Occutmion@Newstetter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spectroscopic Survey of X-Type Asteroids S
Spectroscopic Survey of X-type Asteroids S. Fornasier, B.E. Clark, E. Dotto To cite this version: S. Fornasier, B.E. Clark, E. Dotto. Spectroscopic Survey of X-type Asteroids. Icarus, Elsevier, 2011, 10.1016/j.icarus.2011.04.022. hal-00768793 HAL Id: hal-00768793 https://hal.archives-ouvertes.fr/hal-00768793 Submitted on 24 Dec 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Spectroscopic Survey of X-type Asteroids S. Fornasier, B.E. Clark, E. Dotto PII: S0019-1035(11)00157-6 DOI: 10.1016/j.icarus.2011.04.022 Reference: YICAR 9799 To appear in: Icarus Received Date: 26 December 2010 Revised Date: 22 April 2011 Accepted Date: 26 April 2011 Please cite this article as: Fornasier, S., Clark, B.E., Dotto, E., Spectroscopic Survey of X-type Asteroids, Icarus (2011), doi: 10.1016/j.icarus.2011.04.022 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. -
Combining Asteroid Models Derived by Lightcurve Inversion with Asteroidal Occultation Silhouettes
Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes Josef Durechˇ a,∗, Mikko Kaasalainenb, David Heraldc, David Dunhamd, Brad Timersone, Josef Hanuˇsa, Eric Frappaf, John Talbotg, Tsutomu Hayamizuh, Brian D. Warneri, Frederick Pilcherj, Adri´an Gal´adk,l aAstronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, CZ-18000 Prague, Czech Republic bDepartment of Mathematics, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland c3 Lupin Pl, Murrumbateman, NSW, Australia dInternational Occultation Timing Association (IOTA) and KinetX, Inc., 7913 Kara Ct., Greenbelt, MD 20770, USA eInternational Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA f1 bis cours Jovin Bouchard 42000 Saint-Etienne, France gOccultation Section, Royal Astronomical Society of New Zealand, P.O. Box 3181, Wellington, New Zealand hJapan Occultation Information Network (JOIN), Sendai Space Hall, 2133-6 Nagatoshi, Kagoshima pref, Japan iPalmer Divide Observatory, 17955 Bakers Farm Rd., Colorado Springs, CO 80908, USA j4438 Organ Mesa Loop, Las Cruces, NM 88011, USA kModra Observatory, FMFI Comenius University, 842 48 Bratislava, Slovakia lOndˇrejov Observatory, AV CR,ˇ 251 65 Ondˇrejov, Czech Republic Abstract Asteroid sizes can be directly measured by observing occultations of stars by asteroids. When there are enough observations across the path of the shadow, the asteroid’s projected silhouette can be reconstructed. Asteroid shape models derived from photometry by the lightcurve inversion method enable us to predict the orientation of an asteroid for the time of occultation. By scaling the shape model to fit the occultation chords, we can determine the asteroid size with a relative accuracy of typically ∼ 10%. -
Observational Constraints on the Optical and Near-Infrared Emission from the Neutron Star–Black Hole Binary Merger Candidate S190814bv? K
A&A 643, A113 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037669 & c K. Ackley et al. 2020 Astrophysics Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv? K. Ackley1, L. Amati2, C. Barbieri3,4,5 , F. E. Bauer6,7,8 , S. Benetti9, M. G. Bernardini3, K. Bhirombhakdi10, M. T. Botticella11, M. Branchesi12,13, E. Brocato14,15, S. H. Bruun16, M. Bulla17, S. Campana3, E. Cappellaro9, A. J. Castro-Tirado18, K. C. Chambers19, S. Chaty20,21, T.