000001 – 004000

Total Page:16

File Type:pdf, Size:1020Kb

000001 – 004000 ELEMENTS AND OPPOSITION DATES IN 2019 ecliptic and equinox 2000.0, epoch 2019 nov. 13.0 tt Planet H G M ω Ω i e µ a TE Oppos. V m ◦ ◦ ◦ ◦ ◦ 1 Ceres 3.34 0.12 119.82381 73.83775 80.30381 10.59227 0.0766486 0.21382049 2.7697241 19 5 29.5 7.0 2 Pallas 4.13 0.11 102.34880 310.11514 173.06521 34.83144 0.2302254 0.21343666 2.7730436 19 4 19.7 8.0 3 Juno 5.33 0.32 80.16992 248.10327 169.85020 12.99008 0.2569240 0.22607900 2.6686763 19 — — 4 Vesta 3.20 0.32 150.08773 150.81931 103.80943 7.14181 0.0886118 0.27154209 2.3618081 19 11 14.4 6.5 5 Astraea 6.85 X 330.11215 358.66021 141.57172 5.36711 0.1910347 0.23861125 2.5743965 19 — — 6 Hebe 5.71 0.24 138.43724 239.76676 138.64111 14.73917 0.2031156 0.26103397 2.4247746 19 — — 7 Iris 5.51 X 193.93164 145.25948 259.56318 5.52359 0.2308299 0.26741555 2.3860431 19 4 2.7 9.5 8 Flora 6.49 0.28 255.13638 285.32867 110.87666 5.88846 0.1560358 0.30157711 2.2022695 19 5 13.8 9.8 9 Metis 6.28 0.17 330.40220 6.37267 68.90957 5.57674 0.1232185 0.26742705 2.3859747 19 10 27.6 8.6 10 Hygiea 5.43 X 187.50982 312.37901 283.19878 3.83172 0.1122683 0.17695679 3.1421330 19 11 25.9 10.3 11 Parthenope 6.55 X 330.37882 195.37875 125.52860 4.63112 0.1002229 0.25647388 2.4534316 19 5 16.0 9.7 12 Victoria 7.24 0.22 188.58207 69.66124 235.40635 8.37272 0.2202999 0.27638851 2.3341175 19 — — 13 Egeria 6.74 X 235.23502 80.49624 43.21994 16.53617 0.0852529 0.23841640 2.5757990 19 9 8.1 10.8 14 Irene 6.30 X 212.36883 97.83775 86.12300 9.12162 0.1663937 0.23700714 2.5859994 19 10 21.0 10.6 15 Eunomia 5.28 0.23 329.17049 98.58234 292.93556 11.75353 0.1860794 0.22932631 2.6434238 19 8 10.8 8.4 16 Psyche 5.90 0.20 327.62778 228.98651 150.04115 3.09657 0.1334819 0.19725398 2.9227087 19 8 6.8 9.4 17 Thetis 7.76 X 354.20270 136.13224 125.54496 5.59140 0.1332891 0.25370981 2.4712189 19 3 25.2 10.7 18 Melpomene 6.51 0.25 323.80650 228.05487 150.36610 10.13142 0.2174988 0.28334427 2.2957597 19 7 1.3 9.3 19 Fortuna 7.13 0.10 248.92151 182.07445 211.12005 1.57298 0.1573704 0.25799087 2.4438047 19 5 9.8 10.8 20 Massalia 6.50 0.25 170.05955 257.04951 206.08452 0.70857 0.1420276 0.26333949 2.4106013 19 5 20.7 9.8 21 Lutetia 7.35 0.11 36.14789 249.95365 80.86559 3.06404 0.1633262 0.25940444 2.4349186 19 9 30.2 9.5 22 Kalliope 6.45 0.21 235.47475 356.73163 66.03189 13.70554 0.0978641 0.19826144 2.9127992 19 6 14.8 11.0 23 Thalia 6.95 X 22.16365 60.62664 66.84503 10.11407 0.2348569 0.23171058 2.6252589 19 — — 24 Themis 7.08 0.19 30.71948 106.95301 35.91948 0.75162 0.1245433 0.17752149 3.1354659 19 1 14.2 10.9 25 Phocaea 7.83 X 225.86798 90.28658 214.12366 21.60540 0.2547789 0.26511770 2.3998102 19 — — 26 Proserpina 7.4 X 151.22475 193.52662 45.77996 3.56315 