Anniversari Asteroidali Di Michele T

Total Page:16

File Type:pdf, Size:1020Kb

Anniversari Asteroidali Di Michele T Anniversari asteroidali di Michele T. Mazzucato GENNAIO 1 gen – 1801 viene scoperto l’asteroide 1 Ceres (G. Piazzi, Palermo) 2 gen – 1916 viene scoperto l’asteroide 814 Tauris (G.N. Neujmin, Simeis) 3 gen – 1918 viene scoperto l’asteroide 887 Alinda (M.F. Wolf, Heidelberg) 4 gen – 1866 viene scoperto l’asteroide 86 Semele (F. Tietjen, Berlin) - 1876 viene scoperto l’asteroide 158 Koronis (V. Knorre, Berlin) 5 gen – 1924 viene scoperto l’asteroide 1011 Laodamia (K. Reinmauth, Heindelberg) 6 gen – 1914 viene scoperto l’asteroide 775 Lumiere (J. Lagrula, Nice) 7 gen – 1985 viene lanciata la sonda Sakigake (Giappone) [1P/ Halley] 8 gen – 1894 viene scoperto l’asteroide 379 Huenna (A. Charlois, Nice) 9 gen – 1901 viene scoperto l’asteroide 464 Megaira (M.F. Wolf, Heidelberg) 10 gen – 1877 viene scoperto l’asteroide 170 Maria (J. Perrotin, Toulouse) 11 gen – 1929 viene scoperto l’asteroide 1126 Otero (K. Reinmauth, Heindelberg) 12 gen – 2005 viene lanciata la sonda Deep Impact (USA) [9P/ Tempel 1] - 1856 viene scoperto l’asteroide 38 Leda (J. Chacornac, Paris) 13 gen – 1875 viene scoperto l’asteroide 141 Lumen (P.P. Henry, Paris) - 1877 viene scoperto l’asteroide 171 Ophelia (A. Borrelly, Marseilles) 14 gen – 1905 viene scoperto l’asteroide 555 Norma (M.F. Wolf, Heindelberg) 15 gen – 1906 viene scoperto l’asteroide 584 Semiramis (A. Kopff, Heindelberg) 16 gen – 1893 viene scoperto l’asteroide 353 Ruperto-Carola (M.F. Wolf, Heindelberg) 17 gen – 1893 viene scoperto l’asteroide 354 Eleonora (A. Charlois, Nice) 18 gen – 1882 viene scoperto l’asteroide 221 Eos (J. Palisa, Vienna) 19 gen – 1903 viene scoperto l’asteroide 502 Sigune (M.F. Wolf, Heindelberg) - 2006 viene lanciata la sonda New Horizons (USA) [Plutone, Caronte & Kuiper Belt] 20 gen – 1893 viene scoperto l’asteroide 355 Gabriella (A. Charlois, Nice) 21 gen – 1893 viene scoperto l’asteroide 356 Liguria (A. Charlois, Nice) 22 gen – 1858 viene scoperto l’asteroide 51 Nemausa (A. Laurent, Nimes) 23 gen – 1906 viene scoperto l’asteroide 582 Olympia (A. Kopff, Heindelberg) 24 gen – 1914 viene scoperto l’asteroide 776 Berbericia (A. Massinger, Heindelberg) 25 gen – 1914 viene scoperto l’asteroide 778 Theobalda (F. Kaiser, Heindelberg) 26 gen – 1876 viene scoperto l’asteroide 159 Aemilia (P.P. Henry, Paris) 27 gen – 1904 viene scoperto l’asteroide 523 Ada (R.S. Dugan, Heindelberg) 28 gen – 1875 viene scoperto l’asteroide 142 Polana (J. Palisa, Pola) 29 gen – 1877 viene scoperto l’asteroide 180 Garumna (J. Perrotin, Toulouse) 30 gen – 1966 viene scoperto l’asteroide 2162 Anhui (Purple Mountain Observatory, Nanking) 31 gen – 1883 viene scoperto l’asteroide 232 Russia (J. Palisa, Vienna) FEBBRAIO 1 feb – 1916 viene scoperto l’asteroide 1847 Stobbe (H. Thiele, Bergedorf) 2 feb – 1878 viene scoperto