-W. Chen22,23, R. Ciolfi9,24, A. Coleiro20, C. M. Copperwheat25, S. Covino3, R. Cutter26, F. D’Ammando27, P. D’Avanzo3, G. De Cesare2, V. D’Elia14,28, M. Della Valle11, L. Denneau19, M. De Pasquale29, V. S. Dhillon30,31, M. J. Dyer30, N. Elias-Rosa9,32, P. A. Evans33, R. A. J. Eyles-Ferris33, A. Fiore9,34, M. Fraser35, A. S. Fruchter10, J. P. U. Fynbo36,37, L. Galbany38, C. Gall16, D. K. Galloway1, F. I. Getman11, G. Ghirlanda3, J. H. Gillanders39, A. Gomboc40, B. P. Gompertz26, C. González-Fernández41, S. González-Gaitán42, A. Grado11, G. Greco43,44, M. Gromadzki45, P. J. Groot46,47,48,49 , C. P. Gutiérrez50, T. Heikkilä51, K. E. Heintz52, J. Hjorth16, Y.-D. Hu18,38, M. E. Huber19, C. Inserra53, L. Izzo16, J. Japelj54, A. Jerkstrand22, Z. P. Jin55, P. G. Jonker46,56, E. Kankare51, D. A. Kann18, M. Kennedy57, S. Kim6,58, S. Klose59, E. C. Kool22, R. Kotak51, H. Kuncarayakti51,60, G. P. Lamb33, G. Leloudas61, A. J. Levan26,46,??, F. Longo62, T. -
TRUE MASSES of RADIAL-VELOCITY EXOPLANETS Robert A
APP Template V1.01 Article id: apj513330 Typesetter: MPS Date received by MPS: 19/05/2015 PE: CE : LE: UNCORRECTED PROOF The Astrophysical Journal, 00:000000 (28pp), 2015 Month Day © 2015. The American Astronomical Society. All rights reserved. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS Robert A. Brown Space Telescope Science Institute, USA; [email protected] Received 2015 January 12; accepted 2015 April 14; published 2015 MM DD ABSTRACT We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. -
The Minor Planet Bulletin 36, 188-190
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 3, A.D. 2010 JULY-SEPTEMBER 81. ROTATION PERIOD AND H-G PARAMETERS telescope (SCT) working at f/4 and an SBIG ST-8E CCD. Baker DETERMINATION FOR 1700 ZVEZDARA: A independently initiated observations on 2009 September 18 at COLLABORATIVE PHOTOMETRY PROJECT Indian Hill Observatory using a 0.3-m SCT reduced to f/6.2 coupled with an SBIG ST-402ME CCD and Johnson V filter. Ronald E. Baker Benishek from the Belgrade Astronomical Observatory joined the Indian Hill Observatory (H75) collaboration on 2009 September 24 employing a 0.4-m SCT PO Box 11, Chagrin Falls, OH 44022 USA operating at f/10 with an unguided SBIG ST-10 XME CCD. [email protected] Pilcher at Organ Mesa Observatory carried out observations on 2009 September 30 over more than seven hours using a 0.35-m Vladimir Benishek f/10 SCT and an unguided SBIG STL-1001E CCD. As a result of Belgrade Astronomical Observatory the collaborative effort, a total of 17 time series sessions was Volgina 7, 11060 Belgrade 38 SERBIA obtained from 2009 August 20 until October 19. All observations were unfiltered with the exception of those recorded on September Frederick Pilcher 18. MPO Canopus software (BDW Publishing, 2009a) employing 4438 Organ Mesa Loop differential aperture photometry, was used by all authors for Las Cruces, NM 88011 USA photometric data reduction. The period analysis was performed using the same program. David Higgins Hunter Hill Observatory The data were merged by adjusting instrumental magnitudes and 7 Mawalan Street, Ngunnawal ACT 2913 overlapping characteristic features of the individual lightcurves. -
The British Astronomical Association Handbook 2014
THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2015 2014 October ISSN 0068–130–X CONTENTS CALENDAR 2015 . 2 PREFACE . 3 HIGHLIGHTS FOR 2015 . 4 SKY DIARY . .. 5 VISIBILITY OF PLANETS . 6 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 7-8 ECLIPSES . 9-14 TIME . 15-16 EARTH AND SUN . 17-19 LUNAR LIBRATION . 20 MOON . 21 MOONRISE AND MOONSET . 21-25 SUN’S SELENOGRAPHIC COLONGITUDE . 26 LUNAR OCCULTATIONS . 27-33 GRAZING LUNAR OCCULTATIONS . 34-35 APPEARANCE OF PLANETS . 36 MERCURY . 37-38 VENUS . 39 MARS . 40-41 ASTEROIDS . 42 ASTEROID EPHEMERIDES . 43-47 ASTEROID OCCULTATIONS .. 48-50 NEO CLOSE APPROACHES TO EARTH . 51 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 52-54 JUPITER . 55-59 SATELLITES OF JUPITER . 59-63 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 64-73 SATURN . 74-77 SATELLITES OF SATURN . 78-81 URANUS . 82 NEPTUNE . 83 TRANS–NEPTUNIAN & SCATTERED DISK OBJECTS . 84 DWARF PLANETS . 85-88 COMETS . 89-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (V Bootis) . 103-105 EPHEMERIDES OF DOUBLE STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 PLANETS – EXPLANATION OF TABLES . 110 ELEMENTS OF PLANETARY ORBITS . 111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 111-112 INTERNET RESOURCES . 113-114 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS . 116 ERRATA . 116 Front Cover: The Moon at perigee and apogee – highlighting the clear size difference when the Moon is closest and farthest away from the Earth. Perigee on 2009/11/08 at 23:24UT, distance -
Astrometric Asteroid Masses: a Simultaneous Determination
A&A 565, A56 (2014) Astronomy DOI: 10.1051/0004-6361/201322766 & c ESO 2014 Astrophysics Astrometric asteroid masses: a simultaneous determination Edwin Goffin Aartselaarstraat 14, 2660 Hoboken, Belgium e-mail: [email protected] Received 27 September 2013 / Accepted 18 March 2014 ABSTRACT Using over 89 million astrometric observations of 349 737 numbered minor planets, an attempt was made to determine the masses of 230 of them by simultaneously solving for corrections to all orbital elements and the masses. For 132 minor planets an acceptable result was obtained, 49 of which appear to be new. Key words. astrometry – celestial mechanics – minor planets, asteroids: general 1. Introduction substantial number of test asteroids (349 737). Section 2 explains the basic principles and problems of simultaneous asteroid mass The astrometric determination of asteroid masses is the tech- determination and in Sect. 3 the details of the actual calculations nique of calculating the mass of asteroids (hereafter called “per- are given. Section 4 briefly deals with the observations used and turbing asteroids” or “perturbers”) from the gravitational pertur- explains the statistical analysis of the residuals that was used to bations they exert on the motion of other asteroids (called “test assign weights to, or reject observations. In Sect. 5 the results asteroids”). are presented and Sect. 6 discusses them. The usual procedure to calculate the mass of one aster- Throughout this paper, asteroid masses are expressed in units oid is, first, to identify potential test asteroids by searching −10 of 10 solar masses (M) and generally given to 3 decimal for close approaches with the perturbing asteroids and then places. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 34, NUMBER 3, A.D. 2007 JULY-SEPTEMBER 53. CCD PHOTOMETRY OF ASTEROID 22 KALLIOPE Kwee, K.K. and von Woerden, H. (1956). Bull. Astron. Inst. Neth. 12, 327 Can Gungor Department of Astronomy, Ege University Trigo-Rodriguez, J.M. and Caso, A.S. (2003). “CCD Photometry 35100 Bornova Izmir TURKEY of asteroid 22 Kalliope and 125 Liberatrix” Minor Planet Bulletin [email protected] 30, 26-27. (Received: 13 March) CCD photometry of asteroid 22 Kalliope taken at Tubitak National Observatory during November 2006 is reported. A rotational period of 4.149 ± 0.0003 hours and amplitude of 0.386 mag at Johnson B filter, 0.342 mag at Johnson V are determined. The observation of 22 Kalliope was made at Tubitak National Observatory located at an elevation of 2500m. For this study, the 410mm f/10 Schmidt-Cassegrain telescope was used with a SBIG ST-8E CCD electronic imager. Data were collected on 2006 November 27. 