The Minor Planet Bulletin

Total Page:16

File Type:pdf, Size:1020Kb

The Minor Planet Bulletin THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 34, NUMBER 3, A.D. 2007 JULY-SEPTEMBER 53. CCD PHOTOMETRY OF ASTEROID 22 KALLIOPE Kwee, K.K. and von Woerden, H. (1956). Bull. Astron. Inst. Neth. 12, 327 Can Gungor Department of Astronomy, Ege University Trigo-Rodriguez, J.M. and Caso, A.S. (2003). “CCD Photometry 35100 Bornova Izmir TURKEY of asteroid 22 Kalliope and 125 Liberatrix” Minor Planet Bulletin [email protected] 30, 26-27. (Received: 13 March) CCD photometry of asteroid 22 Kalliope taken at Tubitak National Observatory during November 2006 is reported. A rotational period of 4.149 ± 0.0003 hours and amplitude of 0.386 mag at Johnson B filter, 0.342 mag at Johnson V are determined. The observation of 22 Kalliope was made at Tubitak National Observatory located at an elevation of 2500m. For this study, the 410mm f/10 Schmidt-Cassegrain telescope was used with a SBIG ST-8E CCD electronic imager. Data were collected on 2006 November 27. 305 images were obtained for each Johnson B and V filters. Exposure times were chosen as 30s for filter B and 15s for filter V. All images were calibrated using dark and bias frames Figure 1. Lightcurve of 22 Kalliope for Johnson B filter. X axis is and sky flats. JD-2454067.00. Ordinate is relative magnitude. During this observation, Kalliope was 99.26% illuminated and the phase angle was 9º.87 (Guide 8.0). Times of observation were light-time corrected. Reduction of frames was made with IRAF software. For differential photometry, GSC 1876 748 was used as a comparison star. The times of minima were computed by the Kwee-van Woerden method (Kwee & van Woerden, 1956). The rotational period for 22 Kalliope from the data presented is 4.149 ± 0.0003 hours. This is similar to the Trigo-Rodriguez (2003) value of 4.144 hours. The amplitude of lightcurve for filter B is 0.386 mag while the amplitude for filter V is 0.342 mag. Lightcurves are presented in Figure 1 for filter B and Figure 2 for filter V. Acknowledgments Figure 2. Lightcurve of 22 Kalliope for Johnson V filter. X axis is Many thanks to Tubitak National Observatory for use telescope JD-2454067.00. Ordinate is relative magnitude. time allocation and other facilities. References SUBSCRIPTION INCREASE NOTICE Guide 8.0 Software, http://www.planetpluto.com See page 55. Minor Planet Bulletin 34 (2007) Available on line http://www.minorplanetobserver.com/mpb/default.htm 54 PHOTOMETRY OF ATEN ASTEROID (66146) 1998 TU3 An eleven-point moving average was constructed for the phase plot, which gave an amplitude of 0.10 ± 0.01 mag, rather less than Tom Richards published figures, e.g. in Pravec et al (2005). The epoch used was Woodridge Observatory JD 2452919.2132 8 Diosma Rd Eltham, Vic 3095, Australia Fuller information may be found on the first author’s website, [email protected] http://www.woodridgeobsy.org. Greg Bolt References Craigie, WA, Australia Bembrick, C. (2005). “Asteroid Research and Amateur Input”. David Higgins Southern Stars, 44:3, 16-19. Hunters Hill Observatory Ngunnawal, Canberra ACT, Australia Binzel, R.P., Lupishko, D.F., Di Martino, M., Whiteley, R.J. and Hahn, G.J. (2002). “Physical Properties of Near Earth Objects” in Colin Bembrick Asteroids III (W. F. Bottke, A. Cellino, P. Paolicchi, R. P. Binzel, Mt Tarana Observatory eds.), pp. 255-271. Univ. Arizona Press, Tucson. Bathurst, NSW, Australia Harris, A.W., Warner, B.D. (2006). “Minor Planet Lightcurve (Received: 21 March ) Parameters”. http://cfa-www.harvard.edu/iau/lists/LightcurveDat.html Eleven sets of photometric data for (66146) 1998 TU3 were obtained over a 14 day period in 2003 October. A Hartley, M., Russell, K. S., Savage, A. Asher, D. J., Broughton, J., synodic rotation period