l’asteroide 181 Eucharis (P. Cottenot, Marseilles) 3 feb – 1911 viene scoperto l’asteroide 708 Raphaela (J. Helffrich, Heindelberg) 4 feb – 1858 viene scoperto l’asteroide 52 Europa (H. Goldschmidt, Paris) 5 feb – 1873 viene scoperto l’asteroide 129 Antigone (C.H.F. Peters, Clinton) - 1877 viene scoperto l’asteroide 172 Baucis (A. Borrelly, Marseilles) 6 feb – 1880 viene scoperto l’asteroide 212 Medea (J. Palisa, Pola) 7 feb – 1878 viene scoperto l’asteroide 182 Elsa (J. Palisa, Pola) - 1999 viene lanciata la sonda Stardust (USA) [81P/ Wild 2] 8 feb – 1856 viene scoperto l’asteroide 39 Laetitia (J. Chacornac, Paris) - 1878 viene scoperto l’asteroide 183 Istria (J. Palisa, Pola) 9 feb – 1882 viene scoperto l’asteroide 222 Lucia (J. Palisa, Vienna) 10 feb – 1861 viene scoperto l’asteroide 63 Ausonia (A. De Gasparis, Napoli) 11 feb – 1893 viene scoperto l’asteroide 357 Ninina (A. Charlois, Nice) 12 feb – 1891 viene scoperto l’asteroide 303 Josephina (E. Millosevich, Nice) 13 feb – 1901 viene scoperto l’asteroide 473 Nolli (M.F. Wolf, Heidelberg) 14 feb – 1891 viene scoperto l’asteroide 304 Olga (J. Palisa, Vienna) 15 feb – 1899 viene scoperto l’asteroide 442 Eichsfeldia (M.F. Wolf – A. Schwassmann, Heidelberg) 16 feb – 1880 viene scoperto l’asteroide 213 Lilaea (C.H.F. Peters, Clinton) 17 feb - 1868 viene scoperto l’asteroide 96 Aegle (R. Luther, Dusseldorf) - 1868 viene scoperto l’asteroide 97 Klotho (E.W. Tempel, Marseilles) - 1873 viene scoperto l’asteroide 130 Elektra (C.H.F. Peters, Clinton) - 1879 viene scoperto l’asteroide 192 Nausikaa (J. Palisa, Pola) – 1996 viene lanciata la sonda NEAR Shoemaker ( Near Earth Asteroid Rendezvous, USA) [253 Mathilde, 433 Eros & C/Hyakutake] 18 feb – 1874 viene scoperto l’asteroide 135 Hertha (C.H.F. Peters, Clinton) 19 feb – 1903 viene scoperto l’asteroide 507 Laodica (R.S. Dugan, Heindelberg) 20 feb – 1876 viene scoperto l’asteroide 160 Una (C.H.F. Peters, Clinton) 21 feb – 1906 viene scoperto l’asteroide 586 Thekla (M.F. Wolf, Heidelberg) 22 feb – 1900 viene scoperto l’asteroide 453 Tea (A. Charlois, Nice) 23 feb – 1875 viene scoperto l’asteroide 143 Adria (J. Palisa, Pola) 24 feb – 1938 viene scoperto l’asteroide 1483 Hakoila (Y. Väisälä, Turku) 25 feb – 1887 viene scoperto l’asteroide 265 Anna (J. Palisa, Vienna) 26 feb – 1913 viene scoperto l’asteroide 744 Aguntina (J. Rheden, Vienna) 27 feb – 1951 viene scoperto l’asteroide 1649 Fabre (L. Boyer, Algiers) 28 feb – 1878 viene scoperto l’asteroide 184 Dejopeja (J. Palisa, Pola) - 1879 viene scoperto l’asteroide 193 Ambrosia (J. Coggia, Marseilles) 29 feb – 1880 viene scoperto l’asteroide 214 Aschera (J. Palisa, Pola) MARZO 1 mar – 1854 viene scoperto l’asteroide 28 Bellona (R. Luther, Dusseldorf) - 1854 viene scoperto l’asteroide 29 Amphitrite (A. Marth, London) - 1878 viene scoperto l’asteroide 185 Eunike (C.H.F. Peters, Clinton) 2 mar – 2004 viene lanciata