305 images were obtained for each Johnson B and V filters. Exposure times were chosen as 30s for filter B and 15s for filter V. All images were calibrated using dark and bias frames Figure 1. Lightcurve of 22 Kalliope for Johnson B filter. X axis is and sky flats. JD-2454067.00. Ordinate is relative magnitude. During this observation, Kalliope was 99.26% illuminated and the phase angle was 9º.87 (Guide 8.0). Times of observation were light-time corrected. -
Photometry and Models of Selected Main Belt Asteroids. VI. 160 Una, 747 Winchester, and 849 Ara
A&A 498, 313–320 (2009) Astronomy DOI: 10.1051/0004-6361/200811078 & c ESO 2009 Astrophysics Photometry and models of selected main belt asteroids. VI. 160 Una, 747 Winchester, and 849 Ara A. Marciniak1, T. Michałowski1, R. Hirsch1,M.Polinska´ 1,K.Kaminski´ 1, T. Kwiatkowski1, A. Kryszczynska´ 1, R. Behrend2, L. Bernasconi3, J. Michałowski4, S. Starczewski5, M. Fagas1, and K. Sobkowiak1 1 Astronomical Observatory, Adam Mickiewicz University, Słoneczna 36, 60-286 Poznan,´ Poland e-mail: [email protected] 2 Geneva Observatory, 1290 Sauverny, Switzerland 3 Les Engarouines Observatory, 84570 Mallemort-du-Comtat, France 4 UNIQA Software Service, Gdanska´ 132, 90-520 Łód´z, Poland 5 N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland Received 3 October 2008 / Accepted 29 January 2009 ABSTRACT We present a set of new photometric observations of three main belt asteroids: 160 Una, 747 Winchester, and 849 Ara. This, combined with the available data, allowed us to construct their physical models. The lightcurve inversion method was used to obtain their spins and shapes. We have resolved problems with the rotation period of 160 Una, and found it to be 11.033176 ± 0.000011 h, almost twice the value given in the literature. Key words. techniques: photometric – minor planets, asteroids 1. Introduction (Kryszczynska´ et al. 2007), and the models from lightcurve inversion are collected at: http://astro.troja.mff.cuni. Construction of an increasing number of spin and shape mod- cz/projects/asteroids3D. els of asteroids allows for statistical studies that reveal many unknown facts about the Solar System’s history, including the forces involved. -
000001 – 004000
ELEMENTS AND OPPOSITION DATES IN 2019 ecliptic and equinox 2000.0, epoch 2019 nov. 13.0 tt Planet H G M ω Ω i e µ a TE Oppos. V m ◦ ◦ ◦ ◦ ◦ 1 Ceres 3.34 0.12 119.82381 73.83775 80.30381 10.59227 0.0766486 0.21382049 2.7697241 19 5 29.5 7.0 2 Pallas 4.13 0.11 102.34880 310.11514 173.06521 34.83144 0.2302254 0.21343666 2.7730436 19 4 19.7 8.0 3 Juno 5.33 0.32 80.16992 248.10327 169.85020 12.99008 0.2569240 0.22607900 2.6686763 19 — — 4 Vesta 3.20 0.32 150.08773 150.81931 103.80943 7.14181 0.0886118 0.27154209 2.3618081 19 11 14.4 6.5 5 Astraea 6.85 X 330.11215 358.66021 141.57172 5.36711 0.1910347 0.23861125 2.5743965 19 — — 6 Hebe 5.71 0.24 138.43724 239.76676 138.64111 14.73917 0.2031156 0.26103397 2.4247746 19 — — 7 Iris 5.51 X 193.93164 145.25948 259.56318 5.52359 0.2308299 0.26741555 2.3860431 19 4 2.7 9.5 8 Flora 6.49 0.28 