A Radar Survey of Main-Belt Asteroids: Arecibo Observations of 55 Objects During 1999–2003
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ESO's VLT Sphere and DAMIT
ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away. -
19890009139.Pdf
FOREWORD This final report describes the design of the "Lunar Orbital Prospector" (LOP), a Lunar orbiting satellite designed by students at Utah State University. This design project has been completed under the sponsorship of NASA/OAST through the Universities Space Research Association (USRA). We at Utah State are very pleased with the results of this design effort. We are proud of the product, the LOP design, and we are excited about the achievement of all our learning objectives. The systems design process is one that cannot be taught, it must be experienced. The opportunity to use our maturing engineering and scientific skills in producing the LOP has been both challenging and rewarding. We are proud of the final design, but, equally important, we are grateful for the skills we have developed in identifying system requirements, spreading them into subsystems specifications, communicating with eachother in all sorts of technical environments, conducting parametric and trade-off studies, and learning to compromise for the good of the system. Elements of this design project have migrated into other forums. In late April, class members presented the final results to the monthly meeting of the Utah Section of the AIM. Also in April, Dr. Frank Redd and Mr. James Cantrell presented a paper on the LOP at the Lunar Bases and Space Activities in the 21st Century conference in Houston. A revised copy of that paper has been submitted for publication in a book to be published from the output of that conference. We wish to gratefully acknowledge the support of NASA/OAST and USRA, without which this experience could never happen. -
Photometry of Asteroids: Lightcurves of 24 Asteroids Obtained in 1993–2005
ARTICLE IN PRESS Planetary and Space Science 55 (2007) 986–997 www.elsevier.com/locate/pss Photometry of asteroids: Lightcurves of 24 asteroids obtained in 1993–2005 V.G. Chiornya,b,Ã, V.G. Shevchenkoa, Yu.N. Kruglya,b, F.P. Velichkoa, N.M. Gaftonyukc aInstitute of Astronomy of Kharkiv National University, Sumska str. 35, 61022 Kharkiv, Ukraine bMain Astronomical Observatory, NASU, Zabolotny str. 27, Kyiv 03680, Ukraine cCrimean Astrophysical Observatory, Crimea, 98680 Simeiz, Ukraine Received 19 May 2006; received in revised form 23 December 2006; accepted 10 January 2007 Available online 21 January 2007 Abstract The results of 1993–2005 photometric observations for 24 main-belt asteroids: 24 Themis, 51 Nemausa, 89 Julia, 205 Martha, 225 Henrietta, 387 Aquitania, 423 Diotima, 505 Cava, 522 Helga, 543 Charlotte, 663 Gerlinde, 670 Ottegebe, 693 Zerbinetta, 694 Ekard, 713 Luscinia, 800 Kressmania, 1251 Hedera, 1369 Ostanina, 1427 Ruvuma, 1796 Riga, 2771 Polzunov, 4908 Ward, 6587 Brassens and 16541 1991 PW18 are presented. The rotation periods of nine of these asteroids have been determined for the first time and others have been improved. r 2007 Elsevier Ltd. All rights reserved. Keywords: Asteroids; Photometry; Lightcurve; Rotational period; Amplitude 1. Introduction telescope of the Crimean Astrophysics Observatory in Simeiz. Ground-based observations are the main source of knowledge about the physical properties of the asteroid 2. Observations and their reduction population. The photometric lightcurves are used to determine rotation periods, pole coordinates, sizes and Photometric observations of the asteroids were carried shapes of asteroids, as well as to study the magnitude-phase out in 1993–1994 using one-channel photoelectric photo- relation of different type asteroids. -
Photometry and Models of Selected Main Belt Asteroids IX
A&A 545, A131 (2012) Astronomy DOI: 10.1051/0004-6361/201219542 & c ESO 2012 Astrophysics Photometry and models of selected main belt asteroids IX. Introducing interactive service for asteroid models (ISAM), A. Marciniak1, P. Bartczak1, T. Santana-Ros1, T. Michałowski1, P. Antonini2,R.Behrend3, C. Bembrick4, L. Bernasconi5, W. Borczyk1,F.Colas6, J. Coloma7, R. Crippa8, N. Esseiva9, M. Fagas1,M.Fauvaud10,S.Fauvaud10, D. D. M. Ferreira11,R.P.HeinBertelsen12, D. Higgins13,R.Hirsch1,J.J.E.Kajava14,K.Kaminski´ 1, A. Kryszczynska´ 1, T. Kwiatkowski1, F. Manzini8, J. Michałowski15,M.J.Michałowski16, A. Paschke17,M.Polinska´ 1, R. Poncy18,R.Roy19, G. Santacana9, K. Sobkowiak1, M. Stasik1, S. Starczewski20, F. Velichko21, H. Wucher9,andT.Zafar22 1 Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznan,´ Poland e-mail: [email protected] 2 Observatoire de Bédoin, 47 rue Guillaume