Spectroscopy of K-Complex Asteroids: Parent Bodies of Carbonaceous Meteorites? ∗ Beth Ellen Clark A, ,1, Maureen E

Total Page:16

File Type:pdf, Size:1020Kb

Spectroscopy of K-Complex Asteroids: Parent Bodies of Carbonaceous Meteorites? ∗ Beth Ellen Clark A, ,1, Maureen E Icarus 202 (2009) 119–133 Contents lists available at ScienceDirect Icarus www.elsevier.com/locate/icarus Spectroscopy of K-complex asteroids: Parent bodies of carbonaceous meteorites? ∗ Beth Ellen Clark a, ,1, Maureen E. Ockert-Bell a,EdA.Cloutisb,DavidNesvornyc, Thais Mothé-Diniz d,SchelteJ.Buse a Department of Physics, Ithaca College, Ithaca, NY 14850, USA b Department of Geography, University of Winnipeg, Winnipeg, MB, R3B 2E9, Manitoba, Canada c Department of Space Sciences, Southwest Research Institute, 1050 Walnut Street 300, Boulder, CO 80302, USA d Universidade Federal do Rio de Janeiro, Observatório do Valongo, Ladeira Pedro Antônio, 43 CEP 20080-090, Rio de Janeiro, Brazil e University of Hawaii, Institute for Astronomy, 640 North A‘ohoku Place, 209, Hilo, HI 96720-2700, USA article info abstract Article history: This is the first focused study of non-Eos K asteroids. We have observed a total of 30 K-complex objects Received 27 November 2007 (12 K-2 Sk- and 13 Xk-type asteroids (from the Bus taxonomy), plus 3 K-candidates from previous work) Revised 23 January 2009 and we present an analysis of their spectral properties from 0.4 to 2.5 μm. We targeted these asteroids Accepted 3 February 2009 because their previous observations are spectrally similar enough to suggest a possible compositional Available online 14 March 2009 relationship. All objects have exhibited spectral redness in the visible wavelengths and minor absorptions Keywords: near 1 micron. If, as suggested, K-complex asteroids (including K, Xk, and Sk) are the parent bodies Asteroids of carbonaceous meteorites, knowledge of K-asteroid properties and distribution is essential to our Asteroids, composition understanding of the cosmochemical importance of some of the most primitive meteorite materials in our Asteroids, surfaces collection. This paper presents initial results of our analysis of telescopic data, with supporting analysis of laboratory measurements of meteorite analogs. Our results indicate that K-complex asteroids are distinct from other main belt asteroid types (S, B, C, F, and G). They do not appear to be a subset of these other types. K asteroids nearly span the range of band center positions and geometric albedos exhibited by the carbonaceouschondrites(CO,CM,CV,CH,CK,CR,andCI).WefindthatB-,C-,F-andG-typeasteroids tend to be darker than meteorites, and can have band centers longer than any of the chondrites measured here. This could indicate that K-complex asteroids are better spectral analogues for the majority of our carbonaceous meteorites than the traditional B-, C-, F- and G-matches suggested in the literature. This paper present first results of our ongoing survey to determine K-type mineralogy, meteorite linkages, and significance to the geology of the asteroid regions. © 2009 Elsevier Inc. All rights reserved. 1. Introduction be compositionally linked. Our results include (1) spectroscopic characterization from 0.4 to 2.5 μm; (2) comparison of our targets Our goal in asteroid spectroscopic studies is to determine spe- to the original K-type, 221 Eos, and its family; (3) comparison of K- cific links between classes of meteorites and their asteroid parent complex objects to S-, C-, B-, G- and F-type asteroids; (4) compari- bodies. Establishing these links is necessary in order to use mete- son of our targets to a library of carbonaceous chondrite meteorite orites to understand the chemical and physical conditions which spectra; and (5) a discussion of the implications of the findings of prevailed in the asteroid regions during the formation of the So- this study to the geology