la sonda Rosetta (ESA) [21 Lutetia, 2867 Steins & 67P/ Churyumov-Gerasimenko] 3 mar – 1902 viene scoperto l’asteroide 482 Petrina (M.F. Wolf, Heidelberg) 4 mar – 1861 viene scoperto l’asteroide 64 Angelina (E.W. Tempel, Marseilles) 5 mar - 1891 viene scoperto l’asteroide 307 Nike (A. Charlois, Nice) 6 mar – 1885 viene scoperto l’asteroide 246 Asporina (A. Borrelly, Marseilles) 7 mar – 1894 viene scoperto l’asteroide 388 Charybdis (A. Charlois, Nice) 8 mar – 1861 viene scoperto l’asteroide 65 Cybele (E.W. Tempel, Marseilles) 9 mar – 1882 viene scoperto l’asteroide 223 Rosa (J. Palisa, Vienna) 10 mar – 1890 viene scoperto l’asteroide 289 Nenetta (A. Charlois, Nice) 11 mar – 1893 viene scoperto l’asteroide 360 Carlova (A. Charlois, Nice) 12 mar – 1871 viene scoperto l’asteroide 113 Amalthea (R. Luther, Dusseldorf) 13 mar – 1905 viene scoperto l’asteroide 560 Delila (M.F. Wolf, Heidelberg) 14 mar – 1885 viene scoperto l’asteroide 247 Eukrate (R. Luther, Dusseldorf) 15 mar – 1863 viene scoperto l’asteroide 78 Diana (R. Luther, Dusseldorf) - 1872 viene scoperto l’asteroide 118 Peitho (R. Luther, Dusseldorf) 16 mar – 1895 viene scoperto l’asteroide 401 Ottilia (M.F. Wolf, Heidelberg) 17 mar – 1852 viene scoperto l’asteroide 16 Psyche (A. De Gasparis, Napoli) 18 mar – 1874 viene scoperto l’asteroide 136 Austria (J. Palisa, Pola) 19 mar – 1892 viene scoperto l’asteroide 326 Tamara (J. Palisa, Vienna) 20 mar – 1890 viene scoperto l’asteroide 290 Bruna (J. Palisa, Vienna) 21 mar - 1879 viene scoperto l’asteroide 194 Prokne (C.H.F. Peters, Clinton) 22 mar – 1892 viene scoperto l’asteroide 327 Columbia (A. Charlois, Nice) 23 mar – 1908 viene scoperto l’asteroide 659 Nestor (M.F. Wolf, Heidelberg) 24 mar – 1860 viene scoperto l’asteroide 58 Concordia (R. Luther, Dusseldorf) 25 mar – 1916 viene scoperto l’asteroide 824 Anastasia (G. Neujmin, Simeis) 26 mar – 1905 viene scoperto l’asteroide 561 Ingwelde (M.F. Wolf, Heidelberg) 27 mar – 1906 viene scoperto l’asteroide 594 Mireille (M.F. Wolf, Heidelberg) 28 mar – 1802 viene scoperto l’asteroide 2 Pallas (H.W. Olbers, Bremen) 29 mar – 1807 viene scoperto l’asteroide 4 Vesta (H.W. Olbers, Bremen) 30 mar – 1882 viene scoperto l’asteroide 224 Oceana (J. Palisa, Vienna) 31 mar – 1856 viene scoperto l’asteroide 40 Harmonia (H. Goldschmidt, Paris) APRILE 1 apr – 1892 viene scoperto l’asteroide 331 Etheridgea (A. Charlois, Nice) 2 apr – 1869 viene scoperto l’asteroide 108 Hecuba (R. Luther, Dusseldorf) 3 apr – 1872 viene scoperto l’asteroide 119 Althaea (J.C. Watson, Ann Arbor) 4 apr – 1858 viene scoperto l’asteroide 53 Kalypso (R. Luther, Dusseldorf) 5 apr – 1853 viene scoperto l’asteroide 24 Themis (A. De Gasparis, Napoli) 6 apr – 1853 viene scoperto l’asteroide 25 Phocaea (J. Chacornac, Marseilles) - 1855 viene scoperto l’asteroide 34 Circe (J. Chacornac, Paris) - 1878 viene scoperto l’asteroide 186 Celuta (P.M. Henry, Paris) 