This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci

Total Page:16

File Type:pdf, Size:1020Kb

This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Chemical Physics Letters 574 (2013) 66–70 Contents lists available at SciVerse ScienceDirect Chemical Physics Letters journal homepage: www.elsevier.com/locate/cplett In situ spectroscopic observations of pressure-induced condensation of trimethylsilanol and behavior of dehydrated molecular water a, a,b a Ayako Shinozaki ⇑, Naoki Noguchi , Hiroyuki Kagi a Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan b Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Hiroshima 739-8527, Japan article info abstract Article history: This report is the first describing a letter of pressure-induced condensation of silanol. Raman and infrared Received 19 February 2013 absorption spectra of trimethylsilanol were observed at room temperature and at pressures up to 3.3 GPa. In final form 30 April 2013 After solidification at 0.3 GPa, the OH vibration mode shifted to lower frequencies along with increasing Available online 13 May 2013 1 pressure with a notably large pressure coefficient ( 107 cmÀ /GPa), thereby indicating that hydrogen À bonding in trimethylsilanol had strengthened prominently. Along with increased hydrogen-bond interac- tion, condensation of trimethylsilanol forming hexamethyldisiloxane and molecular water were observed. The marked shift in the OH stretching mode in the released H2O suggests considerable inter- molecular interaction with hexamethyldisiloxane. Ó 2013 Elsevier B.V. All rights reserved. 1. Introduction Pressure may enhance reactions that cannot occur under ambient conditions. This report is the first describing observations of pres- Silicon compounds have been used widely in organic synthesis sure-induced changes in trimethylsilanol reported from in situ since the first synthesis of silicon compounds in the mid-19th cen- spectroscopic measurements conducted at high pressure. tury. Silicon belongs to group Iva elements in the periodic table along with carbon, but the properties and reactivity of organosil- 2. Experiments icon compounds differ notably from those of typical organic com- pounds. Among the organosilicon compounds, materials having High-pressure experiments were conducted using a diamond silanol groups (SiOH) play an important role in the preparation anvil cell (DAC) with flat-top diamond anvils (type Ia), 600 lm cu- of colloidal silica and glasses from alkoxysilanes [1], various silox- let. SUS301 and SUS304 foils were used for gaskets with thick- ane compounds [2], and so on. Silanol (SiH OH) is the simplest 3 nesses of 100 and 300 lm, respectively. A sample hole (300 lm molecule containing the silanol group. However, although many diameter) was drilled into the gasket. Liquid trimethylsilanol (pur- theoretical studies have been conducted, few reports have de- ity 99.7%; Shin-Etsu Chemical Co.) was loaded into the gasket hole scribed spectroscopic measurements of this molecule because of and then compressed without pressure medium. Pressure was its unstable characteristics which result in the rapid formation of measured using ruby fluorescence [12]. siloxanes [3,4]. Trimethylsilanol, (CH ) SiOH, is notably more sta- 3 3 In situ Raman spectroscopic measurements were performed at ble than silanol (SiH OH), although condensation of trimethylsila- 3 high pressure using a micro-Raman spectrometer consisting of an nol to hexamethyldisiloxane, (CH ) SiOSi(CH ) occurs in acidic 3 3 3 3 Ar+ laser (k = 514.5 nm), an optical microscope, a 30 cm single and alkaline solvents [5–7]. Raman and IR spectra of liquid trim- polychromator, and CCD-detectors. Raman bands of naphthalene ethylsilanol at ambient condition obtained both experimentally and neon emission lines [13] were used, respectively for calibra- and theoretically have been reported [8–10], indicating the forma- 1 tion of Raman shift in the spectral ranges from 150 to 1500 cmÀ tion of oligomer by the hydrogen bond [10]. An X-ray diffraction 1 and from 2700 to 3700 cmÀ . In addition, Raman spectra of hexam- letter of single crystals of trimethylsilanol at 80 °C showed that À ethyldisiloxane (purity 99.7%; Wako Pure Chemical Inds. Ltd.) were low-temperature phases belong to monoclinic, space group P2 /c. 1 obtained for comparison. Twelve molecules exist in the unit cell, forming the helix-like chain Infrared (IR) absorption spectra in the mid IR region were ob- by the hydrogen bond [11]. However, the phase relation and reac- tained at ambient pressure and at high pressure using a Fourier tivity of trimethylsilanol under high pressure remain unclear. transform infrared spectrometer (FT-IR) equipped with a globar source, a KBr beam splitter, and an MCT detector (Spectrum 1 Corresponding author. Address: 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, 2000; PerkinElmer Inc.) at 4 cmÀ resolution. Liquid trimethylsila- ⇑ Japan. nol at ambient pressure was placed between two CaF2 plates sep- E-mail address: [email protected] (A. Shinozaki). arated by 12 lm aluminum foil. Infrared absorption spectra at high 0009-2614/$ - see front matter Ó 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cplett.2013.04.073 Author's personal copy A. Shinozaki et al. / Chemical Physics Letters 574 (2013) 66–70 67 pressure were measured using an IR microscope installed on the the sample hole for FT-IR measurements to avoid oversaturation FT-IR and a DAC. A few pieces of CaF2 platelets were placed into of the OH vibration mode by reducing the optical path. Near-infrared absorption spectra at high pressure were ob- tained using synchrotron radiation at BL43IR in SPring-8, Japan. An FT-IR spectrometer (Hyperion2000; Bruker Co.) was used for measurements of near infrared absorption spectra with a Ge- (a) 1 coated KBr beam splitter and an InSb detector at 4 cmÀ resolution. Hexamethyldisiloxane 1.9 GPa 3. Results and discussion ν SiOSi ν SiC3 Raman spectra of trimethylsilanol at ambient pressure resem- bled those described in previous reports. All observed peaks can be assigned to vibration modes of trimethylsilanol [8–10]. Upon compression, crystallization of trimethylsilanol was observed visu- ally at around 0.3 GPa. No remarkable change of Raman peaks was 1.6 GPa observed along with crystallization at 0.3 GPa (see Figure 1). The ν SiC3 liquid–solid transition pressure is markedly lower than that of di- Intensity methyl phenyl silanol (at 5.0 GPa) [14]. This contrast indicates that the bulky phenyl group lowers intermolecular interactions of sila- 550 600 650 700 750 800 nol considerably. At pressures higher than 0.3 GPa, irreversible Raman shift (cm-1) 1.6 GPa ν change occurred after the sample was kept in the solid phase for ν SiOSi SiC3 a certain time. Figure 1a and b show representative Raman spectra ν SiC3 After 6 days collected with increasing pressure. After the sample was kept at 1.5 GPa 1.5 GPa for 6 days, two new peaks appeared at 541 and 1 675 cmÀ , suggesting the formation of hexamethyldisiloxane (see Figure 1a). The frequencies of new peaks coincide with those of 0. 3 GPa SiO stretching mode and SiC stretching mode of solid hexame- thyldisiloxane under high pressure measured at 1.9 GPa (Figure Crystallization 1a upper). Symmetric and asymmetric CH stretching modes split 0. 1 GPa into several peaks, which is also consistent with the formation of hexamethyldisiloxane (Figure 1b). In addition, Raman spectra of 1 trimethylsilanol show that the mSiC3 mode at 630 cmÀ became Table 1 1 Vibrational frequencies (in cmÀ ) of representative Raman spectra between 0.1 and (b) Hexamethyldisiloxane 3.3 GPa. 1.9 GPa TMS HMDS 0.1 GPa 0.3 GPa 0.8 GPa 1.5 GPa 1.6 GPa 2.2 GPa 3.3 GPa dSiC3 216 233 229 233 219 221 230 dSiC3 252 259 266 271 270 272 282 qSiC3 296 297 303 306 341 346 343 qSiC3 330 354 368 377 mSi– 541 546 553 O–Si 1.6 GPa mSiC3 616 618 624 628 635 639 645 mSiC3 675 678 681 mSiC3 689 684 692 694 696 699 705 After 6 days 706 711 718 qCH3 750 749 748 749 757 759 762 (dSiOH) 767 771 772 1.5 GPa mSiO 782 784 776 785 (qCH3) q CH3 838 836 832 835 838 839 842 qCH3 875 876 874 889 896 891 893 (mSiO, 0. 3 GPa dSiOH) qCH3 928 915 916 (mSiO, Crystallization dSiOH) dCH3 1248 1229 1236 1241 1243 1242 1241 0. 1 GPa dCH3 1259 1252 1246 1257 1253 1253 1253 dCH3 1406 1406 1408 1411 1418 1423 1426 dCH3 1427 1433 1431 1434 1440 1443 1450 mCH3 2905 2915 2914 2900 2901 2914 2919 2925 2948 2944 mCH3 2959 2970 2968 2966 2979 2976 Figure 1. Representative Raman spectra of trimethylsilanol with compression. The 2974 2992 2990 top spectrum was obtained from pure hexamethyldisiloxane: (a) between 500 and 2961 2963 2977 2982 2987 3012 3010 1 1 800 cmÀ with magnified spectra of 1.6 GPa from 550 to 800 cmÀ ; (b) between 1 TMS, trimethylsilanol; HMDS, new peaks with formation of hexamethyldisiloxane. 2800 and 3200 cmÀ . Author's personal copy 68 A. Shinozaki et al. / Chemical Physics Letters 574 (2013) 66–70 weaker at 1.5 GPa with increasing pressure.