Puy, 84000 Avignon, France 3 Geneva Observatory, 1290 Sauverny, Switzerland 4 Bathurst, NSW, Australia 5 Les Engarouines Observatory, 84570 Mallemort-du-Comtat, France 6 IMCCE, Paris Observatory, UMR 8028, CNRS, 77 av. Denfert-Rochereau, 75014 Paris, France 7 Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain 8 Stazione Astronomica di Sozzago, 28060 Sozzago, Italy 9 Association AstroQueyras, 05350 Saint-Véran, France 10 Observatoire du Bois de Bardon, 16110 Taponnat, France 11 DTU Space, Technical University of Denmark, Juliane Maries Vej 30, 2200 Copenhagen, Denmak 12 Kapteyn Astronomical Institute, University of Groningen, PO box 800, 9700 AV Groningen, The Netherlands 13 Canberra, ACT, Australia 14 Astronomy Division, Department of Physics, PO Box 3000, 90014 University of Oulu, Finland 15 Forte Software, Os. -
1922MNRAS..82..149G Jan. 1922. Long-Period Inequalities In
Jan. 1922. Long-Period Inequalities in Movements of Asteroids. 149 In the case = an integer ~ is a multiple of and the solutions X2 X2 a1 1922MNRAS..82..149G with period nearly equal to — may also be regarded as periodic solution» Ai with period nearly equal to —-. A . But we have not been able (in the case when ^ is an integer) to A2 prove the existence of periodic solutions with period ^ which are not A2 • • • 2 TT at the same time periodic with period nearly equal to — . Ax Note.—The above work was completed in 1920 November, before the appearance of Moulton’s Periodic Orbits. The details of the exist- ence proofs are different from those of Buck, and it is hoped that they may be of interest. In Buck’s paper, which apparently was completed in 1912 or earlier, the equations of motion are transformed and the jacobians take a relatively simple form. In this paper only two of the families of periodic orbits treated by Buck are discussed. A full account of the other families, and also of the actual development in series of the periodic solutions, is given in Back’s paper. On Long-Period Inequalities in the Movements of Asteroids ivhose Mean Motions are nearly half that of Mars. By Wt M. H. Greaves, B. A., Isaac Newton Student in the University of Cambridge. (Communicated by Professor H. F. Baker.) In the ordinary theory of the movements of the planets as developed by Laplace and Le Verrier, the equations of motion are integrated by a method of successive approximation with regard to the masses. -
Occultation Newsletter Volume 8, Number 4
Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date. -
Observations from Orbiting Platforms 219
Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey. -
Instrumental Methods for Professional and Amateur
Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A. -
Asteroid Family Identification 613
Bendjoya and Zappalà: Asteroid Family Identification 613 Asteroid Family Identification Ph. Bendjoya University of Nice V. Zappalà Astronomical Observatory of Torino Asteroid families have long been known to exist, although only recently has the availability of new reliable statistical techniques made it possible to identify a number of very “robust” groupings. These results have laid the foundation for modern physical studies of families, thought to be the direct result of energetic collisional events. A short summary of the current state of affairs in the field of family identification is given, including a list of the most reliable families currently known. Some likely future developments are also discussed. 1. INTRODUCTION calibrate new identification methods. According to the origi- nal papers published in the literature, Brouwer (1951) used The term “asteroid families” is historically linked to the a fairly subjective criterion to subdivide the Flora family name of the Japanese researcher Kiyotsugu Hirayama, who delineated by Hirayama. Arnold (1969) assumed that the was the first to use the concept of orbital proper elements to asteroids are dispersed in the proper-element space in a identify groupings of asteroids characterized by nearly iden- Poisson distribution. Lindblad and Southworth (1971) cali- tical orbits (Hirayama, 1918, 1928, 1933). In interpreting brated their method in such a way as to find good agree- these results, Hirayama made the hypothesis that such a ment with Brouwer’s results. Carusi and Massaro (1978) proximity could not be due to chance and proposed a com- adjusted their method in order to again find the classical mon origin for the members of these groupings. -
Deliverable H2020 COMPET-05-2015 Project "Small