7 apr – 1862 viene scoperto l’asteroide 73 Klytia (H.P. Tuttle, Cambridge) 8 apr – 1978 viene scoperto l’asteroide 2449 Kenos (W. Liller, Cerro Tololo) 9 apr – 1861 viene scoperto l’asteroide 66 Maja (H.P. Tuttle, Cambridge) 10 apr – 1872 viene scoperto l’asteroide 120 Lachesis (A. Borrelly, Marseilles) 11 apr – 1878 viene scoperto l’asteroide 187 Lamberta (J. Coggia, Marseilles) 12 apr – 1849 viene scoperto l’asteroide 10 Hygiea (A. De Gasparis, Napoli) 13 apr – 1906 viene scoperto l’asteroide 598 Octavia (M.F. Wolf, Heidelberg) 14 apr – 1926 viene scoperto l’asteroide 1095 Tulipa (K. Reinmuth, Heidelberg) 15 apr – 1857 viene scoperto l’asteroide 43 Ariadne (N.R. Pogson, Oxford) 16 apr – 1906 viene scoperto l’asteroide 597 Bandusia (M.F. Wolf, Heidelberg) 17 apr – 1852 viene scoperto l’asteroide 17 Thetis (R. Luther, Dusseldorf) - 1861 viene scoperto l’asteroide 67 Asia (N.R. Pogson, Madras) 18 apr – 1868 viene scoperto l’asteroide 98 Ianthe (C.H.F. Peters, Clinton) 19 apr – 1855 viene scoperto l’asteroide 35 Leukothea (R. Luther, Dusseldorf) - 1870 viene scoperto l’asteroide 110 Lydia (A. Borrelly, Marseilles) - 1876 viene scoperto l’asteroide 161 Athor (J.C.
Recommended publications
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • PACS Sky Fields and Double Sources for Photometer Spatial Calibration
    Document: PACS-ME-TN-035 PACS Date: 27th July 2009 Herschel Version: 2.7 Fields and Double Sources for Spatial Calibration Page 1 PACS Sky Fields and Double Sources for Photometer Spatial Calibration M. Nielbock1, D. Lutz2, B. Ali3, T. M¨uller2, U. Klaas1 1Max{Planck{Institut f¨urAstronomie, K¨onigstuhl17, D-69117 Heidelberg, Germany 2Max{Planck{Institut f¨urExtraterrestrische Physik, Giessenbachstraße, D-85748 Garching, Germany 3NHSC, IPAC, California Institute of Technology, Pasadena, CA 91125, USA Document: PACS-ME-TN-035 PACS Date: 27th July 2009 Herschel Version: 2.7 Fields and Double Sources for Spatial Calibration Page 2 Contents 1 Scope and Assumptions 4 2 Applicable and Reference Documents 4 3 Stars 4 3.1 Optical Star Clusters . .4 3.2 Bright Binaries (V -band search) . .5 3.3 Bright Binaries (K-band search) . .5 3.4 Retrieval from PACS Pointing Calibration Target List . .5 3.5 Other stellar sources . 13 3.5.1 Herbig Ae/Be stars observed with ISOPHOT . 13 4 Galactic ISOCAM fields 13 5 Galaxies 13 5.1 Quasars and AGN from the Veron catalogue . 13 5.2 Galaxy pairs . 14 5.2.1 Galaxy pairs from the IRAS Bright Galaxy Sample with VLA radio observations 14 6 Solar system objects 18 6.1 Asteroid conjunctions . 18 6.2 Conjunctions of asteroids with pointing stars . 22 6.3 Planetary satellites . 24 Appendices 26 A 2MASS images of fields with suitable double stars from the K-band 26 B HIRES/2MASS overlays for double stars from the K-band search 32 C FIR/NIR overlays for double galaxies 38 C.1 HIRES/2MASS overlays for double galaxies .