of 2.3779 ± 0.0004 h with Hergenrother, C. W., Williams G. V., and Nakano, S. (1999). “1998 TU3” MPEC 1998 U03, available from amplitude 0.10 mag was derived, close to other http://adsabs.harvard.edu/abs/. published data. Higgins, D. (2007). “Minor Planet Lightcurves”. Minor planet (66146) 1988 TU3 was discovered by the LINEAR http://www.david-higgins.com/Astronomy/asteroid/lightcurves NEO survey on 1998 Oct 13. Orbital elements show it is an Aten .htm asteroid (Tesi et al 1998 and Hartley et al 1999). It has been assigned to the taxonomic class Q (Whiteley 2001) and based on its albedo its diameter is given at 3.6 km (Binzel et al 2002). Harris & Warner (2006) give a period of 2.375 h, referencing Világi (2002) and Pravec et al. (2005). Világi’s paper shows lightcurves from two nights in 2001 October, but provides no period. Pravec et al.’s table gives a period of 2.3767 ± 0.0009 h, listing Vilagi’s paper as the source. It also lists a period of 2.37741 ± 0.00004 h, from dates in Aug-Sep 2003 near those of the present study. For another discussion of some of the data in the present paper see (Bembrick, 2005). The present study was triggered by a request for observations of this earth-crossing asteroid at a close opposition. It consists of eleven observation sets, as follows, all obtained with unfiltered CCD cameras (except Higgins who used an R filter). Obs lists the observer’s initials (see author list above), and Data the number of data points in the observation set (with a total of 4689). Richards used an 18 cm refractor, Bolt a 25 cm SCT, Higgins a 25 cm SCT, Lightcurve for (66146) 1998 TU3, corrected for light-time and and Bembrick a 40 cm SCT. Higgins’s data and results are phased to 2.3779 h. available separately on his personal website (Higgins 2007) for which there is a quoted period of 2.37745 + 0.00005 h, as well as Date Obs Data Phase LPAB BPAB a phase plot. 1 2003.10.06 TR 638 29.8 7.4 -19.8 2 2003.10.06 GB 745 29.9 7.4 -19.8 All observations were corrected for light-time. Period analysis was 3 2003.10.07 GB 547 30.4 6.7 -19.7 carried out in Peranso 2.10 (Vanmunster, 2007). Numerous period 4 2003.10.08 GB 732 31.1 6.1 -19.7 analysis algorithms were applied, but ANOVA (Schwarzenberg- 5 2003.10.09 CB 162 31.8 5.5 -19.5 Czerny 1996) produced the minimum period error and visually the 6 2003.10.13 TR 115 35.8 2.9 -18.9 tightest phase plot, as shown in the Figure. The resulting period 7 2003.10.14 DH 267 37.0 2.3 -18.6 8 2003.10.15 GB 524 38.2 1.8 -18.4 was 2.3779 ± 0.0004 h, slightly higher than the published periods 9 2003.10.16 TR 506 39.4 1.4 -18.2 given above. A phase plot on the present data using the nearest 10 2003.10.17 TR 358 40.6 1.0 -18.0 published period figure of 2.37741 h, is noticeably less coherent. 11 2003.10.19 TR 95 43.1 0.2 -17.4 Minor Planet Bulletin 34 (2007) 55 Pravec, P., Wolf, M., and Sarounova, L. (2005). “Ondrejov Asteroid Photometry Project”, posted on http://www.asu.cas.cz/~ppravec/neo.htm. Schwarzenberg-Czerny, A. (1996). Ap J.460, L107-110. Tesi, L., Forti, G., Garradd, G. J., Broughton, J., Rogers, J. E. ,Blythe, M., Shelly, F., Bezpalko, M., Stuart, J., Viggh, H., Sayer, R., Griffin, I. P., Mendez, O., Scheck, J., Salvo, R., and Williams, G. V. (1998). “1998 TU3” MPEC 1999-C09, available from http://adsabs.harvard.edu/abs/ Vanmunster, T. (2007) “PERANSO Period Analysis and Light Curve Software”. http://users.skynet.be/fa079980/peranso/index.htm. Világi, J. (2002). “Asteroid photometry program at Modra Observatory” in Proceedings of Asteroids, Comets, Meteors – Figure 1. Dramatic upturn in number of asteroid rotations reliably ACM 200, pp. 907-910. known. (Figure credit: Alan W. Harris). Whiteley, R.J. (2001). A Compositional and Dynamical Survey of the Near-Earth Asteroids. PhD. Thesis, University of