of the asteroid regions. This is a prelimi- lar System. Toward this end, we compare spectral properties of the nary report of an ongoing survey of the K-complex. asteroids to those of meteorites and mineral separates in order to determine the chemical and mineralogical structure of the asteroid 2. Background regions. In this paper, we assemble, coordinate, and analyze the avail- 2.1. Definition of K-complex main-belt asteroids able visible and near-infrared wavelength spectral data of K-com- plex asteroids. Sk- and Xk-class spectra strongly resemble K-class The most diagnostically useful wavelength region for asteroid- asteroid spectra, and are included in our study because they may meteorite studies has been from 0.3 to 3.5 μm, and a large body of work exists on the spectroscopic links between mete- orites and asteroids (e.g. Johnson and Fanale, 1973; Gaffey, 1976; * Corresponding author. Fax: +1 607 274 1773. E-mail address: [email protected] (B.E. Clark). Bell et al., 1989; Pieters and McFadden, 1994; Rivkin et al., 2000; 1 Guest observer at NASA Infrared Telescope Facility and currently visiting as- Gaffey et al., 2002; Burbine et al., 2002; Clark et al., 1995, 2004; tronomer at the Paris Observatory. Lazzaro et al., 2004). Tholen (1984) produced a widely used as- 0019-1035/$ – see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.icarus.2009.02.027 120 B.E. Clark et al. / Icarus 202 (2009) 119–133 information content of asteroid spectral studies. Bell found a new class of objects that have C-type spectra (flat continuum slopes) in the near-infrared (0.8–2.5 μm) and S-type spectra (strong sil- icate absorptions at 0.9–1.0 microns) in the visible wavelengths (0.3–0.9 μm). Asteroid 221 Eos and its family member objects were the archetypes, and the K-class was born. (The letter “K” was cho- sen because it lies midway between “C” and “S”.) The Eos fam- ily asteroids have similar orbital and spectral properties, and are probably the fragments of a catastrophic disruption event (e.g. see Vokrouhlicky et al., 2006). Bus and Binzel (2002a, 2002b) used visible wavelength observations of several Eos family members to define the boundary of the K-class in their spectral feature- based taxonomy. The Sk and Xk-classes were first added by Bus and Binzel in 2002—these asteroids tend to fill gaps in the visi- ble wavelength spectral continuum between S-types and C-types (Fig. 1). Most of the K-type studies performed previously have fo- cused on the Eos asteroid family (Gradie, 1978; Binzel, 1988; Bell, 1989; Granahan et al., 1993; Xu et al., 1995; Veeder et al., 1995; Doressoundiram et al., 1998; Mothé-Diniz and Carvano, 2005; Fig. 1. 26 Asteroid taxonomic classes from analysis of visible wavelength spectra. The average spectra are plotted with constant horizontal and vertical scaling and Vokrouhlicky et al., 2006; Mothé-Diniz et al., 2008). Since asteroid are arranged in a way that approximates the relative position of each class in the families are believed to be fragments of an original parent body, primary spectral component plane defined by principal component 2 (PC2’) and family objects must be considered when estimating the relative slope (reproduced with permission from Bus and Binzel, 2002b). abundance distributions of asteroids in the main belt. According to Nesvorny et al. (2005) there are more than 4000 main belt aster- teroid taxonomy system from cluster analysis of the Eight Color oids belonging to the Eos family, but very few have been observed Asteroid Survey data (589 objects in eight broad bands: 0.337, spectroscopically. There are at least 56 K-complex asteroids that 0.359, 0.437, 0.550, 0.701, 0.853, 0.948, and 1.041 μm). Bus and have been spectrally observed in the visible wavelengths and are Binzel (2002a; 2002b) extended taxonomic classification to 1447 not part of the Eos dynamical family. Those are our targets. small