Title of Manuscript

Total Page:16

File Type:pdf, Size:1020Kb

Title of Manuscript Fungal Diversity Classification of marine Ascomycota, anamorphic taxa and Basidiomycota Jones, E.B.G.1*, Sakayaroj, J.1, Suetrong, S.1, 3, Somrithipol, S.1 and Pang, K.L.2 ¹Bioresources Technology Unit, Phylogenetics Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani 12120, Thailand 2Institute of Marine Biology, National Taiwan Ocean University, No. 2 Pei-Ning Road, Keelung 20224, Taiwan 3Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. Jones, E.B.G., Sakayaroj, J., Suetrong, S., Somrithipol, S. and Pang, K.L. (2009). Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity 35: 1-187. A comprehensive classification of the filamentous marine fungi is outlined, with reference to recent molecular phylogenetic analyses. The classification includes 530 species (in 321 genera) to order level: Ascomycota 424 species (in 251 genera), anamorphic fungi 94 species (in 61 genera) and Basidiomycota 12 species (in 9 genera). The Halosphaeriales is the largest order of marine fungi with 126 species in 53 genera, of which 35 are monotypic. Several taxa are of uncertain position and cannot be assigned to any higher taxonomic ranks. The decadel index shows that most marine fungi were described in the period 1980-1989 (135) and 1990-1999 (156), with 43 new species and 25 new genera from the past eight years. Keys are provided to the major taxa, genera and species. One new species is described in this paper. Key words: fungal classification, marine fungi, molecular phylogeny, rDNA, new taxa Article Information Received 1 December 2008 Accepted 23 December 2008 Published online 24 March 2009 *Corresponding author: E.B.G. Jones; e-mail: [email protected] Introduction reliable recent figure is that of Hyde et al. (2000) who listed 444 “higher” obligate marine Although a few synoptic keys are fungi. However, a number of taxa were not available for the identification of obligate listed, while a further 43 new species in ten marine fungi (Kohlmeyer and Volkmann- new genera have been described over the past Kohlmeyer, 1991a; Hyde et al., 2000), there eight years. A further 15 new genera have been has been no attempt to present a classification introduced to accommodate species rejected for them since the book of Kohlmeyer and from existing genera. Other species not Kohlmeyer (1979). This monograph addresses previously regarded as marine are included in this issue. this monograph. The total now stands at 530 The number of marine fungi described and new taxa continue to be described from has increased dramatically since the pioneer this habitat. study of Barghoorn and Linder (1944) on ligni- Kohlmeyer and Kohlmeyer (1979) stated colous species. Currently some 1,500 names that: “the decrease of new descriptions of can be found in the literature, but many of marine fungi during the period 1970-1977 these are inadequately described, or may be indicates that the most common species have facultative terrestrial species or synonyms of been named and that considerable additions of existing taxa (Jones and Mitchell, 1996). new taxa in the future are unlikely.” However, However, Schaumann (pers. comm.) estimates as new substrata and geographical locations are there are some 6,000 marine species, but this being examined for fungi, the number of new figure is not supported by data. The most species continues to rise (Fig. 1): 135 in 1980- 1 Fig. 1. Decadel increase in the number of marine fungi. 1989; 156 in 1990-1999 and 43 already marine Ascomycota: Decorospora gaudefroyi recorded for the period 2000-2008. This is (as Pleospora gaudefroyi) (Yusoff et al., certainly noticeable for mangrove species (42 1994b), Julella avicenniae (Au et al., 1999a) species in Kohlmeyer and Kohlmeyer, 1979; and the genus Massarina (Au et al., 2001; over 170 in Hyde et al., 2000), and tropical Read et al., 1994, 1997a, b). Although locations continue to yield a wide range of ultrastructural characters helped in the new taxa (Jones et al., 2006; Koch et al., delineation of a number of genera (e.g. 2007). Kis-Papo (2005) has reviewed data on Corollospora) others were found to be more the number of marine fungi and settles on 467 difficult to resolve (e.g. Halosarpheia). species. Over the last decade, the use of Identification and classification of the molecular techniques to examine the phylo- marine higher fungi have followed traditional geny of organisms has advanced considerably avenues of the evaluation and significance of (Spatafora and Blackwell, 1994). Molecular morphological characters at the light micro- techniques have also been applied to examine scope level. For the Ascomycota, ultra- the relationships of a number of marine taxa at structural characters at the transmission and the ordinal level and at the genus/species level. scanning electron microscope levels have also The earliest study was on the phylogeny of been used (Jones, 1995). These were Halosphaeriopsis mediosetigera (as a repre- specifically applied to ascospore appendage sentative of the Halosphaeriales), and