AR TICLE a New Species of Gymnoascus With

Total Page:16

File Type:pdf, Size:1020Kb

AR TICLE a New Species of Gymnoascus With IMA FUNGUS · VOLUME 4 · NO 2: 177–186 I#JKK$'LNJ#*JPJNJ* A new species of Gymnoascus with verruculose ascospores ARTICLE Rahul Sharma, and Sanjay Kumar Singh |<//<4;/"R;``;~?P##JJP> ?I Abstract: A new species, Gymnoascus verrucosus sp. nov., isolated from soil from Kalyan railway station, Key words: 4 @ 6 N'" verruculose ascospores (ornamentation visible only under SEM) and its deer antler-shaped short peridial #'" appendages. The small peridial appendages originate from open mesh-like gymnothecial ascomata made up echinulate ascospores of thick-walled, smooth peridial hyphae. The characteristic morphology of the fungus is not formed in culture Gymnoascaceae where it has very restricted growth and forms arthroconidia. Phylogenetic analysis of different rDNA gene ITS sequences (ITS, LSU, and SSU) demonstrates its placement in Gymnoascaceae and reveal its phylogenetic Onygenales relatedness to other species of Gymnoascus, especially G. petalosporus and G. boliviensis. The generic concept phylogeny of Gymnoascus is consequently now broadened to include species with verruculose ascospores. A key to the accepted 19 species is also provided. Article info:"INN;NJ#N>;I#KNJ#*>~INKNJ#* INTRODUCTION when collected and was stored at room temperature until processed. Hair baiting (Vanbreuseghem 1952) was The genus Gymnoascus (Gymnoascaceae, Onygenales) was > xG#'NG. reessii as the type after 1–2 month incubation in the dark at room temperature species. Gymnoascus forms yellowish to brownish spherical N' / ascomata having thick-walled, anastomosed, smooth to the microdilution drop trail method (Sharma et al. 2002) in roughened peridial hyphae, with or without appendages. The [ ascospores are smooth, irregular, or lumpy. The genus has needle and crushed in sterile distilled water in an Eppendorf been the subject of three monographic treatments (Orr et tube. Fifty to 100 mL of the ascospore suspension (in small al#$*;6#$'" et al. 2002) and has now become drops) was placed on one side of a PDA plate, which was one of the largest genera of Onygenales due to the recent tilted to spread ascospores with the trail of the drop. To transfer of species from several other genera. Solé et al. initiate sporulation, the fungus was grown on oatmeal agar (2002) merged four genera (viz. Arachniotus, Gymnascella, ;~/;6~; Gymnoascoideus, and Narasimhella) into Gymnoascus "6";>/et al. 2009) and based on morphological and molecular data. With this new N'/ #' primarily on the basis of ascospore morphology. Microscopy These species formed a monophyletic clade in previous For microscopic observation and photomicrography, ITS sequence-based phylogenetic studies (Solé et al. 2002). lactophenol mounts were prepared and observed under a Zeiss 6 ;6 ;N 4 |<//NN ;6 ascomata similar to those of Gymnoascus. In the present [ / 6|;? | NJJ [ based phylogenies and morphology. a Nikon-Y-IDT prism. For scanning electron microscopy, 6 and sputter coated with platinum. Photomicrographs were MATERIAL AND METHODS ¤+?¤"4*J; #JD Collection and isolation A soil sample was collected from Kalyan railway station, DNA extraction, PCR and sequencing 4 #$ #PR| * #JR `|;6N?? a sterile sealed polythene bag. The soil sample was dry grown on PDA by homogenization in a FastPrep 24 tissue © 2013 International Mycological Association You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: [ Non-commercial: No derivative works: For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. VOLUME 4 · NO. 2 177 Sharma & Singh G 4~ x ` boathook-shaped appendages. The asci were globose to 6 ; et al. (1997). The PCR '? @ [ " N'"|; @"PL@"K@"K'"K'"L++L+ |<//NN'* `xM +L+#N +"_ |"#L|"P |"*L|"' ""_ D ! ¤K#N$* x+;"@ 6 ARTICLE Hester 1990, White et al. 1990, Rehner & Samuels 1994). identity of 93 % with G. petalosporus ;@// *P*K#> ;~/6I#3+~/ ;#P'#$JG. reessii/x"NK$#><¤*K'N'P# " NK 3+ ~/ #J> # 3+ |@~ NKJ 4 '$G. aurantiacus;@//NN*$P>;#P# >JK3+KJ3+-1>#3+#_3-1) G. littoralis /x" PKP*> <¤*K'NN# @ `xNK3+#J Onygenaceae (Onygenales) members. For some of the NCBI ng μl-1) of template DNA and was overlaid with one drop of accessions, current names (Solé et al. 2002) are used here `~/ `x@ 4/ @ [ nrLSU of nine Gymnoascaceae and four Arthrodermataceae $K/K 6" et al. 2002) were retrieved *J$K/# `x |<// NN ; |¤ #K/6#N/ was constructed and yielded distinct clades for members of ;[6N/ the three families of Onygenales (Fig. 1). The new species, [@[ named as G. verrucosus below, was placed within the 6 Gymnoascaceae clade close to G. petalosporus. Sequencing IK'"L+K#/ #'" |; $J |"#L|"P KP / |"*L|"' K / " `xM¤K#N$P 6 done with Big Dye Terminator cycle sequencing kit (Applied identities of 97 % with Kraurogymnocarpa trochleospora Biosystems, Foster City, CA) as per the manufacturer’s _;4#J#J#>;#N$K#G. hyalinosporus/x"KP'N> instructions on an ABI 3100 Avant Prism automated DNA AB015775.1), G. petalosporus _;4#K>_N$*$N#G. sequencer (Applied Biosystems). littoralis/x"PKP*><¤*K'*PJ#G. reessii/x"NK$#> <¤*K'*P$#G. ruber;#N$#$ Phylogenetic analysis other species of Gymnoascaceae, Onygenaceae, and DNA sequences obtained from the sequencer were manually Arachnomycetaceae @ ""_ 6 Gymnoascaceae, /+NJ#IL [Onygenaceae, and three Arthrodermataceae6 www.technelysium.com.au). The sequences of the ITS, |<// NN@ ""_ LSU and SSU regions of the new isolate were submitted tree resolved the analysed strains into distinct families to BLASTn sequence homology searches. On the basis of of Onygenales < N @ 6 the results, phylogenetically related species were chosen Gymnoascaceae clade close to G. hyalinosporus and G. #' marginosporus. Gymnoascus spp. and 11 species belonging to the genera " @"|<//NN Amauroascus, Arthroderma, Byssoonygena, Ctenomyces, KKK`xM¤K#N$N; Kraurogymnocarpa, Onygena, Pectinotrichum, and Uncin- x+;"@ @" |<// NN ocarpus. Additionally, related sequences of authentic or 6 ' G. hyalinosporus 6? _;4*>;<#N$'K*#> $KG. `x" et al. (2002), Sugiyama et al. petalosporus |+ JJ#> 4$$#NJ#> (2002) and Doveri et al. (2011). Alignment was performed $''KG. reessii <4PP#$>;x*#P*#> /+_"@;+ILLLL $''PGymnoascus 4`; K @ et al. 2011). species. The ITS sequence of G. verrucosus differs from @@x;"ILL its closest neighbour G. petalosporus $' K' LLLLL@xNI"#*K|? PJKP' |¤"!|#$' differs from G. boliviensis#J#K aligned sequences using Kimura-2 parameter distance model PK KKK @ 6 #$'J neighbour, G. hyalinosporus, $* N The robustness of the branches was assessed by bootstrap *# KK @ <#$'K#JJJx|¤ remaining Gymnoascus species were even more distant 46 + 4+ 46 ~ 4~ from G. verrucosus. analyses was also conducted with aligned sequences. TAXONOMY RESULTS Gymnoascus verrucosus Rahul Sharma & S.K. The fungus studied formed minute gymnothecia in soil near Singh, sp.nov. ? @ [ 4x4x'JJJJ# of Gymnoascus reessii in having thick-walled, branched, <PM and septate peridial hyphae but without the characteristic 178 IMA FUNGUS A new species of Gymnoascus with verruculose ascospores ARTICLE Fig. 1. Neighbour-joining tree of the LSU sequence of Gymnoascus verrucosus and 17 other species belonging to the families Gymnoascaceae, Arthrodermataceae, and Trichocomaceae@4`;KJ Bootstrap values above 50 % are shown. Etymology: The species epithet recalls the warted ascospores. Peridial appendages deer antler-shaped, smooth, yellow- 6#JM Diagnosis: Deer antler shaped smooth, tapered peridial 15 μm long, 1.0–1.5 μm wide. Asci formed at the centre of appendages and warty globose ascospores differentiate the the ascoma, hyaline to pale yellow, globose to subglobose, new species from the rest in the genus. KM3'?Ascospores pale yellowish, globose and 3 μm diam to subglobose and 3.0 × 2.5 μm, walls smooth Type: India: MaharashtraI 6 under LM but minutely tuberculate under SEM. 9 Mar. 2009, Rahul Sharma;4$PKP??