main belt asteroids observed with CCD spectrographs in 187 We have published (Clark et al., 1995)alowresolutionasteroid channels from 0.435 to 0.925 μm (Fig. 1). spectral survey conducted using the Seven Color Asteroid infrared While the Bus and Binzel taxonomy is consistent with Tholen’s filterSystem(SCAS).Forthissurvey126objectswereobserved, for most of the major classes, there are differences in the details concentrating on the smaller main belt asteroids of the S- and of minor asteroid classes between the two taxonomies. Specifically, M-classes. One of the unexpected results of the SCAS survey was for the Bus taxonomy: (1) K maps to a subset of the Tholen S class the discovery that, among the Tholen classified (1984) main-belt and includes a couple of Tholen T and I class objects; (2) Sk maps S-type asteroids of the 50-km size range, 10% of the population to a subset of the Tholen S class; and (3) Xk objects are a combi- looked like K-types in the IR. However, when Bus and Binzel re- nation of Tholen T, C, X, M, P, and E objects. We note that Tholen’s classified the Tholen S-types, and began observing Bus S-types in wavelength range was longer than Bus and Binzel’s, but the spec- the IR, the fraction appearing to be K-types dropped to much less tral resolution of Tholen’s survey was lower. In their taxonomy, Bus than 10%. and Binzel merged Tholen’s B, C, F, and G classes, and created new classes Ch, Cg, Cb, and Cgh, in order to account for the differences 2.2. K-type asteroid–meteorite linkages in spectral range and resolution between the two surveys. The 52-Color Survey (Bell et al., 1988) of 102 asteroids in the in- Bell (1988) compared the 52-color data of 221 Eos with car- frared wavelength range of 0.8 to 2.5 μm significantly extended the bonaceous chondrites and found a resemblance between Eos and Table 1 Standard stars used in K-complex asteroid spectral data reduction. UT date Standard star Asteroids observed 2003 Aug 16 L107-684 L112-1333 L115-271 1103 Sequoia, 2100 Ra Shalom 2003 Aug 18 L107-684 L112-1333 L115-271
Recommended publications
  • 174 Minor Planet Bulletin 47 (2020) DETERMINING the ROTATIONAL
    174 DETERMINING THE ROTATIONAL PERIODS AND LIGHTCURVES OF MAIN BELT ASTEROIDS Shandi Groezinger Kent Montgomery Texas A&M University-Commerce P.O. Box 3011 Commerce, TX 75429-3011 [email protected] (Received: 2020 Feb 21 Revised: 2020 March 20) Lightcurves and rotational periods are presented for six main-belt asteroids. The rotational periods determined are 970 Primula (2.777 ± 0.001 h), 1103 Sequoia (3.1125 ± 0.0004 h), 1160 Illyria (4.103 ± 0.002 h), 1188 Gothlandia (3.52 ± 0.05 h), 1831 Nicholson (3.215 ± 0.004 h) and (11230) 1999 JV57 (7.090 ± 0.003 h). The purpose of this research was to create lightcurves and determine the rotational periods of six asteroids: 970 Primula, 1103 Sequoia, 1160 Illyria, 1188 Gothlandia, 1831 Nicholson and (11230) 1999 JV57. Asteroids were selected for this study from a website that catalogues all known asteroids (CALL). For an asteroid to be chosen in this study, it has to meet the requirements of brightness, declination, and opposition date. For optimum signal to noise ratio (SNR), asteroids of apparent magnitude of 16 or lower were chosen. Asteroids with positive declinations were chosen due to using telescopes located in the northern hemisphere. The data for all the asteroids was typically taken within two weeks from their opposition dates. This would ensure a maximum number of images each night. Asteroid 970 Primula was discovered by Reinmuth, K. at Heidelberg in 1921. This asteroid has an orbital eccentricity of 0.2715 and a semi-major axis of 2.5599 AU (JPL). Asteroid 1103 Sequoia was discovered in 1928 by Baade, W.
    [Show full text]
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • ESO's VLT Sphere and DAMIT
    ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away.