Deliverable H2020 COMPET-05-2015 project "Small Bodies: Near And Far (SBNAF)" Topic: COMPET-05-2015 - Scientific exploitation of astrophysics, comets, and planetary data Project Title: Small Bodies Near and Far (SBNAF) Proposal No: 687378 - SBNAF - RIA Duration: Apr 1, 2016 - Mar 31, 2019 WP WP5 Del.No D5.3 Title Occultation candidates for 2018 Lead Beneficiary CSIC Nature Report Dissemination Level Public Est. Del. Date 20 Dec 2017 Version 1.0 Date 20 Dec 2017 Lead Author Pablo Santos-Sanz, Instituto de Astrofísica de Andalucía-CSIC, [email protected] WP5 Ground based observations Objectives: The main objective of WP5 is to execute observations from ground- based telescopes with the goal to acquire more data on the SBNAF targets. One of the scheduled observations is the occultation of a star by a Main Belt Asteroid (MBA), a Centaur or a Trans-Neptunian Object (TNO). For this particular stellar occultation technique the main tasks are: i) to predict the stellar occultation, ii) to coordinate the observations, and iii) to produce results on physical parameters of the MBAs, Centaurs and TNOs (i.e. sizes, shapes, albedos, densities, etc). Description of deliverable D5.3 The potential occultation candidates for 2018 are presented. This deliverable follows deliverables D5.1 and D5.2, and is related to milestones MS5 “Occultation predictions with 10 mas accuracy”, and MS12 “25 successful TNO occultation measurements”. In this document, we first give a short state of the art of the stellar occultation technique (Section 1), then we discuss about the expected goal to reach ~10 mas accuracy in the prediction of stellar occultations by TNOs (Section 2). -
Observing 27 Euterpe the Asteroid
Observing 27 Euterpe the Asteroid College Park Scholars Academic Showcase May 6, 2016 Shervin Razazi, [email protected], SDU Research Question How can we determine the rotation rate of an asteroid? Intro Why Research This? My Project group is called Explore the Universe Astronomers use the data in order to find out more and we are a group of mostly SDU scholars specific properties of asteroids. For example, an students who conduct research on various asteroid with a rotation period of under 2.2 hours is observable astronomical phenomena. My specific generally considered too small to be a self sustaining project was to observe an asteroid and then structure, which means that while in the asteroid belt determine the rotation rate of that asteroid. The they are too small to be held together by themselves asteroid I ended up observing is named 27 This suggests that these smaller bodies were once Euterpe. parts of larger asteroids. The data from all the thousands of asteroids being observe allow us to learn more and more about the solar system and its origins. Photo C.R. Shervin Razazi Limitations How This Affected Me Photometry • Weather Doing this project was not my first choice. As a Chemical • Analyze with Astro Image J • Clouds Engineer astronomy is not something I have ever studied or • Calibrate raw images • Humidity thought I would ever be doing. Even though it is not relevant • Align calibrated photos • Wind to my major it did teach me how hard it is to collect accurate • Generate light curve • Position of Asteroid scientific data. -
ARISTOTLE UNIVERSITY of THESSALONIKI (Auth) FACULTY
ARISTOTLE UNIVERSITY OF THESSALONIKI (AUTh) FACULTY OF SCIENCES SCHOOL OF PHYSICS SECTION OF ASTROPHYSICS, ASTRONOMY & MECHANICS DIPLOMA THESIS “ANALYSIS OF OCCULTATIONS AND PHOTOMETRY DATA FROM NEAR- EARTH ASTEROIDS” CHRYSOVALANTIS SARAKIS SUPERVISOR: KLEOMENIS TSIGANIS THESSALONIKI, GREECE OCTOBER 2017 2 3 Table of Contents TABLE OF CONTENTS ....................................................................................................................... 3 ABSTRACT ............................................................................................................................................ 7 ΠΕΡΙΛΗΨΗ ............................................................................................................................................ 7 ACKNOWLEDGEMENTS - INTRODUCTION ................................................................................ 9 CHAPTER 1 ......................................................................................................................................... 11 ASTEROIDS ......................................................................................................................................... 11 1.1 ORBITAL ELEMENTS ............................................................................................................ 11 1.1.1 Semi-major axis (a) .......................................................................................................... 11 1.1.2 Eccentricity (e) ................................................................................................................