>|<// NN??6? Asexual morph: Forming thick-walled arthroconidia, smooth, hyaline, irregular in shape and size (1–1.5 × 2–5 μm), Description: Colonies ~; 6 #J globose, subglobose, ellipsoid, cylindrical with rounded mm diam in 3 wk), initially white but turning yellowish brown, ends, constriction at point of septation. Conidia formed by wrinkled, heaped, very hard, reverse brown. Vegetative disarticulation of hyphae. hyphae initially thick-walled, septate, almost every cell giving > Distribution: Currently known only from the type locality, rounded ends. When the hyphae transform into arthroconidia, Kalyan, Maharashtra, India. the culture does not remain so rigid or hard and the inocula can be easily lifted with an inoculating needle. Ascomata formed only in soil near hair baits, not known in culture, DISCUSSION spherical, 50–90 μm diam (including appendages), yellowish to orange-brown, reticulum type open. Peridial hyphae deep The yellow to orange-brown gymnothecium (Fig. 4C–D and 5a) yellow to brown, smooth, septate, thick-walled, 1.5–2.0 μm is made up of a reticulum of thick-walled hyphae, which shows wide, originating radially from the centre of the ascoma. Gymnoascus verrucosus to be a typical member of Onygenales VOLUME 4 · NO. 2 179 Sharma & Singh ARTICLE Fig. 2. Neighbour-joining
Recommended publications
  • Phylogeny of the Genus Arachnomyces and Its Anamorphs and the Establishment of Arachnomycetales, a New Eurotiomycete Order in the Ascomycota
    STUDIES IN MYCOLOGY 47: 131-139, 2002 Phylogeny of the genus Arachnomyces and its anamorphs and the establishment of Arachnomycetales, a new eurotiomycete order in the Ascomycota 1, 2 1* 3 2 C. F. C. Gibas , L. Sigler , R. C. Summerbell and R. S. Currah 1University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada; 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; 3Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands Abstract: Arachnomyces is a genus of cleistothecial ascomycetes that has morphological similarities to the Onygenaceae and the Gymnoascaceae but is not accommodated well in either taxon. The phylogeny of the genus and its related anamorphs was studied using nuclear SSU rDNA gene sequences. Partial sequences were determined from ex-type cultures representing A. minimus, A. nodosetosus (anamorph Onychocola canadensis), A. kanei (anamorph O. kanei) and A. gracilis (anamorph Malbranchea sp.) and aligned together with published sequences of onygenalean and other ascomycetes. Phylogenetic analysis based on maximum parsimony showed that Arachnomyces is monophyletic, that it includes the hyphomycete Malbranchea sclerotica, and it forms a distinct lineage within the Eurotiomycetes. Based on molecular and morphological data, we propose the new order Arachnomycetales and a new family Arachnomycetaceae. All known anamorphs in this lineage are arthroconidial and have been placed either in Onychocola (A. nodosetosus, A. kanei) or in Malbranchea (A. gracilis). Onychocola is considered appropriate for disposition of the arthroconidial states of Arachnomyces and thus Malbranchea sclerotica and the unnamed anamorph of A. gracilis are redisposed as Onychocola sclerotica comb. nov. and O. gracilis sp. nov. Keywords: Eurotiomycetes, Arachnomycetales, Arachnomycetaceae, Arachnomyces, Onychocola, Malbranchea sclerotica, SSU rDNA, Ascomycota, phylogeny Introduction described from herbivore dung maintained in damp chambers (Singh & Mukerji, 1978; Mukerji, pers.
