Notes on the Genus Psathyrella- 11
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
An Annotated Check-List of Ascomycota Reported from Soil and Other Terricolous Substrates in Egypt A
Journal of Basic & Applied Mycology 2 (2011): 1-27 1 © 2010 by The Society of Basic & Applied Mycology (EGYPT) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt A. F. Moustafa* & A. M. Abdel – Azeem Department of Botany, Faculty of Science, University of Suez *Corresponding author: e-mail: Canal, Ismailia 41522, Egypt [email protected] Received 26/6/2010, Accepted 6/4 /2011 ____________________________________________________________________________________________________ Abstract: By screening of available sources of information, it was possible to figure out a range of 310 taxa that could be representing Egyptian Ascomycota up to the present time. In this treatment, concern was given to ascomycetous fungi of almost all terricolous substrates while phytopathogenic and aquatic forms are not included. According to the scheme proposed by Kirk et al. (2008), reported taxa in Egypt belonged to 88 genera in 31 families, and 11 orders. In view of this scheme, very few numbers of taxa remained without certain taxonomic position (incertae sedis). It is also worthy to be mentioned that among species included in the list, twenty-eight are introduced to the ascosporic mycobiota as novel taxa based on type materials collected from Egyptian habitats. The list includes also 19 species which are considered new records to the general mycobiota of Egypt. When species richness and substrate preference, as important ecological parameters, are considered, it has been noticed that Egyptian Ascomycota shows some interesting features noteworthy to be mentioned. At the substrate level, clay soils, came first by hosting a range of 108 taxa followed by desert soils (60 taxa). -
Complete Issue
J. Fernholz and Q.E. Phelps – Influence of PIT tags on growth and survival of banded sculpin (Cottus carolinae): implications for endangered grotto sculpin (Cottus specus). Journal of Cave and Karst Studies, v. 78, no. 3, p. 139–143. DOI: 10.4311/2015LSC0145 INFLUENCE OF PIT TAGS ON GROWTH AND SURVIVAL OF BANDED SCULPIN (COTTUS CAROLINAE): IMPLICATIONS FOR ENDANGERED GROTTO SCULPIN (COTTUS SPECUS) 1 2 JACOB FERNHOLZ * AND QUINTON E. PHELPS Abstract: To make appropriate restoration decisions, fisheries scientists must be knowledgeable about life history, population dynamics, and ecological role of a species of interest. However, acquisition of such information is considerably more challenging for species with low abundance and that occupy difficult to sample habitats. One such species that inhabits areas that are difficult to sample is the recently listed endangered, cave-dwelling grotto sculpin, Cottus specus. To understand more about the grotto sculpin’s ecological function and quantify its population demographics, a mark-recapture study is warranted. However, the effects of PIT tagging on grotto sculpin are unknown, so a passive integrated transponder (PIT) tagging study was performed. Banded sculpin, Cottus carolinae, were used as a surrogate for grotto sculpin due to genetic and morphological similarities. Banded sculpin were implanted with 8.3 3 1.4 mm and 12.0 3 2.15 mm PIT tags to determine tag retention rates, growth, and mortality. Our results suggest sculpin species of the genus Cottus implanted with 8.3 3 1.4 mm tags exhibited higher growth, survival, and tag retention rates than those implanted with 12.0 3 2.15 mm tags. -
Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
(topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota. -
AR TICLE a New Species of Gymnoascus with Verruculose