Hawaii. THE PRICE OF SUCCESS: SUBSCRIPTION RATE INCREASE FOR THE MINOR PLANET BULLETIN You hold in your hands the largest issue produced to date in the history of the Minor Planet Bulletin. It is a clear triumph for amateur and small college observatory astronomers who are enabled by the CCD revolution. Asteroid observations remain an open frontier where countless new scientific contributions remain to be made (Figures 1 and 2). These pages reflect only a snapshot of the most current contributions. Figure 2. Number of lightcurves published each year in the MPB, Success and growth do not come for free. The demand for page showing amateur contributions as the major contributor to the space in The Minor Planet Bulletin results in ever larger issues upturn in Figure 1. (Data compiled by Derald Nye.) (Figure 3), which are ever more costly to produce and mail. The huge increase in issue size, increases in printing costs, and 140 increases in postage all are factors that force an immediate Pages Published per Year in the Minor Planet Bulletin increase in print subscription rates. These new rates, effective 120 immediately, appear on page 94 If you have previously renewed under the prior rates, your current subscription will be honored in 100 full. Renewals and new subscriptions received now, must be at the new rate. 80 What is the future of printed journals? No one is sure. While Pages 60 electronic media are clearly the wave of the future, there currently still seems a human element, value, and demand for print 40 subscriptions to communicate and archive scientific results.
Recommended publications
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Observations from Orbiting Platforms 219
    Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • Downloaded Freely from the Google Play Portal (
    1 2 Spiral Galaxy M51. Herrero, E. Image from Montsec Astronomical Observatory (OAdM) 3 4 5 CONTENTS The Institute 6 Board of trustees 8 Scientific advisory board 9 Board of Directors 9 Staff 10 Scientific Research 16 Scientific results 25 Publications SCI 31 Papers in which only one institute is participating 31 Papers published by two institutes in collaboration 39 Papers published by three institutes in collaboration 40 Publications non SCI 40 Papers in which only one institute is participating 40 Papers published by two institutes in collaboration 46 Books edited 47 Courses 47 Contribution to conferences and seminars 48 Contribution to conferences 48 Seminars 59 Internal seminars 59 External seminars 59 Theses 61 Finished Theses 61 PhD Theses 61 Master theses 62 On going theses 62 PhD Theses 62 Master theses 62 Visiting scientists 64 Technological development activities 65 Technical reports and documents 65 Technical reports and documents developed by only one institute 65 Technical reports and documents developed by three institutes in collaboration 69 Technological development activities 69 Finished activities 69 Ongoing activities 69 Projects managed by the IEEC 69 Finished projects 69 Ongoing projects 70 Other scientific activities 72 Space missions 73 Mission proposals 82 Ground instrument projects 89 Montsec Astronomical Observatoyy (OAdM) 95 European Projects 99 Workshops organized by the IEEC 103 Outreach activities 107 Objectives, indicators and achievement 114 6 IEEC ▪ THE INSTITUTE The Institute of Space Studies of Catalonia (IEEC) was founded in February of 1996 as an initiative of the Fundació Catalana per a la Recerca (FCR), in collaboration with the University of Barcelona (UB), the Autonomous University of Barcelona (UAB), the Polytechnic University of Catalonia (UPC) and the Spanish Research Council (CSIC) with the objective of creating a multi-disciplinary and multi-institutional institute devoted to space research and their applications.