    [Show full text]
  • Genome Analysis Reveals Evolutionary Mechanisms of Adaptation in Systemic Dimorphic Fungi 2 3 José F
    bioRxiv preprint doi: https://doi.org/10.1101/199596; this version posted October 6, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Genome analysis reveals evolutionary mechanisms of adaptation in systemic dimorphic fungi 2 3 José F. Muñoz1, Juan G. McEwen2,3, Oliver K. Clay3,4 , Christina A. Cuomo1* 4 5 1Broad Institute of MIT and Harvard, Cambridge, MA, United States. 6 2 Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia. 7 3 School of Medicine, Universidad de Antioquia, Medellín, Colombia. 8 4 School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia 9 * [email protected] 10 11 Key Words: Dimorphic fungi, comparative genomics, virulence evolution, Ajellomycetaceae 12 13 ABSTRACT 14 Dimorphic fungal pathogens cause a significant human disease burden and unlike most fungal 15 pathogens affect immunocompetent hosts. Most dimorphic fungi are found in the family 16 Ajellomycetaceae, including the genera Histoplasma, Blastomyces, Paracoccidioides, and the recently 17 described Emergomyces. To examine the origin of virulence and host adaptation in these fungal 18 pathogens, we compared the gene content of classic systemic, opportunistic, and non-pathogenic 19 species, including new genomes for Emmonsia species and two closely non-pathogenic species, 20 Helicocarpus griseus and Polytolypa hystricis. We examined differences in gene content between 21 pathogens and environmental fungi, and found that gene families related to plant degradation, 22 synthesis of secondary metabolites, and amino acid and lipid metabolism are retained in H.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Chrysosporium Keratinophilum IFM 55160 (AB361656)Biorxiv Preprint 99 Aphanoascus Terreus CBS 504.63 (AJ439443) Doi
    bioRxiv preprint doi: https://doi.org/10.1101/591503; this version posted April 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of novel Chrysosporium morrisgordonii sp. nov., from bat white-nose syndrome (WNS) affected mines, northeastern United States Tao Zhang1, 2, Ping Ren1, 3, XiaoJiang Li1, Sudha Chaturvedi1, 4*, and Vishnu Chaturvedi1, 4* 1Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA 2 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China 3Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA 4Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA *Corresponding authors: Sudha Chaturvedi, [email protected]; Vishnu Chaturvedi, [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/591503; this version posted April 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Psychrotolerant hyphomycetes including unrecognized taxon are commonly found in bat hibernation sites in Upstate New York. During a mycobiome survey, a new fungal species, Chrysosporium morrisgordonii sp. nov., was isolated from bat White-nose syndrome (WNS) afflicted Graphite mine in Warren County, New York. This taxon was distinguished by its ability to grow at low temperature spectra from 6°C to 25°C. Conidia were tuberculate and thick-walled, globose to subglobose, unicellular, 3.5-4.6 µm ×3.5-4.6 µm, sessile or borne on narrow stalks.
