that or several scene elements in each frame of a shot. This is a offer the artists a much better interactive control on the defi- key operation for compositing [28] (insertion of a different nition, editing and manipulation of the segments of interest. background, whether natural or synthetic), where it serves Sticking to this prevalent rotoscoping paradigm, we propose as an input to subsequent operations such as matting and a novel framework to capture and track the visual aspect motion blur removal.1 Rotoscoping is also a pre-requisite of an arbitrary object in a scene, given a first closed out- for other important operations, such as object colour grading, line of this object.
    [Show full text]
  • Mocha® V5.5.2 Release Note
    mocha® v5.5.2 Release Note Table of Contents Introduction ................................................................................................................ 2 Build notes ................................................................................................................ 2 New Features in mocha Pro 5.5.2 ............................................................................ 2 New Features in mocha VR 5.5.2 ............................................................................ 3 Fixed issues since 5.5.1 ........................................................................................... 3 Known Issues .......................................................................................................... 15 Hardware Requirements ......................................................................................... 80 Recommended Hardware ................................................................................ 80 Minimal Requirements ..................................................................................... 81 Software Requirements for mocha Standalone ...................................................... 81 Operating System ............................................................................................ 81 Software Requirements for mocha Plugins ............................................................. 81 Host Applications ............................................................................................. 81 Operating System ...........................................................................................
    [Show full text]
  • Creation of a Trailer Using VFX and Compositing. Treball Final De Grau Grau En Multimèdia
    Creation of a Trailer using VFX and Compositing. Treball Final de Grau Grau en Multimèdia Cognoms: Carrasco Montero Nom: Victor Pla d’estudis de 2009 Director: Macià Farré, Francesc Victor Carrasco Montero Creation of a Trailer using VFX and Compositing Index SUMMARY .............................................................................................................................. 4 KEY WORDS ............................................................................................................................ 5 LINK TO PROJECT .................................................................................................................... 6 TABLE OF FIGURES ................................................................................................................. 7 GLOSSARY ............................................................................................................................. 11 1. INTRODUCTION ............................................................................................................. 13 1.1 MOTIVATIONS ............................................................................................................. 13 1.2 FORMULATION OF THE PROBLEM .............................................................................. 14 1.3 GENERAL OBJECTIVES ................................................................................................. 15 1.4 SPECIFIC OBJECTIVES .................................................................................................. 15
    [Show full text]
  • Roto++: Accelerating Professional Rotoscoping Using Shape Manifolds*
    Roto++: Accelerating Professional Rotoscoping using Shape Manifolds Wenbin Li 1 Fabio Viola 2;∗ Jonathan Starck 2 Gabriel J. Brostow 1 Neill D. F. Campbell 3 University College London 1 The Foundry 2 University of Bath 3 Intermediate Baseline Ours Frame or = Rotoscoping Keyframes 6 Clicks + 6 Drags 1 Select + 1 Drag Final Result Figure 1: An example of our new Roto++ tool working with a professional artist to increase productivity. The artist has already specified a number of keyframes but is not satisfied with one of the intermediate frames. Under standard baselines, correcting the erroneous curve requires moving the individual control points of the spline. Using our new shape model we are able to provide an Intelligent Drag Tool that can generate likely shapes given the other keyframes. In our new interaction, the user simply selects the incorrect points and drags them all towards the correct shape. Our shape model then correctly proposes the new control point locations, allowing the correction to be performed in a single operation. Abstract 1 Introduction Rotoscoping (cutting out different characters/objects/layers in raw Visual effects (VFX) in film, television, and even games are created video footage) is a ubiquitous task in modern post-production and through a process called compositing in the post-production industry. represents a significant investment in person-hours. In this work, we Individual shots are broken down into visual elements that are then study the particular task of professional rotoscoping for high-end, modified and combined, or seamlessly integrated with computer live action movies and propose a new framework that works with generated (CG) imagery.
    [Show full text]
  • Mocha® Pro V5.0.0 Release Note
    mocha® Pro v5.0.0 Release Note Table of Contents Introduction ................................................................................................................ 1 New Features Guide ................................................................................................. 2 GPU Tracking .................................................................................................... 2 Redesigned Insert Module ................................................................................. 3 Copy and Pasting Contours ............................................................................... 3 New Import: Silhouette Projects ........................................................................ 3 New Export: Silhouette Shapes ......................................................................... 3 New Export: Fusion Shapes .............................................................................. 3 Improved Export for Adobe After Effects Shapes .............................................. 3 Vastly Improved Python API .............................................................................. 4 Built-in Python Script Editor ............................................................................... 4 Command Line Render Tools ............................................................................ 4 Manual Cache Clearing Tools ........................................................................... 4 Marquee or Lasso Selection .............................................................................