the ontogeny of the Halosphaeriales, where Microascales, with both orders sharing a delineation of genera was questioned, e.g. common ancestor (Spatafora and Blackwell, Corollospora (Kohlmeyer, 1972a; Jones et al., 1994). This relationship has also been 1983a), and Ceriosporopsis (Johnson et al., supported by other studies (Chen et al., 1999; 1987). Kong et al., 2000). Exploratory studies using TEM and Spatafora et al. (1998) showed that the SEM were also used for selected bitunicate genus Lulworthia did not group within the 2 Fungal Diversity Halosphaeriales clade, also noted by Campbell Origin of marine fungi (1999) and Chen et al. (1999). Subsequently, Kohlmeyer et al. (2000) erected the new order Many theories have been advanced to Lulworthiales to accommodate the genera account for the origin of marine fungi, and in Lindra and Lulworthia, while Inderbitzin et al. particular the ascomycetes, the Floridean (2004) showed that the genera Spathulospora hypothesis being the favoured one (Denison and Haloguignardia had affinities with the and Carroll, 1966; Kohlmeyer, 1975a; Lulworthiales. Campbell et al. (2005) erected Demoulin, 1985). Spathulospora was two monotypic genera within the order to considered to be closely related to the accommodate Lulworthia-like species that did Laboulbeniales, a group in turn thought to be not form a monophyletic group with related to the Rhodophyta (Kohlmeyer, 1973b). Lulworthia fucicola, the type species Furthermore, Kohlmeyer (1975a) suggested (neotypified by Campbell, 2005). Many taxa in that Spathulospora, with its marine occurrence the Halosphaeriales have also been sequenced and as a parasite of the red alga Ballia, “was to infer phylogenetic relationships between close to the hypothetical ancestor of morphologically similar taxa. Studies by Kong Ascomycetes”. However, in a little cited paper, et al. (2000) and Abdel-Wahab et al. (2001b) Walker et al. (1979) questioned the view that confirmed the polyphyly of the genus Halo- Spathulospora belonged to an ancestral group, sarpheia and this led to the erection of a or along with the Laboul-beniales and number of new genera (Campbell et al., 2003; Uredinales, could be considered “living Pang et al., 2003a, b). fossils”. Many genera in the Ascomycota have That marine fungi are an ecological group not been referred to a family or even an order has never been in dispute, but did they evolve (Hawksworth et al., 1995; Kirk et al., 2001). in the sea or were they secondly adapted to life However, the use of molecular techniques has in the marine milieu? While the latter view has enabled the resolution of a number of genera. gained in acceptance, there has been little Tam et al. (2003) have shown that the solely evidence to support it. Spatafora et al. (1998) known marine bitunicate genera, Aigialus, however have advanced the discussion by Helicascus, Julella and Paraliomyces, with demonstrating that the Halosphaeriales at least unknown ordinal affinity, can now be has made the transition from terrestrial to classified in the Pleosporales. Similar marine habitats with the consequent loss of resolution is possible for the basidiomycetes dehiscing asci. They also concluded that this Calathella, Digitatispora, Halocyphina, was not a solitary episode, as the Lulworthiales Mycaureola and Nia (Binder et al., 2001; was also a transitional group, arising indepen- Hibbett and Binder, 2001, 2002; Binder et al., dently of the Halosphaeriales (Kohlmeyer et al., 2006). However, many taxa remain to be 2000). examined before their assignment to an order Sakayaroj (2005) and Schoch et al. (2006) can be made. In this monograph we have indicated that within the unitunicate reviewed the published literature so as to ascomycetes seven and three lineages, propose the best taxonomic assignment for respectively, have migrated into the sea. “obligate” marine fungi. However, conflict Furthermore five lineages of marine bitunicate may arise between traditional classifications ascomycetes are also indicated from analyses of and the need to incorporate phylogenetic molecular data (Suetrong et al., unpublished analysis, as in the case of the marine data) and may be intermediate forms with many Basidiomycota. retaining active ascospore discharge. The latter We have supplied a key within each group is particularly prevalent in mangrove genus with more than one species, and added habitats where ascus discharge can take place notes on others that may be useful for further during the intertidal period. Likewise, other research and understanding of their ecology. groups can be shown to have evolved from 3 terrestrial to marine habitats: at least three There is no data to indicate when marine lineages of the Basidiomycota (Binder et al., fungi evolved from terrestrial species, 2006), as well as ascomycetes with although Vijaykrishna et al. (2006) predicted cleistothecial ascomata, but for which no that fungi became adapted to freshwater some phylogenetic data is available: e.g. Biflua and 390 million years ago. Many lineages of Marisolaris (Koch and Jones, 1989).