    [Show full text]
  • The Impact Crater at the Origin of the Julia Family Detected with VLT/SPHERE??,?? P
    A&A 618, A154 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833477 & © ESO 2018 Astrophysics The impact crater at the origin of the Julia family detected with VLT/SPHERE??,?? P. Vernazza1, M. Brož2, A. Drouard1, J. Hanuš2, M. Viikinkoski3, M. Marsset4, L. Jorda1, R. Fetick1, B. Carry5, F. Marchis6, M. Birlan7, T. Fusco1, T. Santana-Ros8, E. Podlewska-Gaca8,9, E. Jehin10, M. Ferrais10, P. Bartczak8, G. Dudzinski´ 8, J. Berthier7, J. Castillo-Rogez11, F. Cipriani12, F. Colas7, C. Dumas13, J. Durechˇ 2, M. Kaasalainen3, A. Kryszczynska8, P. Lamy1, H. Le Coroller1, A. Marciniak8, T. Michalowski8, P. Michel5, M. Pajuelo7,14, P. Tanga5, F. Vachier7, A. Vigan1, B. Warner15, O. Witasse12, B. Yang16, E. Asphaug17, D. C. Richardson18, P. Ševecekˇ 2, M. Gillon10, and Z. Benkhaldoun19 1 Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France e-mail: [email protected] 2 Institute of Astronomy, Charles University, Prague, V Holešovickᡠch 2, 18000, Prague 8, Czech Republic 3 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland 4 Astrophysics Research Centre, Queen’s University Belfast, BT7 1NN, UK 5 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06304 Nice Cedex 4, France 6 SETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View CA 94043, USA 7 IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris Cedex, France 8 Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University,
    [Show full text]
  • PACS Sky Fields and Double Sources for Photometer Spatial Calibration
    Document: PACS-ME-TN-035 PACS Date: 27th July 2009 Herschel Version: 2.7 Fields and Double Sources for Spatial Calibration Page 1 PACS Sky Fields and Double Sources for Photometer Spatial Calibration M. Nielbock1, D. Lutz2, B. Ali3, T. M¨uller2, U. Klaas1 1Max{Planck{Institut f¨urAstronomie, K¨onigstuhl17, D-69117 Heidelberg, Germany 2Max{Planck{Institut f¨urExtraterrestrische Physik, Giessenbachstraße, D-85748 Garching, Germany 3NHSC, IPAC, California Institute of Technology, Pasadena, CA 91125, USA Document: PACS-ME-TN-035 PACS Date: 27th July 2009 Herschel Version: 2.7 Fields and Double Sources for Spatial Calibration Page 2 Contents 1 Scope and Assumptions 4 2 Applicable and Reference Documents 4 3 Stars 4 3.1 Optical Star Clusters . .4 3.2 Bright Binaries (V -band search) . .5 3.3 Bright Binaries (K-band search) . .5 3.4 Retrieval from PACS Pointing Calibration Target List . .5 3.5 Other stellar sources . 13 3.5.1 Herbig Ae/Be stars observed with ISOPHOT . 13 4 Galactic ISOCAM fields 13 5 Galaxies 13 5.1 Quasars and AGN from the Veron catalogue . 13 5.2 Galaxy pairs . 14 5.2.1 Galaxy pairs from the IRAS Bright Galaxy Sample with VLA radio observations 14 6 Solar system objects 18 6.1 Asteroid conjunctions . 18 6.2 Conjunctions of asteroids with pointing stars . 22 6.3 Planetary satellites . 24 Appendices 26 A 2MASS images of fields with suitable double stars from the K-band 26 B HIRES/2MASS overlays for double stars from the K-band search 32 C FIR/NIR overlays for double galaxies 38 C.1 HIRES/2MASS overlays for double galaxies .
    [Show full text]
  • Study of Photometric Phase Curve: Assuming a Cellinoid Ellipsoid Shape of Asteroid (106) Dione
    RAA 2017 Vol. X No. XX, 000–000 R c 2017 National Astronomical Observatories, CAS and IOP Publishing Ltd. esearch in Astronomy and http://www.raa-journal.org http://iopscience.iop.org/raa Astrophysics Study of photometric phase curve: assuming a Cellinoid ellipsoid shape of asteroid (106) Dione Yi-Bo Wang1,2,3, Xiao-Bin Wang1,3,4, Donald P. Pray5 and Ao Wang1,2,3 1 Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; [email protected], [email protected] 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China 4 Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China 5 Sugarloaf Mountain Observatory, South Deerfield, MA 01373, USA Received 2017 May 9; accepted 2017 May 31 Abstract We carried out the new photometric observations of asteroid (106) Dione at three apparitions (2004, 2012 and 2015) to understand its basic physical properties. Based on a new brightness model, the new photometric observational data and the published data of (106) Dione were analyzed to characterize the morphology of Dione’s photometric phase curve. In this brightness model, Cellinoid ellipsoid shape and three-parameter (H, G1, G2) magnitude phase function system were involved. Such a model can not only solve the phase function system parameters of (106) Dione by considering an asymmetric shape of asteroid, but also can be applied to more asteroids, especially for those asteroids without enough photometric data to solve the convex shape. Using a Markov Chain Monte Carlo (MCMC) method, +0.03 +0.077 Dione’s absolute magnitude H =7.66−0.03 mag, and phase function parameters G1 =0.682−0.077 and +0.042 G2 = 0.081−0.042 were obtained.