IMA FUNGUS · VOLUME 4 · no 2: 177–186 doi:10.5598/imafungus.2013.04.02.03 A new species of Gymnoascus with verruculose ascospores ARTICLE Rahul Sharma, and Sanjay Kumar Singh National Facility for Culture Collection of Fungi, MACS’ Agharkar Research Institute, G. G. Agarkar Road, Pune - 411 004, India; corresponding author e-mail: [email protected] Abstract: A new species, Gymnoascus verrucosus sp. nov., isolated from soil from Kalyan railway station, Key words: Maharashtra, India, is described and illustrated. The distinctive morphological features of this taxon are its 28S verruculose ascospores (ornamentation visible only under SEM) and its deer antler-shaped short peridial 18S appendages. The small peridial appendages originate from open mesh-like gymnothecial ascomata made up echinulate ascospores of thick-walled, smooth peridial hyphae. The characteristic morphology of the fungus is not formed in culture Gymnoascaceae where it has very restricted growth and forms arthroconidia. Phylogenetic analysis of different rDNA gene ITS sequences (ITS, LSU, and SSU) demonstrates its placement in Gymnoascaceae and reveal its phylogenetic Onygenales relatedness to other species of Gymnoascus, especially G. petalosporus and G. boliviensis. The generic concept phylogeny of Gymnoascus is consequently now broadened to include species with verruculose ascospores. A key to the accepted 19 species is also provided. Article info: Submitted: 22 August 2012; Accepted: 15 October 2013; Published: 25 October 2013. INTRODUCTION when collected and was stored at room temperature until processed. Hair baiting (Vanbreuseghem 1952) was The genus Gymnoascus (Gymnoascaceae, Onygenales) was performed using defatted horse and human hairs as baits; established by Baranetzky 1872 with G. reessii as the type after 1–2 month incubation in the dark at room temperature species. -
Notes on Pseudogymnoascus, Gymnoascus and Related Genera 519
Need. October 517-527 Acta Bot. 21(5), 1972, p. Notes on Pseudogymnoascus, Gymnoascus and related genera R.A. Samson Centraalbureau voor Schimmelcultures, Baam SUMMARY The genera Pseudogymnoascus and Gymnoascus are revised. Pseudogymnoascus is considered from the fusiform to be distinct Gymnoascus by ellipsoidal to ascospores and by the morpho- logy of the ascomatal initials. Three species of Pseudogymnoascus, including a new species, P. bhattii, are described. In the genus Gynmoascus 4 species are recognized. The relationship of Gymnoascus to Myxotrichum, Pectinotrichum, and Neogymnomyces and the systematic position of Auxarthron are discussed. Although the Gymnoascaceae have been studied by many mycologists, much confusion still exists about the delimitationof some genera and species. In the past much attention has been paid to the taxonomic value of the peridial hyphae and their appendages. A recent comparison of a large numberof strains revealed that these characters vary in the different states of development and on different nutrient media. A generic delimitation on differences of peridial therefore char- hyphae and appendages seems unsatisfactory. More reliable acters proved to be the shape of the ascospores, the structure of the asci, and the morphology of the ascomatal initials (von Arx 1971). In this the results of of the cultures of and paper a study Pseudogymnoascus Gymnoascus present in the CBS-collection are given. Furthermore the rela- tionship of these two genera to other Gymnoascaceae is discussed. PSEUDOGYMNOASCUS Pseudogymnoascus -
The Gymnoascaceae Are by Dorsiventrally Flat- Tened, Bivalvate
PERSOONIA Published by the Rijksherbarium, Leiden Volume 13, Part 2, pp. 173-183 (1986) The ascomycete genus Gymnoascus J.A. von Arx Centraalbureau voor Schimmelcultures, Baarn The ascomycete genus Gymnoascus is expanded, comprising all Gymnoascaceae with lenticular discoid and with or (not bivalvate), pigmented ascospores asco- mata without long, circinate, arcuate, or comb-like appendages. Several species hitherto classified in transferred separate genera are to Gymnoascus. Gymnoas- cus udagawae spec. nov. is described. A key to the 14 accepted species is given. Gymnoascus durus Zukal is transferred to Ascocalvatia. A checklist of all fungi described in Gymnoascus is given. classified Within the fungi in the Gymnoascaceae, von Arx (1971, 1974, 1977) distin- guished three phylogenetic entities, which can be recognized easily by the shape and symmetry of the ascospores. The genera Myxotrichum Kunze,.Pseudogymnoascus Raillo, fusiform and Byssoascus v. Arx are characterized by ellipsoidal or ascospores having longitudinal furrows in Byssoascus striatisporus (Barron & Booth) v. Arx and being the of other smooth or striate by crests in species the genera (Miiller & von Arx, 1982; with Currah Currah, 1985). The asci are usually spherical, a distinct cylindrical stalk. classified the three included genera in a new family Myxotrichaceae, von Arx (1986) them in the Onygenaceae, which were emended comprising all Eurotiales with ellipsoi- fusiform dal or ascospores. The of species Amauroascus J. Schrot., Arachnotheca v. Arx, and Auxarthron Orr & Kuehn are characterized by spherical ascospores with an ornamented, reticulate, pitted, or striate, often thick wall. They may be related to Emmonsiella Kwon-Chung, Ajello- myces McDonough & Levis, Xylogone v. Arx & Nilsson, and related genera, which have spherical, but apparently smooth and hyaline ascospores. -