    [Show full text]
  • Silhouette Paint™ a Masterpiece for Film and TV Production
    Press / Analyst Contact: Perry Kivolowitz Silhouette FX, LLC 608-230-6262 [email protected] For Immediate Release Silhouette Paint™ A Masterpiece For Film And TV Production Leveraging the success of Silhouette Roto™, Silhouette Paint is an innovative high dynamic range 2D paint system. Combining non-destructive motion stabilized paint with very powerful cloning capabilities makes image restoration, dust busting, wire and rig removal, and just plain paint more efficient that ever. Los Angeles, CA (July 27th, 2005) - Silhouette FX, LLC is pleased to announce Silhouette Paint, an add-on to its acclaimed Silhouette Roto application. Designed from the ground up to handle the demands of motion picture and television visual effects, Silhouette Paint incorporates an innovative approach to high dynamic range 2D paint. Using powerful multi-layered match moving capabilities, Silhouette Paint can non- destructively apply color, tint, erase, blemish, mosaic, and grain brushes to 8-bit, 16-bit, and floating point clips. Silhouette Paint's clone brush features are especially powerful. To more exactly match a foreground element, paint sources (clean plates, for example) can be transformed on-the-fly by rotation, scaling, and corner pinning in addition to being offset in time or XY space. As an add-on to Silhouette Roto Version 2, Silhouette Paint is tightly integrated with Roto's shape features such as motion tracking, variable edge softness and realistic motion blur. Brushes can be automatically applied to shape layers which are themselves automatically match moved. Blemishes, for example, can be automatically erased over time with minimal set-up by attaching the blemish brush to a rotoshape tracking the blemish itself.
    [Show full text]
  • This Document Comprises of Information on All the Major Software Used in MAAC Courses
    This document comprises of information on all the major software used in MAAC courses. This information states three pointers i.e. the description, the course family and a video link for an explanation of the software 1. Adobe Photoshop Description: Adobe Photoshop is a raster graphics editor developed and published by Adobe Systems for MacOS and Windows. It is an image editing software. Video Link: https://www.youtube.com/watch?v=gdZiEzk8m1Y Courses: ADVFX, ADVFX PLUS, AD3D Edge, AD3D Edge PLUS, VFX Plus, D3D, IPVAD, DAFM, DFM, Photoshop, Compositing and Editing Plus - MESC – N, Compositing and Editing PLUS, VAR Plus, Broadcast Plus, Compositing PLUS, Editing Pro, Motion Graphics Pro, APDMD, Graphic Design Pro, DGWA, DGA 2. Adobe After Effects Description: Adobe After Effects is a digital visual effects, motion graphics, and compositing application developed by Adobe Systems and used in the post-production process of film making and television production. Among other things, After Effects can be used for keying, tracking, compositing and animation. It also functions as a very basic non-linear editor, audio editor and media transcoder. Video Link: https://www.youtube.com/watch?v=WKpejnYE3s0 Courses: ADVFX, ADVFX PLUS, AD3D Edge, AD3D Edge PLUS, VFX Plus, IPVAD, DAFM, DFM, AfterEffects, Compositing and Editing Plus - MESC – N, Compositing and Editing PLUS, Broadcast Plus, Compositing PLUS, Motion Graphics Pro 3. Adobe Audition Description: Adobe Audition (formerly Cool Edit Pro) is a digital audio workstation from Adobe Systems featuring both a multitrack, non-destructive mix/edit environment and a destructive-approach waveform editing view. Video Link: https://www.youtube.com/watch?v=KnsZtwAZSDU Courses: ADVFX, ADVFX PLUS, AD3D Edge, AD3D Edge PLUS, IPVAD, DAFM, DFM, Premiere & Audition, Compositing and Editing Plus - MESC – N, Compositing and Editing PLUS, VAR Plus, Broadcast Plus, Editing Pro, Motion Graphics Pro, APDMD, DGWA, DGA 4.
    [Show full text]
  • Professional Resume
    2106 NW 18TH ST 719-217-0765 Lawton, OK, 73507 [email protected] Artist Randolph S. Asaki Dedicated to the creation and advancement of realistic motion and visuals Skills / Training . Digital Compositing . 3D Animation . Rotoscoping/Paint . 2D Digital Animation . Motion Tracking . Particles . Image Stabilization . Graphic Art Design . Digital Matte/Paint . Stop Motion Animation . Digital Set Extension . Figure Sculpting . Green/Blue screen extraction . Fundamental Drawing Software . Adobe Photoshop . Vue Infinite . Adobe After Effects . TVPaint Animation . Adobe Illustrator . The Pixel Farm PFTrack . SideEffects Houdini . headus UVLayout . The Foundry NukeX . SilhouetteFX Silhouette . Autodesk Maya . Microsoft Word . Autodesk Mudbox . Microsoft Excel Hardware . Wacom Cintiq . Wacom Intuos . Wacom Bamboo Scripting / Programming . C . MEL . Python . HTML/CSS Education Academy of Art University San Francisco, CA . Bachelor Degree: Fine Arts, emphasis in Animation and Visual Effects . School of Animation And Visual Effects Linn Benton Community College Albany, OR . Major: Computer Science Golden West College Huntington Beach, CA . Major: Mathematics and Science Experience Safeway 12/2017 to 09/2018 Baker . Following recipes and makeup procedures while preparing and baking items such as artisan breads, pastries, and donuts . Work with ovens, mixers, and proofers to bake products that meet the highest quality, freshness, and safety standards . Assist customers by making product recommendations, taking special orders, and by providing customer service . Ensure compliance with all food safety and sanitation requirements . Assist with cleaning and sanitizing food preparation areas, tools, and equipment U.S. Army Honorable Discharge 06/2002 to 08/2010 Heavy Wheeled Vehicle Operations . Achieved the rank of Sergeant/E5 . Responsible for the conduct, welfare, and the physical and spiritual health, of subordinate Soldiers and their families .