    [Show full text]
  • Observations from Orbiting Platforms 219
    Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey.
    [Show full text]
  • CURRICULUM VITAE, ALAN W. HARRIS Personal: Born
    CURRICULUM VITAE, ALAN W. HARRIS Personal: Born: August 3, 1944, Portland, OR Married: August 22, 1970, Rose Marie Children: W. Donald (b. 1974), David (b. 1976), Catherine (b 1981) Education: B.S. (1966) Caltech, Geophysics M.S. (1967) UCLA, Earth and Space Science PhD. (1975) UCLA, Earth and Space Science Dissertation: Dynamical Studies of Satellite Origin. Advisor: W.M. Kaula Employment: 1966-1967 Graduate Research Assistant, UCLA 1968-1970 Member of Tech. Staff, Space Division Rockwell International 1970-1971 Physics instructor, Santa Monica College 1970-1973 Physics Teacher, Immaculate Heart High School, Hollywood, CA 1973-1975 Graduate Research Assistant, UCLA 1974-1991 Member of Technical Staff, Jet Propulsion Laboratory 1991-1998 Senior Member of Technical Staff, Jet Propulsion Laboratory 1998-2002 Senior Research Scientist, Jet Propulsion Laboratory 2002-present Senior Research Scientist, Space Science Institute Appointments: 1976 Member of Faculty of NATO Advanced Study Institute on Origin of the Solar System, Newcastle upon Tyne 1977-1978 Guest Investigator, Hale Observatories 1978 Visiting Assoc. Prof. of Physics, University of Calif. at Santa Barbara 1978-1980 Executive Committee, Division on Dynamical Astronomy of AAS 1979 Visiting Assoc. Prof. of Earth and Space Science, UCLA 1980 Guest Investigator, Hale Observatories 1983-1984 Guest Investigator, Lowell Observatory 1983-1985 Lunar and Planetary Review Panel (NASA) 1983-1992 Supervisor, Earth and Planetary Physics Group, JPL 1984 Science W.G. for Voyager II Uranus/Neptune Encounters (JPL/NASA) 1984-present Advisor of students in Caltech Summer Undergraduate Research Fellowship Program 1984-1985 ESA/NASA Science Advisory Group for Primitive Bodies Missions 1985-1993 ESA/NASA Comet Nucleus Sample Return Science Definition Team (Deputy Chairman, U.S.
    [Show full text]
  • Accurate Positions of Asteroids Observed in Bucharest During the Year 1931
    ACCURATE POSITIONS OF ASTEROIDS OBSERVED IN BUCHAREST DURING THE YEAR 1931 GHEORGHE BOCŞA, MIHAELA LICULESCU, PETRE POPESCU Astronomical Institute of the Romanian Academy Str. Cuţitul de Argint 5, 040557 Bucharest, Romania E-mail: [email protected] Abstract. The paper contains the observations of minor planets performed in 1931 in Bucharest Astronomical Observatory with 380/6000 mm astrograph. Both Turner’s (constants) and Schlesinger’s (dependences) methods were used in the computation of the normal coordinates of the objects. Keywords: photographic astrometry – minor planets. 1. INTRODUCTION At Bucharest Observatory, within the framework of the Wide-Field Plate Archive Programme, part of the activities of the IAU Commission 9, 13 000 plates were catalogued. They were obtained through a systematic work beginning with the year 1930 until now, by means of the Prin-Merz refractor (f = 6 m, D = 38 cm). After a careful investigation of the whole plate archive, among other things, we discovered that a series of observations were not capitalized, such as a set of minor planets that were observed during 1930–1955. The lack of accurate star catalogues containing positions and proper motions, was one of the reasons for which the completion of the reductions has been neglected in that period. It is worth mentioning that the SAO Catalogue was issued starting from that period. Another thing worth mentioning is that the first Zeiss measuring machine was bought by the Observatory in 1957. However, systematic work on plate processing at Bucharest Observatory started beginning with 1956. The first paper on this subject was published by Cristescu et al.