    [Show full text]
  • An Annotated Check-List of Ascomycota Reported from Soil and Other Terricolous Substrates in Egypt A
    Journal of Basic & Applied Mycology 2 (2011): 1-27 1 © 2010 by The Society of Basic & Applied Mycology (EGYPT) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt A. F. Moustafa* & A. M. Abdel – Azeem Department of Botany, Faculty of Science, University of Suez *Corresponding author: e-mail: Canal, Ismailia 41522, Egypt [email protected] Received 26/6/2010, Accepted 6/4 /2011 ____________________________________________________________________________________________________ Abstract: By screening of available sources of information, it was possible to figure out a range of 310 taxa that could be representing Egyptian Ascomycota up to the present time. In this treatment, concern was given to ascomycetous fungi of almost all terricolous substrates while phytopathogenic and aquatic forms are not included. According to the scheme proposed by Kirk et al. (2008), reported taxa in Egypt belonged to 88 genera in 31 families, and 11 orders. In view of this scheme, very few numbers of taxa remained without certain taxonomic position (incertae sedis). It is also worthy to be mentioned that among species included in the list, twenty-eight are introduced to the ascosporic mycobiota as novel taxa based on type materials collected from Egyptian habitats. The list includes also 19 species which are considered new records to the general mycobiota of Egypt. When species richness and substrate preference, as important ecological parameters, are considered, it has been noticed that Egyptian Ascomycota shows some interesting features noteworthy to be mentioned. At the substrate level, clay soils, came first by hosting a range of 108 taxa followed by desert soils (60 taxa).
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]
  • Notizbuchartige Auswahlliste Zur Bestimmungsliteratur Für Unitunicate Pyrenomyceten, Saccharomycetales Und Taphrinales
    Pilzgattungen Europas - Liste 9: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für unitunicate Pyrenomyceten, Saccharomycetales und Taphrinales Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Zur Beachtung: Hier befinden sich auch die Ascomycota ohne Fruchtkörperbildung, selbst dann, wenn diese mit gewissen Discomyceten phylogenetisch verwandt sind. Gattungen 1) Hauptliste 2) Liste der heute nicht mehr gebräuchlichen Gattungsnamen (Anhang) 1) Hauptliste Acanthogymnomyces Udagawa & Uchiyama 2000 (ein Segregate von Spiromastix mit Verwandtschaft zu Shanorella) [Europa?]: Typus: A. terrestris Udagawa & Uchiyama Erstbeschr.: Udagawa, S.I. u. S. Uchiyama (2000), Acanthogymnomyces ..., Mycotaxon 76, 411-418 Acanthonitschkea s. Nitschkia Acanthosphaeria s. Trichosphaeria Actinodendron Orr & Kuehn 1963: Typus: A. verticillatum (A.L. Sm.) Orr & Kuehn (= Gymnoascus verticillatus A.L. Sm.) Erstbeschr.: Orr, G.F. u. H.H. Kuehn (1963), Mycopath. Mycol. Appl. 21, 212 Lit.: Apinis, A.E. (1964), Revision of British Gymnoascaceae, Mycol. Pap. 96 (56 S. u. Taf.) Mulenko, Majewski u. Ruszkiewicz-Michalska (2008), A preliminary checklist of micromycetes in Poland, 330 s. ferner in 1) Ajellomyces McDonough & A.L. Lewis 1968 (= Emmonsiella)/ Ajellomycetaceae: Lebensweise: Z.T. humanpathogen Typus: A. dermatitidis McDonough & A.L. Lewis [Anamorfe: Zymonema dermatitidis (Gilchrist & W.R. Stokes) C.W. Dodge; Synonym: Blastomyces dermatitidis Gilchrist & Stokes nom. inval.; Synanamorfe: Malbranchea-Stadium] Anamorfen-Formgattungen: Emmonsia, Histoplasma, Malbranchea u. Zymonema (= Blastomyces) Bestimm. d. Gatt.: Arx (1971), On Arachniotus and related genera ..., Persoonia 6(3), 371-380 (S. 379); Benny u. Kimbrough (1980), 20; Domsch, Gams u. Anderson (2007), 11; Fennell in Ainsworth et al. (1973), 61 Erstbeschr.: McDonough, E.S. u. A.L.