Recommended publications
  • Genomic Analysis of Ant Domatia-Associated Melanized Fungi (Chaetothyriales, Ascomycota) Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J
    Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J. Benjamin Stielow, Marcus Teixeira, Vania Vicente, Sybren de Hoog To cite this version: Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J. Benjamin Stielow, et al.. Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota). Mycolog- ical Progress, Springer Verlag, 2019, 18 (4), pp.541-552. 10.1007/s11557-018-01467-x. hal-02316769 HAL Id: hal-02316769 https://hal.archives-ouvertes.fr/hal-02316769 Submitted on 15 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mycological Progress (2019) 18:541–552 https://doi.org/10.1007/s11557-018-01467-x ORIGINAL ARTICLE Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) Leandro F. Moreno1,2,3 & Veronika Mayer4 & Hermann Voglmayr5 & Rumsaïs Blatrix6 & J. Benjamin Stielow3 & Marcus M. Teixeira7,8 & Vania A. Vicente3 & Sybren de Hoog1,2,3,9 Received: 20 August 2018 /Revised: 16 December 2018 /Accepted: 19 December 2018 # The Author(s) 2019 Abstract Several species of melanized (Bblack yeast-like^) fungi in the order Chaetothyriales live in symbiotic association with ants inhabiting plant cavities (domatia) or with ants that use carton-like material for the construction of nests and tunnels.
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Phylogeny and Morphology of Premilcurensis Gen
    Phytotaxa 236 (1): 040–052 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.1.3 Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy SAOWALUCK TIBPROMMA1,2,3,4,5, ITTHAYAKORN PROMPUTTHA6, RUNGTIWA PHOOKAMSAK1,2,3,4, SARANYAPHAT BOONMEE2, ERIO CAMPORESI7, JUN-BO YANG1,2, ALI H. BHAKALI8, ERIC H. C. MCKENZIE9 & KEVIN D. HYDE1,2,4,5,8 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 7A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand *Corresponding author: Dr. Itthayakorn Promputtha, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • A Conspectus of the Filamentous Marine Fungi of Sweden
    Botanica Marina 2020; 63(2): 141–153 Sanja Tibell*, Leif Tibell, Ka-Lai Pang and E.B. Gareth Jones A conspectus of the filamentous marine fungi of Sweden https://doi.org/10.1515/bot-2018-0114 mostly based on morphological studies, however often the Received 16 December, 2018; accepted 8 May, 2019; online first 2 very small size of these organisms and/or the insufficient July, 2019 morphological distinctive features limit considerably the census of the biodiversity of this component. For marine Abstract: Marine filamentous fungi have been little stud- fungi, the recent application of molecular approaches ied in Sweden, which is remarkable given the depth and offers a useful tool for the census of their biodiversity, width of mycological studies in the country since the time where a wealth of hidden biodiversity is still to be uncov- of Elias Fries. Seventy-four marine fungi are listed for ered. However, there are still different shortcomings and Sweden based on historical records and recent collections, downsides that prevent the extensive use of molecular data of which 16 are new records for the country. New records without the support of classical taxonomic identification. for the country are based on morphological identification Marine wood long remained the main focus for studies of species mainly from marine wood, and most of them of marine filamentous fungi (MFF), however studies by from the Swedish West Coast. In some instances, the iden- Zuccaro et al. (2008), and Suryanarayanan (2012) have tifications have been made by comparisons of sequences shown a rich diversity of these fungi also associated with obtained from cultures with reference sequences in Gen- marine algae (Jones et al.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Fungal Cannons: Explosive Spore Discharge in the Ascomycota Frances Trail