255.13638 285.32867 110.87666 5.88846 0.1560358 0.30157711 2.2022695 19 5 13.8 9.8 9 Metis 6.28 0.17 330.40220 6.37267 68.90957 5.57674 0.1232185 0.26742705 2.3859747 19 10 27.6 8.6 10 Hygiea 5.43 X 187.50982 312.37901 283.19878 3.83172 0.1122683 0.17695679 3.1421330 19 11 25.9 10.3 11 Parthenope 6.55 X 330.37882 195.37875 125.52860 4.63112 0.1002229 0.25647388 2.4534316 19 5 16.0 9.7 12 Victoria 7.24 0.22 188.58207 69.66124 235.40635 8.37272 0.2202999 0.27638851 2.3341175 19 — — 13 Egeria 6.74 X 235.23502 80.49624 43.21994 16.53617 0.0852529 0.23841640 2.5757990 19 9 8.1 10.8 14 Irene 6.30 X 212.36883 97.83775 86.12300 9.12162 0.1663937 0.23700714 2.5859994 19 10 21.0 10.6 15 Eunomia 5.28 0.23 329.17049 98.58234 -
Spectroscopic Survey of M-Type Asteroids S
Spectroscopic survey of M-type asteroids S. Fornasier, B.E. Clark, E. Dotto, A. Migliorini, M. Ockert-Bell, M.A. Barucci To cite this version: S. Fornasier, B.E. Clark, E. Dotto, A. Migliorini, M. Ockert-Bell, et al.. Spectroscopic survey of M- type asteroids. Icarus, Elsevier, 2010, 210 (2), pp.655. 10.1016/j.icarus.2010.07.001. hal-00693813 HAL Id: hal-00693813 https://hal.archives-ouvertes.fr/hal-00693813 Submitted on 3 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Spectroscopic survey of M–type asteroids S. Fornasier, B.E. Clark, E. Dotto, A. Migliorini, M. Ockert-Bell, M.A. Barucci PII: S0019-1035(10)00273-3 DOI: 10.1016/j.icarus.2010.07.001 Reference: YICAR 9497 To appear in: Icarus Received Date: 11 September 2009 Revised Date: 1 July 2010 Accepted Date: 1 July 2010 Please cite this article as: Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A., Spectroscopic survey of M–type asteroids, Icarus (2010), doi: 10.1016/j.icarus.2010.07.001 This is a PDF file of an unedited manuscript that has been accepted for publication. -
The Full Appendices with All References
Breakthrough Listen Exotica Catalog References 1 APPENDIX A. THE PROTOTYPE SAMPLE A.1. Minor bodies We classify Solar System minor bodies according to both orbital family and composition, with a small number of additional subtypes. Minor bodies of specific compositions might be selected by ETIs for mining (c.f., Papagiannis 1978). From a SETI perspective, orbital families might be targeted by ETI probes to provide a unique vantage point over bodies like the Earth, or because they are dynamically stable for long periods of time and could accumulate a large number of artifacts (e.g., Benford 2019). There is a large overlap in some cases between spectral and orbital groups (as in DeMeo & Carry 2014), as with the E-belt and E-type asteroids, for which we use the same Prototype. For asteroids, our spectral-type system is largely taken from Tholen(1984) (see also Tedesco et al. 1989). We selected those types considered the most significant by Tholen(1984), adding those unique to one or a few members. Some intermediate classes that blend into larger \complexes" in the more recent Bus & Binzel(2002) taxonomy were omitted. In choosing the Prototypes, we were guided by the classifications of Tholen(1984), Tedesco et al.(1989), and Bus & Binzel(2002). The comet orbital classifications were informed by Levison(1996). \Distant minor bodies", adapting the \distant objects" term used by the Minor Planet Center,1 refer to outer Solar System bodies beyond the Jupiter Trojans that are not comets. The spectral type system is that of Barucci et al. (2005) and Fulchignoni et al.(2008), with the latter guiding our Prototype selection.