    [Show full text]
  • ~XECKDING PAGE BLANK WT FIL,,Q
    1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation.
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]
  • A Study of Asteroid Pole-Latitude Distribution Based on an Extended
    Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination.
    [Show full text]
  • The Handbook of the British Astronomical Association
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2012 Saturn’s great white spot of 2011 2011 October ISSN 0068-130-X CONTENTS CALENDAR 2012 . 2 PREFACE. 3 HIGHLIGHTS FOR 2012. 4 SKY DIARY . .. 5 VISIBILITY OF PLANETS. 6 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S. 7-8 ECLIPSES . 9-15 TIME. 16-17 EARTH AND SUN. 18-20 MOON . 21 SUN’S SELENOGRAPHIC COLONGITUDE. 22 MOONRISE AND MOONSET . 23-27 LUNAR OCCULTATIONS . 28-34 GRAZING LUNAR OCCULTATIONS. 35-36 PLANETS – EXPLANATION OF TABLES. 37 APPEARANCE OF PLANETS. 38 MERCURY. 39-40 VENUS. 41 MARS. 42-43 ASTEROIDS AND DWARF PLANETS. 44-60 JUPITER . 61-64 SATELLITES OF JUPITER . 65-79 SATURN. 80-83 SATELLITES OF SATURN . 84-87 URANUS. 88 NEPTUNE. 89 COMETS. 90-96 METEOR DIARY . 97-99 VARIABLE STARS . 100-105 Algol; λ Tauri; RZ Cassiopeiae; Mira Stars; eta Geminorum EPHEMERIDES OF DOUBLE STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 INTERNET RESOURCES. 110-111 GREEK ALPHABET. 111 ERRATA . 112 Front Cover: Saturn’s great white spot of 2011: Image taken on 2011 March 21 00:10 UT by Damian Peach using a 356mm reflector and PGR Flea3 camera from Selsey, UK. Processed with Registax and Photoshop. British Astronomical Association HANDBOOK FOR 2012 NINETY-FIRST YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 2 CALENDAR 2012 January February March April May June July August September October November December Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day of of of of of of of of of of of of of of of of of of of of of of of of of Month Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year Week Year 1 Sun.
    [Show full text]
  • The Ch-‐Class Asteroids
    The Ch-class asteroids: Connecting a visible taxonomic class to a 3-µm band shape Andrew S. Rivkin1*, Cristina A. Thomas2+, Ellen S. Howell3*^, Joshua P. Emery4* 1. The Johns Hopkins University Applied Physics Laboratory 2. NASA Goddard Space Flight Center, 3. Arecibo Observatory, USRA 4. University of Tennessee Accepted to The Astronomical Journal 3 November 2015 *Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. +Currently also at the Planetary Science Institute. Work done while supported by an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. ^Currently at Lunar and Planetary Laboratory, University of Arizona, Tucson AZ Abstract Asteroids belonging to the Ch spectral taxonomic class are defined by the presence of an absorption near 0.7 μm, which is interpreted as due to Fe-bearing phyllosilicates. Phyllosilicates also cause strong absorptions in the 3-μm region, as do other hydrated and hydroxylated minerals and H2O ice. Over the past decade, spectral observations have revealed different 3-µm band shapes the asteroid population. Although a formal taxonomy is yet to be fully established, the “Pallas-type” spectral group is most consistent with the presence of phyllosilicates. If Ch class and Pallas type are both indicative of phyllosilicates, then all Ch-class asteroids should also be Pallas-type. In order to test this hypothesis, we obtained 42 observations of 36 Ch-class asteroids in the 2- to 4-µm spectral region.