    [Show full text]
  • The Minor Planet Bulletin and How the Situation Has Gone from One Mt Tarana Observatory of Trying to Fill Pages to One of Fitting Everything In
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 2, A.D. 2006 APRIL-JUNE 29. PHOTOMETRY OF ASTEROIDS 133 CYRENE, adjusted up or down to line up with the V-band data). The near- 454 MATHESIS, 477 ITALIA, AND 2264 SABRINA perfect overlay of V- and R-band data show no evidence of color change as the asteroid rotates. This result replicates the lightcurve Robert K. Buchheim period reported by Harris et al. (1984), and matches the period and Altimira Observatory lightcurve shape reported by Behrend (2005) at his website. 18 Altimira, Coto de Caza, CA 92679 USA [email protected] (Received: 4 November Revised: 21 November) Photometric studies of asteroids 133 Cyrene, 454 Mathesis, 477 Italia and 2264 Sabrina are reported. The lightcurve period for Cyrene of 12.707±0.015 h (with amplitude 0.22 mag) confirms prior studies. The lightcurve period of 8.37784±0.00003 h (amplitude 0.32 mag) for Mathesis differs from previous studies. For Italia, color indices (B-V)=0.87±0.07, (V-R)=0.48±0.05, and phase curve parameters H=10.4, G=0.15 have been determined. For Sabrina, this study provides the first reported lightcurve period 43.41±0.02 h, with 0.30 mag amplitude. Altimira Observatory, located in southern California, is equipped with a 0.28-m Schmidt-Cassegrain telescope (Celestron NexStar- 454 Mathesis. DiMartino et al. (1994) reported a rotation period of 11 operating at F/6.3), and CCD imager (ST-8XE NABG, with 7.075 h with amplitude 0.28 mag for this asteroid, based on two Johnson-Cousins filters).
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Measuring the Astronomical Unit from Your Backyard Two Astronomers, Using Amateur Equipment, Determined the Scale of the Solar System to Better Than 1%
    Measuring the Astronomical Unit from Your Backyard Two astronomers, using amateur equipment, determined the scale of the solar system to better than 1%. So can you. By Robert J. Vanderbei and Ruslan Belikov HERE ON EARTH we measure distances in millimeters and throughout the cosmos are based in some way on distances inches, kilometers and miles. In the wider solar system, to nearby stars. Determining the astronomical unit was as a more natural standard unit is the tUlronomical unit: the central an issue for astronomy in the 18th and 19th centu· mean distance from Earth to the Sun. The astronomical ries as determining the Hubble constant - a measure of unit (a.u.) equals 149,597,870.691 kilometers plus or minus the universe's expansion rate - was in the 20th. just 30 meters, or 92,955.807.267 international miles plus or Astronomers of a century and more ago devised various minus 100 feet, measuring from the Sun's center to Earth's ingenious methods for determining the a. u. In this article center. We have learned the a. u. so extraordinarily well by we'll describe a way to do it from your backyard - or more tracking spacecraft via radio as they traverse the solar sys­ precisely, from any place with a fairly unobstructed view tem, and by bouncing radar Signals off solar.system bodies toward the east and west horizons - using only amateur from Earth. But we used to know it much more poorly. equipment. The method repeats a historic experiment per­ This was a serious problem for many brancht:s of as­ formed by Scottish astronomer David Gill in the late 19th tronomy; the uncertain length of the astronomical unit led century.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight.