    MINIREVIEW Fungal cannons: explosive spore discharge in the Ascomycota Frances Trail Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI, USA Correspondence: Frances Trail, Department Abstract Downloaded from https://academic.oup.com/femsle/article/276/1/12/593867 by guest on 24 September 2021 of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. Tel.: 11 517 The ascomycetous fungi produce prodigious amounts of spores through both 432 2939; fax: 11 517 353 1926; asexual and sexual reproduction. Their sexual spores (ascospores) develop within e-mail: [email protected] tubular sacs called asci that act as small water cannons and expel the spores into the air. Dispersal of spores by forcible discharge is important for dissemination of Received 15 June 2007; revised 28 July 2007; many fungal plant diseases and for the dispersal of many saprophytic fungi. The accepted 30 July 2007. mechanism has long been thought to be driven by turgor pressure within the First published online 3 September 2007. extending ascus; however, relatively little genetic and physiological work has been carried out on the mechanism. Recent studies have measured the pressures within DOI:10.1111/j.1574-6968.2007.00900.x the ascus and quantified the components of the ascus epiplasmic fluid that contribute to the osmotic potential. Few species have been examined in detail, Editor: Richard Staples but the results indicate diversity in ascus function that reflects ascus size, fruiting Keywords body type, and the niche of the particular species. ascus; ascospore; turgor pressure; perithecium; apothecium. 2 and 3). Each subphylum contains members that forcibly Introduction discharge their spores.
    [Show full text]
  • Taxonomic Utility of Old Names in Current Fungal Classification and Nomenclature: Conflicts, Confusion & Clarifications
    Mycosphere 7 (11): 1622–1648 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/7/11/2 Copyright © Guizhou Academy of Agricultural Sciences Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications Dayarathne MC1,2, Boonmee S1,2, Braun U7, Crous PW8, Daranagama DA1, Dissanayake AJ1,6, Ekanayaka H1,2, Jayawardena R1,6, Jones EBG10, Maharachchikumbura SSN5, Perera RH1, Phillips AJL9, Stadler M11, Thambugala KM1,3, Wanasinghe DN1,2, Zhao Q1,2, Hyde KD1,2, Jeewon R12* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan China3Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China 4Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China5Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123,Oman 6Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, No 9 of ShuGuangHuaYuanZhangLu, Haidian District Beijing 100097, China 7Martin Luther University, Institute of Biology, Department of Geobotany, Herbarium, Neuwerk 21, 06099 Halle, Germany 8Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands. 9University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal. 10Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand 11Helmholtz-Zentrum für Infektionsforschung GmbH, Dept.
    [Show full text]
  • Castor, Pollux and Life Histories of Fungi'
    Mycologia, 89(1), 1997, pp. 1-23. ? 1997 by The New York Botanical Garden, Bronx, NY 10458-5126 Issued 3 February 1997 Castor, Pollux and life histories of fungi' Donald H. Pfister2 1982). Nonetheless we have been indulging in this Farlow Herbarium and Library and Department of ritual since the beginning when William H. Weston Organismic and Evolutionary Biology, Harvard (1933) gave the first presidential address. His topic? University, Cambridge, Massachusetts 02138 Roland Thaxter of course. I want to take the oppor- tunity to talk about the life histories of fungi and especially those we have worked out in the family Or- Abstract: The literature on teleomorph-anamorph biliaceae. As a way to focus on the concepts of life connections in the Orbiliaceae and the position of histories, I invoke a parable of sorts. the family in the Leotiales is reviewed. 18S data show The ancient story of Castor and Pollux, the Dios- that the Orbiliaceae occupies an isolated position in curi, goes something like this: They were twin sons relationship to the other members of the Leotiales of Zeus, arising from the same egg. They carried out which have so far been studied. The following form many heroic exploits. They were inseparable in life genera have been studied in cultures derived from but each developed special individual skills. Castor ascospores of Orbiliaceae: Anguillospora, Arthrobotrys, was renowned for taming and managing horses; Pol- Dactylella, Dicranidion, Helicoon, Monacrosporium, lux was a boxer. Castor was killed and went to the Trinacrium and conidial types that are referred to as being Idriella-like.