    [Show full text]
  • Asteroid Cratering Families: Recognition and Collisional Interpretation
    Astronomy & Astrophysics manuscript no. cratering_paper_AA_rev2 c ESO 2018 December 19, 2018 Asteroid cratering families: recognition and collisional interpretation A. Milani1⋆, Z. Kneževic´2, F. Spoto3, and P. Paolicchi4 1 Dept.Mathematics, University of Pisa, Largo Pontecorvo 5, I-56127 Pisa, Italy e-mail: [email protected] 2 Serbian Academy Sci. Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia e-mail: [email protected] 3 IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille 77 av. Denfert-Rochereau, 75014, Paris, France e-mail: [email protected] 4 Dept.Physics, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy e-mail: [email protected] 19 November 2018 ABSTRACT Aims. We continue our investigation of the bulk properties of asteroid dynamical families iden- tified using only asteroid proper elements (Milani et al. 2014) to provide plausible collisional interpretations. We focus on cratering families consisting of a substantial parent body and many small fragments. Methods. We propose a quantitative definition of cratering families based on the fraction in vol- ume of the fragments with respect to the parent body; fragmentation families are above this empirical boundary. We assess the compositional homogeneity of the families and their shape in proper element space by computing the differences of the proper elements of the fragments with respect to the ones of the major body, looking for anomalous asymmetries produced either by post-formation dynamical evolution, or by multiple collisional/cratering events, or by a failure of arXiv:1812.07535v1 [astro-ph.EP] 18 Dec 2018 the Hierarchical Clustering Method (HCM) for family identification.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • Deliverable H2020 COMPET-05-2015 Project "Small
    Deliverable H2020 COMPET-05-2015 project "Small Bodies: Near And Far (SBNAF)" Topic: COMPET-05-2015 - Scientific exploitation of astrophysics, comets, and planetary data Project Title: Small Bodies Near and Far (SBNAF) Proposal No: 687378 - SBNAF - RIA Duration: Apr 1, 2016 - Mar 31, 2019 WP WP5 Del.No D5.3 Title Occultation candidates for 2018 Lead Beneficiary CSIC Nature Report Dissemination Level Public Est. Del. Date 20 Dec 2017 Version 1.0 Date 20 Dec 2017 Lead Author Pablo Santos-Sanz, Instituto de Astrofísica de Andalucía-CSIC, [email protected] WP5 Ground based observations Objectives: The main objective of WP5 is to execute observations from ground- based telescopes with the goal to acquire more data on the SBNAF targets. One of the scheduled observations is the occultation of a star by a Main Belt Asteroid (MBA), a Centaur or a Trans-Neptunian Object (TNO). For this particular stellar occultation technique the main tasks are: i) to predict the stellar occultation, ii) to coordinate the observations, and iii) to produce results on physical parameters of the MBAs, Centaurs and TNOs (i.e. sizes, shapes, albedos, densities, etc). Description of deliverable D5.3 The potential occultation candidates for 2018 are presented. This deliverable follows deliverables D5.1 and D5.2, and is related to milestones MS5 “Occultation predictions with 10 mas accuracy”, and MS12 “25 successful TNO occultation measurements”. In this document, we first give a short state of the art of the stellar occultation technique (Section 1), then we discuss about the expected goal to reach ~10 mas accuracy in the prediction of stellar occultations by TNOs (Section 2).
    [Show full text]