0.0899900 0.22785221 2.6548127 19 10 25.9 11.2 27 Euterpe 7.0 X 30.17469 356.41860 94.78762 1.58369 0.1732016 0.27418958 2.3465803 19 — — 28 Bellona 7.09 X 316.12588 344.04055 144.29024 9.42941 0.1518344 0.21307273 2.7762003 19 12 11.8 10.5 29 Amphitrite 5.85 0.20 332.58199 63.31198 356.34094 6.08215 0.0728248 0.24141030 2.5544585 19 10 12.2 8.9 30 Urania 7.57 X 83.31200 87.38457 307.46675 2.09593 0.1276401 0.27091564 2.3654476 19 — — 31 Euphrosyne 6.74 X 122.26774 61.55044 31.11496 26.29487 0.2205273 0.17574823 3.1565215 19 4 15.6 11.4 32 Pomona 7.56 X 79.35632 339.40226 220.41753 5.52171 0.0813272 0.23664448 2.5886408 19 5 27.6 10.5 33 Polyhymnia 8.55 0.33 22.47513 338.39125 8.46527 1.85283 0.3313640 0.20233889 2.8735349 19 10 14.4 10.2 34 Circe 8.51 X 171.59929 330.54579 184.34602 5.49695 0.1063043 0.22385869 2.6862932 19 7 31.5 12.6 35 Leukothea 8.5 X 253.27852 213.41044 353.72774 7.93216 0.2254250 0.19022260 2.9942954 19 12 15.2 13.2 36 Atalante 8.46 X 343.02612 47.81151 358.20873 18.36954 0.3049947 0.21649249 2.7468872 19 9 16.6 10.6 37 Fides 7.29 0.24 27.45714 62.81801 7.26277 3.07070 0.1756595 0.22945623 2.6424259 19 — — 38 Leda 8.32 X 48.45010 169.26853 295.72109 6.97129 0.1548501 0.21743810 2.7389175 19 — — 39 Laetitia 6.0 X 344.21735 209.26125 156.94966 10.37025 0.1113828 0.21394588 2.7686418 19 8 15.9 9.2 40 Harmonia 7.0 X 165.38822 269.61492 94.18865 4.25741 0.0471498 0.28877193 2.2669019 19 — — 41 Daphne 7.12 0.10 177.30145 45.91969 178.08130 15.78971 0.2752146 0.21484300 2.7609291 19 11 6.9 12.3 42 Isis 7.53 X 255.08950 237.30879 84.19671 8.51464 0.2229568 0.25835491 2.4415085 19 2 16.8 11.8 43 Ariadne 7.93 0.11 198.16653 16.30432 264.81068 3.47143 0.1683613 0.30133723 2.2034381 19 — — 44 Nysa 7.03 0.46 134.68804 343.58505 131.52172 3.70722 0.1478063 0.26103324 2.4247791 19 4 26.5 10.0 45 Eugenia 7.46 0.07 82.58737 87.89044 147.59998 6.60530 0.0842413 0.21976015 2.7195899 19 7 25.4 11.0 46 Hestia 8.36 0.06 119.02077 177.40130 181.08075 2.34976 0.1721230 0.24556066 2.5255939 19 — — 47 Aglaja 7.84 0.16 92.48813 314.77228 3.07575 4.97469 0.1298936 0.20144622 2.8820176 19 11 30.2 12.0 48 Doris 6.90 X 105.46856 252.91398 183.55293 6.54794 0.0723811 0.17974720 3.1095291 19 2 7.0 11.1 49 Pales 7.8 X 276.17661 112.71842 285.05449 3.20134 0.2216825 0.18049174 3.1009719 19 6 17.7 12.6 50 Virginia 9.24 X 204.22919 200.05579 173.52783 2.83820 0.2859789 0.22862578 2.6488208 19 3 16.6 14.0 51 Nemausa 7.35 0.08 150.48618 2.33829 175.96590 9.97875 0.0677445 0.27098459 2.3650463 19 7 28.0 10.6 52 Europa 6.31 0.18 273.54409 343.46258 128.60387 7.47850 0.1103869 0.18113502 3.0936257 19 10 1.8 10.8 53 Kalypso 8.81 X 110.86200 313.33276 143.54710 5.17102 0.2054059 0.23277593 2.6172427 19 3 15.3 11.7 54 Alexandra 7.66 X 62.51099 