University of Alberta Microfungus Collection and Herbarium (Uamh)
UNIVERSITY OF ALBERTA MICROFUNGUS COLLECTION AND HERBARIUM (UAMH) A Division of the Devonian Botanic Garden, Faculty of Agriculture, Forestry and Home Economics Telephone 780-987-4811; Fax 780-987-4141; e-mail: [email protected] http://www.devonian.ualberta.ca/uamh/ SUMMARY OF ACTIVITIES FOR 2003 Staff, Students Professor (Curator) - L. Sigler .66 FTE Devonian Botanic Garden/UAMH, Fac. Agriculture, Forestry & Home Economics .33 FTE Medical Microbiology & Immunology, Fac. of Medicine Consultant in Mycology, PLNA/UAH Microbiology & Public Health & Adj. Prof. Biol. Sci. Assistant Curator (.5 FTE Non-academic, .5 FTE trust, NSERC) – vacant (A. Flis on Long term disability) Technical or laboratory assistants (trust): -A. Hashimoto (full time), R. Gibas (part-time continuing), V. Jajczay (casual) Summer student (part-time) S, Cowley Ph.D. student- C. F. C. Gibas Volunteers - R. von Tigerstrom Affiliate R. Currah, Professor, Biological Sciences, Faculty of Science Academic Teaching & Graduate Supervision L. Sigler • MLSCI 240 Pathogenic Bacteriology (4 lectures) • BIOL 306 Biology of the Fungi (1 lecture) Graduate Supervision (Sigler) Connie Fe C. Gibas, Ph.D. candidate, Biological Sciences, Supervisors L. Sigler & R. Currah, Biol. Sci. • Teaching Assistant for BIOL 107 Graduate Supervisory Committee (Sigler) A. Rice, Biological Sciences, Supervisor, R. Currah Professional Training (Workshops) May Invited instructor, one day workshop on “Fungi Pathogenic For Humans and Animals” for US National Laboratory Training Network /Texas Dept. of Health, San Antonio, TX (with R.C. Summerbell) 2 University of Alberta Microfungus Collection and Herbarium Annual Report 2003 Cultures Received, Distributed and Accessioned Cultures received for identification, deposit or in exchange (Table 1) ................. 189 Cultures distributed on request or in exchange (Table 2)......................................... -
A Rock-Inhabiting Ancestor for Mutualistic and Pathogen-Rich Fungal Lineages
available online at www.studiesinmycology.org STUDIE S IN MYCOLOGY 61: 111–119. 2008. doi:10.3114/sim.2008.61.11 A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages C. Gueidan1,3*, C. Ruibal Villaseñor2,3, G. S. de Hoog3, A. A. Gorbushina4,5, W. A. Untereiner6 and F. Lutzoni1 1Department of Biology, Duke University, Box 90338, Durham NC, 27708 U.S.A.; 2Departamento de Ingeniería y Ciencia de los Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; 3CBS Fungal Biodiversity Centre, P.O. Box 85167, NL-3508 AD Utrecht, The Netherlands; 4Geomicrobiology, ICBM, Carl von Ossietzky Universität, P.O. Box 2503, 26111 Oldenburg, Germany; 5LBMPS, Department of Plant Biology, Université de Genève, 30 quai Ernest-Ansermet, 1211 Genève 4, Switzerland; 6Department of Biology, Brandon University, Brandon, MB Canada R7A 6A9 Correspondence: Cécile Gueidan, [email protected] Abstract: Rock surfaces are unique terrestrial habitats in which rapid changes in the intensity of radiation, temperature, water supply and nutrient availability challenge the survival of microbes. A specialised, but diverse group of free-living, melanised fungi are amongst the persistent settlers of bare rocks. Multigene phylogenetic analyses were used to study relationships of ascomycetes from a variety of substrates, with a dataset including a broad sampling of rock dwellers from different geographical locations. Rock- inhabiting fungi appear particularly diverse in the early diverging lineages of the orders Chaetothyriales and Verrucariales. Although these orders share a most recent common ancestor, their lifestyles are strikingly different. Verrucariales are mostly lichen-forming fungi, while Chaetothyriales, by contrast, are best known as opportunistic pathogens of vertebrates (e.g. -
What Is the Fungal Diversity of Marine Ecosystems in Europe?