    [Show full text]
  • Modelling and Scaling Neglected Asteroids
    Asteroid studies via lightcurves Selection effects TPM Shape models vs. occultations Summary Modelling and scaling neglected asteroids A. Marciniak1 with V. Alí-Lagoa, T. Müller, P. Bartczak, R. Behrend, M. Butkiewicz-B ˛ak, G. Dudzinski,´ R. Duffard, K. Dziadura, S. Fauvaud, M. Ferrais, S. Geier, J. Grice, R. Hirsch, J. Horbowicz, K. Kaminski,´ P. Kankiewicz, D.-H. Kim, M.-J. Kim, I. Konstanciak, V. Kudak, L. Molnár, F. Monteiro, W. Ogłoza, D. Oszkiewicz, A. Pál, N. Parley, F. Pilcher, E. Podlewska - Gaca, T. Polakis, J. J. Sanabria, T. Santana-Ros, B. Skiff, K. Sobkowiak, R. Szakáts, S. Urakawa, M. Zejmo,˙ K. Zukowski˙ 1. Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Poznan,´ Poland ESOP XXXIX, 29 August 2020 Asteroid studies via lightcurves Selection effects TPM Shape models vs. occultations Summary Asteroid lightcurves (219) Thusnelda P = 59.74 h 487 Venetia P = 13.355h 2014 -2,1 Oct 11.1 Suhora 2012/2013 -2,2 Oct 12.1 Suhora Oct 29.0 Bor Oct 24.1 Bor. -2,05 Nov 10.2 Suh Oct 28.1 Bor. Nov 11.1 Suh CCCCCC Nov 4.0 Bor. CCCCCCCCC CC C C Nov 7.4 Organ M. Dec 28.8 Bor C Mar 2.8 Bor C Nov 8.4 Organ M. AAAA -2 Mar 3.8 Bor AAAAAA C Nov 13.4 Organ M. AAAA C CCC Nov 14.4 Organ M. A -2,1 AAA CCC A Nov 15.4 Organ M. A AA Nov 21.4 Winer -1,95 Dec 2.1 OAdM Dec 3.0 OAdM Dec 5.0 Bor.
    [Show full text]
  • The Minor Planet Bulletin 44 (2017) 142
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin.
    [Show full text]
  • Asteroid Family Identification 613
    Bendjoya and Zappalà: Asteroid Family Identification 613 Asteroid Family Identification Ph. Bendjoya University of Nice V. Zappalà Astronomical Observatory of Torino Asteroid families have long been known to exist, although only recently has the availability of new reliable statistical techniques made it possible to identify a number of very “robust” groupings. These results have laid the foundation for modern physical studies of families, thought to be the direct result of energetic collisional events. A short summary of the current state of affairs in the field of family identification is given, including a list of the most reliable families currently known. Some likely future developments are also discussed. 1. INTRODUCTION calibrate new identification methods. According to the origi- nal papers published in the literature, Brouwer (1951) used The term “asteroid families” is historically linked to the a fairly subjective criterion to subdivide the Flora family name of the Japanese researcher Kiyotsugu Hirayama, who delineated by Hirayama. Arnold (1969) assumed that the was the first to use the concept of orbital proper elements to asteroids are dispersed in the proper-element space in a identify groupings of asteroids characterized by nearly iden- Poisson distribution. Lindblad and Southworth (1971) cali- tical orbits (Hirayama, 1918, 1928, 1933). In interpreting brated their method in such a way as to find good agree- these results, Hirayama made the hypothesis that such a ment with Brouwer’s results. Carusi and Massaro (1978) proximity could not be due to chance and proposed a com- adjusted their method in order to again find the classical mon origin for the members of these groupings.