344.99527 313.25089 11.79813 0.1973150 0.22085888 2.7105628 19 9 30.7 11.1 55 Pandora 7.7 X 44.01656 5.38417 10.37739 7.17945 0.1431383 0.21490997 2.7603554 19 12 12.0 11.2 56 Melete 8.31 X 293.65546 105.04238 192.98421 8.08123 0.2381888 0.23567908 2.5957052 19 2 18.7 12.7 57 Mnemosyne 7.03 X 178.36189 210.74947 199.19619 15.21142 0.1130722 0.17610649 3.1522390 19 4 7.4 11.7 58 Concordia 8.86 X 342.73121 30.97228 161.10629 5.06586 0.0426406 0.22221161 2.6995511 19 — — 59 Elpis 7.93 X 203.37604 211.02029 170.02319 8.64107 0.1191591 0.22066205 2.7121744 19 3 19.2 11.9 60 Echo 8.21 0.27 261.66432 271.23580 191.54692 3.60060 0.1847704 0.26642772 2.3919372 19 8 17.9 11.7 61 Dana¨e 7.68 X 310.47138 12.39690 333.59056 18.20183 0.1655655 0.19102802 2.9858731 19 5 21.5 12.3 62 Erato 8.76 X 274.85689 276.91688 125.12038 2.23592 0.1677998 0.17788576 3.1311840 19 6 27.8 13.4 63 Ausonia 7.55 0.25 192.66042 296.00291 337.72472 5.77582 0.1269078 0.26583680 2.3954806 19 — — 64 Angelina 7.67 0.48 83.52445 178.89614 309.11246 1.30968 0.1254714 0.22445591 2.6815260 19 3 2.4 10.5 65 Cybele 6.62 0.01 291.98014 102.75340 155.61675 3.56389 0.1119919 0.15548397 3.4251451 19 2 4.4 11.9 66 Maja 9.36 X 64.90527 43.95012 7.49675 3.04570 0.1729641 0.22901045 2.6458538 19 — — 67 Asia 8.28 X 330.93801 106.91699 202.42983 6.02872 0.1854336 0.26145976 2.4221413 19 4 14.0 11.4 68 Leto 6.78 0.05 304.14189 304.37139 44.11097 7.96301 0.1857086 0.21218081 2.7839749 19 5 14.4 10.9 69 Hesperia 7.05 0.19 339.49587 289.14042 184.99124 8.59067 0.1703294 0.19187650 2.9770642 19 12 29.5 10.4 70 Panopaea 8.11 0.14 116.97166 255.44077 47.69526 11.59384 0.1804630 0.23290049 2.6163095 19 12 13.9 12.2 71 Niobe 7.30 0.40 307.07077 267.02913 316.00350 23.26468 0.1732599 0.21541571 2.7560333 19 — — 72 Feronia 8.94 X 64.60716 102.83323 207.96350 5.41589 0.1204710 0.28890828 2.2661886 19 10 12.1 11.3 73 Klytia 9.0 X 201.38243 53.00918 6.97120 2.36871 0.0422433 0.22635456 2.6665100 19 4 28.7 12.6 74 Galatea 8.66 X 317.22019 174.48290 197.15004 4.07034 0.2360140 0.21251099 2.7810905 19 6 23.2 12.4 75 Eurydike 8.96 0.23 6.93968 339.31523 359.34165 4.99174 0.3034690 0.22544488 2.6736781 19 7 31.9 10.6 76 Freia 7.90 X 315.46196 252.32039 204.30443 2.12155 0.1659080 0.15627347 3.4135993 19 10 27.7 12.1 77 Frigga 8.52 0.16 328.63258 61.80570 1.14924 2.42283 0.1324234 0.22610810 2.6684474 19 10 5.3 11.3 78 Diana 8.09 0.08 4.76331 152.75838 333.39632 8.70145 0.2072797 0.23250852 2.6192491 19 — — 79 Eurynome 7.96 0.25 280.01765 201.42075 206.54232 4.61214 0.1899834 0.25775457 2.4452980 19 6 26.5 11.5 80 Sappho 7.98 X 153.95783 139.63184 218.69102 8.67561 0.2001751 0.28338543 2.2955374 19 — — – 1086 – ELEMENTS AND OPPOSITION DATES IN 2019 ecliptic and equinox 2000.0, epoch 2019 nov.