    [Show full text]
  • Complete Issue
    J. Fernholz and Q.E. Phelps – Influence of PIT tags on growth and survival of banded sculpin (Cottus carolinae): implications for endangered grotto sculpin (Cottus specus). Journal of Cave and Karst Studies, v. 78, no. 3, p. 139–143. DOI: 10.4311/2015LSC0145 INFLUENCE OF PIT TAGS ON GROWTH AND SURVIVAL OF BANDED SCULPIN (COTTUS CAROLINAE): IMPLICATIONS FOR ENDANGERED GROTTO SCULPIN (COTTUS SPECUS) 1 2 JACOB FERNHOLZ * AND QUINTON E. PHELPS Abstract: To make appropriate restoration decisions, fisheries scientists must be knowledgeable about life history, population dynamics, and ecological role of a species of interest. However, acquisition of such information is considerably more challenging for species with low abundance and that occupy difficult to sample habitats. One such species that inhabits areas that are difficult to sample is the recently listed endangered, cave-dwelling grotto sculpin, Cottus specus. To understand more about the grotto sculpin’s ecological function and quantify its population demographics, a mark-recapture study is warranted. However, the effects of PIT tagging on grotto sculpin are unknown, so a passive integrated transponder (PIT) tagging study was performed. Banded sculpin, Cottus carolinae, were used as a surrogate for grotto sculpin due to genetic and morphological similarities. Banded sculpin were implanted with 8.3 3 1.4 mm and 12.0 3 2.15 mm PIT tags to determine tag retention rates, growth, and mortality. Our results suggest sculpin species of the genus Cottus implanted with 8.3 3 1.4 mm tags exhibited higher growth, survival, and tag retention rates than those implanted with 12.0 3 2.15 mm tags.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • AR TICLE a New Species of Gymnoascus with Verruculose
    IMA FUNGUS · VOLUME 4 · no 2: 177–186 doi:10.5598/imafungus.2013.04.02.03 A new species of Gymnoascus with verruculose ascospores ARTICLE Rahul Sharma, and Sanjay Kumar Singh National Facility for Culture Collection of Fungi, MACS’ Agharkar Research Institute, G. G. Agarkar Road, Pune - 411 004, India; corresponding author e-mail: [email protected] Abstract: A new species, Gymnoascus verrucosus sp. nov., isolated from soil from Kalyan railway station, Key words: Maharashtra, India, is described and illustrated. The distinctive morphological features of this taxon are its 28S verruculose ascospores (ornamentation visible only under SEM) and its deer antler-shaped short peridial 18S appendages. The small peridial appendages originate from open mesh-like gymnothecial ascomata made up echinulate ascospores of thick-walled, smooth peridial hyphae. The characteristic morphology of the fungus is not formed in culture Gymnoascaceae where it has very restricted growth and forms arthroconidia. Phylogenetic analysis of different rDNA gene ITS sequences (ITS, LSU, and SSU) demonstrates its placement in Gymnoascaceae and reveal its phylogenetic Onygenales relatedness to other species of Gymnoascus, especially G. petalosporus and G. boliviensis. The generic concept phylogeny of Gymnoascus is consequently now broadened to include species with verruculose ascospores. A key to the accepted 19 species is also provided. Article info: Submitted: 22 August 2012; Accepted: 15 October 2013; Published: 25 October 2013. INTRODUCTION when collected and was stored at room temperature until processed. Hair baiting (Vanbreuseghem 1952) was The genus Gymnoascus (Gymnoascaceae, Onygenales) was performed using defatted horse and human hairs as baits; established by Baranetzky 1872 with G. reessii as the type after 1–2 month incubation in the dark at room temperature species.
    [Show full text]