    [Show full text]
  • Spin States of Asteroids in the Eos Collisional Family
    Spin states of asteroids in the Eos collisional family J. Hanuša,∗, M. Delbo’b, V. Alí-Lagoac, B. Bolinb, R. Jedicked, J. Durechˇ a, H. Cibulkováa, P. Pravece, P. Kušniráke, R. Behrendf, F. Marchisg, P. Antoninih, L. Arnoldi, M. Audejeanj, M. Bachschmidti, L. Bernasconik, L. Brunettol, S. Casullim, R. Dymockn, N. Esseivao, M. Estebanp, O. Gerteisi, H. de Grootq, H. Gullyi, H. Hamanowar, H. Hamanowar, P. Kraffti, M. Lehkýa, F. Manzinis, J. Michelett, E. Morelleu, J. Oeyv, F. Pilcherw, F. Reignierx, R. Royy, P.A. Salomp, B.D. Warnerz aAstronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešoviˇckách 2, 18000 Prague, Czech Republic bUniversité Côte d’Azur, OCA, CNRS, Lagrange, France cMax-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, Postfach 1312, 85741 Garching, Germany dInstitute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA eAstronomical Institute, Academy of Sciences of the Czech Republic, Friˇcova 1, CZ-25165 Ondˇrejov, Czech Republic fGeneva Observatory, CH-1290 Sauverny, Switzerland gSETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View CA 94043, USA hObservatoire des Hauts Patys, F-84410 Bédoin, France iAix Marseille Université, CNRS, OHP (Observatoire de Haute Provence), Institut Pythéas (UMS 3470) 04870 Saint-Michel-l’Observatoire, France jObservatoire de Chinon, Mairie de Chinon, 37500 Chinon, France kObservatoire des Engarouines, 1606 chemin de Rigoy, F-84570 Malemort-du-Comtat, France lLe Florian, Villa 4, 880 chemin de Ribac-Estagnol,
    [Show full text]
  • CCD Photometry Using Filters John E. Hoot SSC Observatory IAU #676
    John Hoot Page 1 of 4 CCD Photometry Using Filters John E. Hoot SSC Observatory IAU #676 The adv ent of inexpensive CCD cameras has put quantitative photometry within reach of many amateur astronomers. While working without filters can be useful in determining light curve periods and timing events like minima and occultation, in this article I want to make a case for going to the extra care and expense to perform CCD photometry with filters. There are two broad reasons for perform you photometry with filters. The first, is that the introduction of filters allows you to gain astrophysical insight from your results. These insights allow you to infer stellar distances and provide with the ability to pick better reference stars when performing differential photometry. Secondly, using standard filter sets, you are able to link your efforts with the greater body of photometric science. This allows you to link and compare your work with archival data sets and literature references. It also opens the door to being able to do collaborative research. By collaborating, you are able to work on more complex programs and by pooling your efforts with others, overcome transient problems with weather and equipment. Black Body Spectra To demonstrate how using filters can provide astrophysical insights into your targets, you need to understand the mechanisms that give rise to stellar spectra. Stellar spectra are the result of several different phenomena. The most important characteristics of stellar spectra are determined by surface temperature. Any black body radiates electromagnetic energy across the entire spectra; however, there is a wavelength where its emission peaks.
    [Show full text]
  • The V-Band Photometry of Asteroids from ASAS-SN
    Astronomy & Astrophysics manuscript no. 40759˙ArXiV © ESO 2021 July 22, 2021 V-band photometry of asteroids from ASAS-SN Finding asteroids with slow spin ? J. Hanusˇ1, O. Pejcha2, B. J. Shappee3, C. S. Kochanek4;5, K. Z. Stanek4;5, and T. W.-S. Holoien6;?? 1 Institute of Astronomy, Faculty of Mathematics and Physics, Charles University, V Holesoviˇ ckˇ ach´ 2, 18000 Prague, Czech Republic 2 Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holesoviˇ ckˇ ach´ 2, 18000 Prague, Czech Republic 3 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 4 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 5 Center for Cosmology and Astroparticle Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, USA 6 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA Received x-x-2021 / Accepted x-x-2021 ABSTRACT We present V-band photometry of the 20,000 brightest asteroids using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) between 2012 and 2018. We were able to apply the convex inversion method to more than 5,000 asteroids with more than 60 good measurements in order to derive their sidereal rotation periods, spin axis orientations, and shape models. We derive unique spin state and shape solutions for 760 asteroids, including 163 new determinations. This corresponds to a success rate of about 15%, which is significantly higher than the success rate previously achieved using photometry from surveys.
    [Show full text]