mycologist 20 (2006) 15– 21 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycol What is the Fungal Diversity of Marine Ecosystems in Europe? Eleanor T. LANDY*, Gerwyn M. JONES School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK abstract Keywords: Diversity In 2001 the European Register of Marine Species 1.0 was published (Costello et al. 2001 and Europe http://erms.biol.soton.ac.uk/, and latterly: http://www.marbef.org/data/stats.php) [Costello Fungi MJ, Emblow C, White R, 2001. European register of marine species: a check list of the marine Marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels 50, 463p.]. The lists of species (from fungi to mammals) were published as part of a European Union Concerted action project (funded by the European Union Marine Science and Technology (MAST) research programme) and the updated version (ERMS 2) is EU- funded through the Marine Biodiversity and Ecosystem Functioning (MARBEF) Framework project 6 Network of Excellence. Among these lists, a list of the fungi isolated and identified from coastal and marine ecosystems in Europe was included (Clipson et al. 2001) [Clipson NJW, Landy ET, Otte ML, 2001. Fungi. In@ Costelloe MJ, Emblow C, White R (eds), European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels 50: 15–19.]. This article deals with the results of compiling a new taxonomically correct and complete list of all fungi that have been reported occurring in European marine waters. -
Endophytic and Endolichenic Fungal Diversity in Maritime Antarctica Based on Cultured Material and Their Evolutionary Position Amongdikarya
VOLUME 2 DECEMBER 2018 Fungal Systematics and Evolution PAGES 263–272 doi.org/10.3114/fuse.2018.02.07 Endophytic and endolichenic fungal diversity in maritime Antarctica based on cultured material and their evolutionary position amongDikarya N.H. Yu1,2#, S.-Y. Park3#, J.A. Kim4, C.-H. Park1, M.-H. Jeong1, S.-O. Oh5, S.G. Hong6, M. Talavera7, P.K. Divakar8*, J.-S. Hur1* 1Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea 2Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea 3Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University, Suncheon, Korea 4National Institute of Biological Resources, Incheon, South Korea 5Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Korea 6Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Korea 7Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain 8Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain *Corresponding authors: [email protected], [email protected] #These authors contributed equally to this work. Key words: Abstract: Fungal endophytes comprise one of the most ubiquitous groups of plant symbionts. They live bryophytes asymptomatically within vascular plants, bryophytes and also in close association with algal photobionts endophytes inside lichen thalli. While endophytic diversity in land plants has been well studied, their diversity in lichens lichens and bryophytes are poorly understood. Here, we compare the endolichenic and endophytic fungal multi-locus molecular phylogeny communities isolated from lichens and bryophytes in the Barton Peninsula, King George Island, Antarctica. -
A Rock-Inhabiting Ancestor for Mutualistic and Pathogen-Rich Fungal Lineages
available online at www.studiesinmycology.org STUDIE S IN MYCOLOGY 61: 111–119. 2008. doi:10.3114/sim.2008.61.11 A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages C. Gueidan1,3*, C. Ruibal Villaseñor2,3, G. S. de Hoog3, A. A. Gorbushina4,5, W. A. Untereiner6 and F. Lutzoni1 1Department of Biology, Duke University, Box 90338, Durham NC, 27708 U.S.A.; 2Departamento de Ingeniería y Ciencia de los Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; 3CBS Fungal Biodiversity Centre, P.O. Box 85167, NL-3508 AD Utrecht, The Netherlands; 4Geomicrobiology, ICBM, Carl von Ossietzky Universität, P.O. Box 2503, 26111 Oldenburg, Germany; 5LBMPS, Department of Plant Biology, Université de Genève, 30 quai Ernest-Ansermet, 1211 Genève 4, Switzerland; 6Department of Biology, Brandon University, Brandon, MB Canada R7A 6A9 Correspondence: Cécile Gueidan, [email protected] Abstract: Rock surfaces are unique terrestrial habitats in which rapid changes in the intensity of radiation, temperature, water supply and nutrient availability challenge the survival of microbes. A specialised, but diverse group of free-living, melanised fungi are amongst the persistent settlers of bare rocks. Multigene phylogenetic analyses were used to study relationships of ascomycetes from a variety of substrates, with a dataset including a broad sampling of rock dwellers from different geographical locations. Rock- inhabiting fungi appear particularly diverse in the early diverging lineages of the orders Chaetothyriales and Verrucariales. Although these orders share a most recent common ancestor, their lifestyles are strikingly different. Verrucariales are mostly lichen-forming fungi, while Chaetothyriales, by contrast, are best known as opportunistic pathogens of vertebrates (e.g.