Recommended publications
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • The Minor Planet Bulletin 44 (2017) 142
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin.
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]
  • The Asteroid Veritas: an Intruder in a Family Named After It? ⇑ Patrick Michel A, , Martin Jutzi B, Derek C
    Icarus 211 (2011) 535–545 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The Asteroid Veritas: An intruder in a family named after it? ⇑ Patrick Michel a, , Martin Jutzi b, Derek C. Richardson c, Willy Benz d a University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Cassiopée Laboratory, B.P. 4229, 06304 Nice Cedex 4, France b Earth and Planetary Sciences, University of California, 1156 High Street, Santa Cruz, CA 95064, USA c Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA d Physicalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland article info abstract Article history: The Veritas family is located in the outer main belt and is named after its apparent largest constituent, Received 19 June 2010 Asteroid (490) Veritas. The family age has been estimated by two independent studies to be quite young, Revised 19 October 2010 around 8 Myr. Therefore, current properties of the family may retain signatures of the catastrophic dis- Accepted 19 October 2010 ruption event that formed the family. In this paper, we report on our investigation of the formation of Available online 29 October 2010 the Veritas family via numerical simulations of catastrophic disruption of a 140-km-diameter parent body, which was considered to be made of either porous or non-porous material, and a projectile impact- Keywords: ing at 3 or 5 km/s with an impact angle of 0° or 45°. Not one of these simulations was able to produce Asteroids satisfactorily the estimated size distribution of real family members.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • Clasificación Taxonómica De Asteroides
    Clasificación Taxonómica de Asteroides Cercanos a la Tierra por Ana Victoria Ojeda Vera Tesis sometida como requisito parcial para obtener el grado de MAESTRO EN CIENCIAS EN CIENCIA Y TECNOLOGÍA DEL ESPACIO en el Instituto Nacional de Astrofísica, Óptica y Electrónica Agosto 2019 Tonantzintla, Puebla Bajo la supervisión de: Dr. José Ramón Valdés Parra Investigador Titular INAOE Dr. José Silviano Guichard Romero Investigador Titular INAOE c INAOE 2019 El autor otorga al INAOE el permiso de reproducir y distribuir copias parcial o totalmente de esta tesis. II Dedicatoria A mi familia, con gran cariño. A mis sobrinos Ian y Nahil, y a mi pequeña Lia. III Agradecimientos Gracias a mi familia por su apoyo incondicional. A mi mamá Tere, por enseñarme a ser perseverante y dedicada, y por sus miles de muestras de afecto. A mi hermana Fernanda, por darme el tiempo, consejos y cariño que necesitaba. A mi pareja Odi, por su amor y cariño estos tres años, por su apoyo, paciencia y muchas horas de ayuda en la maestría, pero sobre todo por darme el mejor regalo del mundo, nuestra pequeña Lia. Gracias a mis asesores Dr. José R. Valdés y Dr. José S. Guichard, promotores de esta tesis, por su paciencia, consejos y supervisión, y por enseñarme con sus clases divertidas y motivadoras todo lo que se refiere a este trabajo. A los miembros del comité, Dra. Raquel Díaz, Dr. Raúl Mújica y Dr. Sergio Camacho, por tomarse el tiempo de revisar y evaluar mi trabajo. Estoy muy agradecida con todos por sus críticas constructivas y sugerencias.