    [Show full text]
  • Gpu-Accelerated Applications Gpu‑Accelerated Applications
    GPU-ACCELERATED APPLICATIONS GPU-ACCELERATED APPLICATIONS Accelerated computing has revolutionized a broad range of industries with over six hundred applications optimized for GPUs to help you accelerate your work. CONTENTS 1 Computational Finance 62 Research: Higher Education and Supercomputing NUMERICAL ANALYTICS 2 Climate, Weather and Ocean Modeling PHYSICS 2 Data Science and Analytics SCIENTIFIC VISUALIZATION 5 Artificial Intelligence 68 Safety and Security DEEP LEARNING AND MACHINE LEARNING 71 Tools and Management 13 Federal, Defense and Intelligence 79 Agriculture 14 Design for Manufacturing/Construction: 79 Business Process Optimization CAD/CAE/CAM CFD (MFG) CFD (RESEARCH DEVELOPMENTS) COMPUTATIONAL STRUCTURAL MECHANICS DESIGN AND VISUALIZATION ELECTRONIC DESIGN AUTOMATION INDUSTRIAL INSPECTION Test Drive the 29 Media and Entertainment ANIMATION, MODELING AND RENDERING World’s Fastest COLOR CORRECTION AND GRAIN MANAGEMENT COMPOSITING, FINISHING AND EFFECTS Accelerator – Free! (VIDEO) EDITING Take the GPU Test Drive, a free and (IMAGE & PHOTO) EDITING easy way to experience accelerated ENCODING AND DIGITAL DISTRIBUTION computing on GPUs. You can run ON-AIR GRAPHICS your own application or try one of ON-SET, REVIEW AND STEREO TOOLS the preloaded ones, all running on a WEATHER GRAPHICS remote cluster. Try it today. www.nvidia.com/gputestdrive 44 Medical Imaging 47 Oil and Gas 48 Life Sciences BIOINFORMATICS MICROSCOPY MOLECULAR DYNAMICS QUANTUM CHEMISTRY (MOLECULAR) VISUALIZATION AND DOCKING Computational Finance APPLICATION NAME COMPANYNAME PRODUCT DESCRIPTION SUPPORTED FEATURES GPU SCALING Accelerated Elsen Secure, accessible, and accelerated • Web-like API with Native bindings for Multi-GPU Computing Engine back-testing, scenario analysis, Python, R, Scala, C Single Node risk analytics and real-time trading • Custom models and data streams designed for easy integration and rapid development.
    [Show full text]
  • ROAM: a Rich Object Appearance Model with Application to Rotoscoping
    ROAM: a Rich Object Appearance Model with Application to Rotoscoping Ondrej Miksik1∗ Juan-Manuel Perez-R´ ua´ 2∗ Philip H. S. Torr1 Patrick Perez´ 2 1University of Oxford 2Technicolor Research & Innovation Figure 1: ROAM for video object segmentation. Designed to help rotoscoping, the proposed object appearance model allows the automatic delineation of a complex object in a shot, starting from an initial outline provided by the user. Abstract 1. Introduction Modern high-end visual effects (vfx) and post-production Rotoscoping, the detailed delineation of scene elements rely on complex workflows whereby each shot undergoes through a video shot, is a painstaking task of tremendous a succession of artistic operations. Among those, rotoscop- importance in professional post-production pipelines. While ing is probably the most ubiquitous and demanding one pixel-wise segmentation techniques can help for this task, [6, 16]. Rotoscoping amounts to outlining accurately one professional rotoscoping tools rely on parametric curves that or several scene elements in each frame of a shot. This is a offer the artists a much better interactive control on the defi- key operation for compositing [28] (insertion of a different nition, editing and manipulation of the segments of interest. background, whether natural or synthetic), where it serves Sticking to this prevalent rotoscoping paradigm, we propose as an input to subsequent operations such as matting and a novel framework to capture and track the visual aspect motion blur removal.1 Rotoscoping is also a pre-requisite of an arbitrary object in a scene, given a first closed out- for other important operations, such as object colour grading, line of this object.
    [Show full text]