    [Show full text]
  • Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´
    Hindawi International Journal of Microbiology Volume 2020, Article ID 6582514, 9 pages https://doi.org/10.1155/2020/6582514 Research Article Composition and Diversity of Fungal Decomposers of Submerged Wood in Two Lakes in the Brazilian Amazon State of Para´ Eveleise SamiraMartins Canto ,1,2 Ana Clau´ dia AlvesCortez,3 JosianeSantana Monteiro,4 Flavia Rodrigues Barbosa,5 Steven Zelski ,6 and João Vicente Braga de Souza3 1Programa de Po´s-Graduação da Rede de Biodiversidade e Biotecnologia da Amazoˆnia Legal-Bionorte, Manaus, Amazonas, Brazil 2Universidade Federal do Oeste do Para´, UFOPA, Santare´m, Para´, Brazil 3Instituto Nacional de Pesquisas da Amazoˆnia, INPA, Laborato´rio de Micologia, Manaus, Amazonas, Brazil 4Museu Paraense Emilio Goeldi-MPEG, Bele´m, Para´, Brazil 5Universidade Federal de Mato Grosso, UFMT, Sinop, Mato Grosso, Brazil 6Miami University, Department of Biological Sciences, Middletown, OH, USA Correspondence should be addressed to Eveleise Samira Martins Canto; [email protected] and Steven Zelski; [email protected] Received 25 August 2019; Revised 20 February 2020; Accepted 4 March 2020; Published 9 April 2020 Academic Editor: Giuseppe Comi Copyright © 2020 Eveleise Samira Martins Canto et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aquatic ecosystems in tropical forests have a high diversity of microorganisms, including fungi, which
    [Show full text]
  • Morakotiella Salina
    Mycologia, 97(4), 2005, pp. 804±811. q 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic study of the genus Haligena (Halosphaeriales, Ascomycota) Jariya Sakayaroj1 INTRODUCTION Department of Microbiology, Faculty of Science, Prince Haligena Kohlm. was described by Kohlmeyer (1961), of Songkla University, Hat Yai, Songkhla, 90112, Thailand with the type species H. elaterophora Kohlm. The National Center for Genetic Engineering and unique characteristic of the species was the long bi- Biotechnology, 113 Thailand Science Park, polar strap-like appendages and multiseptate asco- Paholyothin Road, Khlong 1, Khlong Luang, Pathum spores that characterize and clearly distinguish the Thani, 12120, Thailand genus from other members of the Halosphaeriaceae Ka-Lai Pang (Kohlmeyer 1961). A number of species later were Department of Biology and Chemistry, City University assigned to the genus: H. amicta (Kohlm.) Kohlm. & of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, E. Kohlm., H. spartinae E.B.G. Jones, H. unicaudata Hong Kong SAR School of Biological Sciences, University of Portsmouth, E.B.G. Jones & Le Camp.-Als. and H. viscidula King Henry Building, King Henry I Street, Kohlm. & E. Kohlm. ( Jones 1962, Kohlmeyer and Portsmouth, PO1 2DY, UK Kohlmeyer 1965, Jones and Le Campion-Alsumard Souwalak Phongpaichit 1970). Shearer and Crane (1980) transferred H. spar- tinae, H. unicaudata and H. viscidula to Halosarpheia Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, because of their hamate polar appendages that un- Thailand coil to form long thread-like structures. Recent phy- logenetic studies showed that they are not related to E.B.
    [Show full text]