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]
  • The Minor Planet Bulletin 37 (2010) 45 Classification for 244 Sita
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 2, A.D. 2010 APRIL-JUNE 41. LIGHTCURVE AND PHASE CURVE OF 1130 SKULD Robinson (2009) from his data taken in 2002. There is no evidence of any change of (V-R) color with asteroid rotation. Robert K. Buchheim Altimira Observatory As a result of the relatively short period of this lightcurve, every 18 Altimira, Coto de Caza, CA 92679 (USA) night provided at least one minimum and maximum of the [email protected] lightcurve. The phase curve was determined by polling both the maximum and minimum points of each night’s lightcurve. Since (Received: 29 December) The lightcurve period of asteroid 1130 Skuld is confirmed to be P = 4.807 ± 0.002 h. Its phase curve is well-matched by a slope parameter G = 0.25 ±0.01 The 2009 October-November apparition of asteroid 1130 Skuld presented an excellent opportunity to measure its phase curve to very small solar phase angles. I devoted 13 nights over a two- month period to gathering photometric data on the object, over which time the solar phase angle ranged from α = 0.3 deg to α = 17.6 deg. All observations used Altimira Observatory’s 0.28-m Schmidt-Cassegrain telescope (SCT) working at f/6.3, SBIG ST- 8XE NABG CCD camera, and photometric V- and R-band filters. Exposure durations were 3 or 4 minutes with the SNR > 100 in all images, which were reduced with flat and dark frames.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • A Study of Asteroid Pole-Latitude Distribution Based on an Extended
    Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination.
    [Show full text]
  • Spin States of Asteroids in the Eos Collisional Family
    Spin states of asteroids in the Eos collisional family J. Hanuša,∗, M. Delbo’b, V. Alí-Lagoac, B. Bolinb, R. Jedicked, J. Durechˇ a, H. Cibulkováa, P. Pravece, P. Kušniráke, R. Behrendf, F. Marchisg, P. Antoninih, L. Arnoldi, M. Audejeanj, M. Bachschmidti, L. Bernasconik, L. Brunettol, S. Casullim, R. Dymockn, N. Esseivao, M. Estebanp, O. Gerteisi, H. de Grootq, H. Gullyi, H. Hamanowar, H. Hamanowar, P. Kraffti, M. Lehkýa, F. Manzinis, J. Michelett, E. Morelleu, J. Oeyv, F. Pilcherw, F. Reignierx, R. Royy, P.A. Salomp, B.D. Warnerz aAstronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešoviˇckách 2, 18000 Prague, Czech Republic bUniversité Côte d’Azur, OCA, CNRS, Lagrange, France cMax-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, Postfach 1312, 85741 Garching, Germany dInstitute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA eAstronomical Institute, Academy of Sciences of the Czech Republic, Friˇcova 1, CZ-25165 Ondˇrejov, Czech Republic fGeneva Observatory, CH-1290 Sauverny, Switzerland gSETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View CA 94043, USA hObservatoire des Hauts Patys, F-84410 Bédoin, France iAix Marseille Université, CNRS, OHP (Observatoire de Haute Provence), Institut Pythéas (UMS 3470) 04870 Saint-Michel-l’Observatoire, France jObservatoire de Chinon, Mairie de Chinon, 37500 Chinon, France kObservatoire des Engarouines, 1606 chemin de Rigoy, F-84570 Malemort-du-Comtat, France lLe Florian, Villa 4, 880 chemin de Ribac-Estagnol,
    [Show full text]