    [Show full text]
  • Asteroid Cratering Families: Recognition and Collisional Interpretation
    Astronomy & Astrophysics manuscript no. cratering_paper_AA_rev2 c ESO 2018 December 19, 2018 Asteroid cratering families: recognition and collisional interpretation A. Milani1⋆, Z. Kneževic´2, F. Spoto3, and P. Paolicchi4 1 Dept.Mathematics, University of Pisa, Largo Pontecorvo 5, I-56127 Pisa, Italy e-mail: [email protected] 2 Serbian Academy Sci. Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia e-mail: [email protected] 3 IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Lille 77 av. Denfert-Rochereau, 75014, Paris, France e-mail: [email protected] 4 Dept.Physics, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy e-mail: [email protected] 19 November 2018 ABSTRACT Aims. We continue our investigation of the bulk properties of asteroid dynamical families iden- tified using only asteroid proper elements (Milani et al. 2014) to provide plausible collisional interpretations. We focus on cratering families consisting of a substantial parent body and many small fragments. Methods. We propose a quantitative definition of cratering families based on the fraction in vol- ume of the fragments with respect to the parent body; fragmentation families are above this empirical boundary. We assess the compositional homogeneity of the families and their shape in proper element space by computing the differences of the proper elements of the fragments with respect to the ones of the major body, looking for anomalous asymmetries produced either by post-formation dynamical evolution, or by multiple collisional/cratering events, or by a failure of arXiv:1812.07535v1 [astro-ph.EP] 18 Dec 2018 the Hierarchical Clustering Method (HCM) for family identification.
    [Show full text]
  • Journal Für Astronomie ISSN 1615-0880
    Journal für Astronomie www.vds-astro.de ISSN 1615-0880 Nr. 75 4/2020 Zeitschrift der Vereinigung der Sternfreunde e.V. Infrarotastronomie ASTRONOMISCHE VEREINIGUNGEN Die Sternwarte St. Andreasberg KOMETEN Die Entwicklung von C/2020 F3 (NEOWISE) PLANETEN Die Sichtbarkeit von Venus im Frühjahr 2020 Canon EOS 250D & 2000D modifiziert für die Astrofotografie ! Ob mit Kameraobjektiv oder am Teleskop: Modizierte Canon EOS DSLR Kameras bieten Ihnen einen einfachen Einstieg in die Astrofotograe! Die Vorteile im Überblick: • etwa fünffach höhere Empfindlichkeit bei H-alpha und SII • Infrarot Blockung der Kamera bleibt vollständig erhalten • kein Einbau eines teuren Ersatzfilters • mit Astronomik OWB-Clip-Filter uneingeschränkt bei Tag nutzbar • auch ohne Computer am Teleskop einsatzfähig • 14 Bit Datentiefe im RAW-Format, 24 Megapixel • bei der 250Da: Erhalt des EOS Integrated Cleaning System • bei der 250Da: Dreh- und schwenkbarer Bildschirm • kompatibel mit vielen gängigen Astronomieprogrammen • voller Erhalt der Herstellergarantie Weitere Modelle auf Anfrage Wir bauen auch Ihre bereits vorhandene Kamera um! Canon EOS 250Da € 72037 * Canon EOS 2000Da € 54491 * * Tagespreis vom 07. August 2020 mit 200mm 1:4 Reflektor ©Bruno Mattern, Aufnahme Astronomik Deep-Sky RGB Farbfiltersatz Neuentwicklung! + optimierte Bildschärfe + höchster Kontrast + maximale Transmission = optimale Ergebnisse © Michael Sidonio Annals of the Deep Sky - A Survey of Galactic and Extragalactic Objects astro-shop Diese englischsprachige Buchreihe ist als mehrbändiges Werk angelegt, das Das seit zwei Jahrzehnten erfolgreiche Konzept die heutige Sicht auf alle Sternbilder des Himmels und die in Ihnen beobacht- hat inzwischen viele Nachahmer gefunden. baren Objekte darstellt. Deshalb achten Sie unbedingt darauf, dass Sie Die Gliederung erfolgt alphabetisch nach Sternbildern. Vergleichbar sind die auf der richtigen astro-shop Seite landen: Bücher mit "Burnham's Celestial Handbook" oder "Taschenatlas der Sternbilder“, eben aktualisiert auf den Wissens- und Technikstand von heute.
    [Show full text]