Recommended publications
  • Chlorotrimethylsilane
    Chlorotrimethylsilane Health-based recommended occupational exposure limit Gezondheidsraad Voorzitter Health Council of the Netherlands Aan de Staatssecretaris van Sociale Zaken en Werkgelegenheid Onderwerp : Aanbieding adviezen over Chloortrimethylsilaan en Butylacetaten Uw kenmerk : DGV/MBO/U-932542 Ons kenmerk : U 2173/AvdB/tvdk/459-D35 Bijlagen : 2 Datum : 15 november 2001 Mijnheer de Staatssecretaris, Bij brief van 3 december 1993, nr. DGV/BMO-U-932542, verzocht de Staatssecretaris van Welzijn, Volksgezondheid en Cultuur namens de Minister van Sociale Zaken en Werkgelegenheid om gezondheidskundige advieswaarden af te leiden ten behoeve van de bescherming van beroepsmatig aan stoffen blootgestelde personen. Per 1 januari 1994 heeft mijn voorganger daartoe een commissie ingesteld die de werkzaamheden voortzet van de Werkgroep van Deskundigen (WGD). De WGD was een door de genoemde Minister ingestelde adviescommissie. Hierbij bied ik u - gehoord de Beraadsgroep Gezondheid en Omgeving - twee publicaties aan van de commissie over chloortrimethylsilaan en butylacetaten. Deze publicaties heb ik heden ter kennisname aan de Minister van Volksgezondheid, Welzijn en Sport en aan de Minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer gestuurd. Hoogachtend, w.g. prof. dr JA Knottnerus Bezoekadres Postadres Parnassusplein 5 Postbus 16052 2511 VX Den Haag 2500 BB Den Haag Telefoon (070) 340 75 20 Telefax (070) 340 75 23 Chlorotrimethylsilane Health-based recommended occupational exposure limit report of the Dutch Expert Committee on Occupational Standards, a committee of the Health Council of The Netherlands to the Minister and State Secretary of Social Affairs and Employment No. 2001/05OSH, The Hague, 15 November 2001 The Health Council of the Netherlands, established in 1902, is an independent scientific advisory body.
    [Show full text]
  • Advances in the Understanding of Low Molecular Weight Silicon Formation and Implications for Control by Amc Filters
    APPLICATION NOTE ADVANCES IN THE UNDERSTANDING OF LOW MOLECULAR WEIGHT SILICON FORMATION AND IMPLICATIONS FOR CONTROL BY AMC FILTERS Authors: Jürgen M. Lobert, Philip W. Cate, David J. Ruede, Joseph R. Wildgoose, Charles M. Miller and John C. Gaudreau Abstract Introduction Trimethylsilanol (TMS) is a low molecular Silicon containing hydrocarbons are a class of weight / low boiling point silicon-containing, AMC causing persistent degradation of UV exposure airborne contaminant that has received increased tool optical surfaces.1,2,3 Organic silicon compounds interest over the past few years as an important are efficiently split into components by 193 nm UV cause for contamination of optical surfaces in light, commonly used in photolithography appli- lithography equipment. cations. The resulting, reactive silicon atoms can recombine with oxygen to create a layer of amor- TMS is not captured well by carbon-based filters, phous silicon dioxide on optical surfaces such as and hexamethyldisiloxane (HMDSO), even though exposure tool lenses.3,4 This haze layer can be captured well, can be converted to TMS when using difficult to remove and may require lens exchange acidic filter media commonly used for ammonia and polishing, potentially destroying optical coatings removal. TMS and HMDSO coexist in a chemical and creating substantial tool downtime and cost. equilibrium, which is affected by the acidity and The importance of TMS and related refractory moisture of their environment. species in optical degradation is one reason for This publication shows that HMDSO is converted the low level of allowable refractory compounds to TMS by acidic media at concentrations typically (100 ppt) specified in the International Technology found in cleanroom environments.
    [Show full text]
  • Decomposition of Hexamethyldisilazane on Hot Metal Filaments and Its Gas-Phase Chemistry in a Hot-Wire Chemical Vapor Deposition Reactor
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-09-04 Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor Ampong, Eric Ampong, E. (2019). Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/110892 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor by Eric Ampong A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN CHEMISTRY CALGARY, ALBERTA SEPTEMBER, 2019 © Eric Ampong 2019 Abstract Hot-wire chemical vapor deposition (HWCVD) has been used to produce silicon- containing thin films, nanomaterials, and functional polymer coatings for applications in microelectronic and photovoltaic devices. Silicon carbonitride (SiCyNz) thin films, deposited by HWCVD, have found a wide range of applications due to their nonstoichiometric component that exhibits unique properties from a combination of SiC and Si3N4 binary compounds.
    [Show full text]
  • Silicon-Based Reducing Agents
    Gelest, Inc. Silicon-Based Reducing Agents GeraldGerald L. LarsonLarson ViceVice President, President, Research Research && Development Development Materials for the reduction of: Aldehydes Ketones Acetals Ketals Esters Lactones Thioesters Enamines Imines Acids Amides Halides Olefi ns Metal Halides Supplement to the Gelest Catalog, “Silicon, Germanium & Tin Compounds, Metal Alkoxides and Metal Diketonates” which is available on request. 1 AZmax TEL: 035543-1630 • FAX: 03-5543-0312 • www.azmax.co.jp (215) 547-1015 • FAX: (215) 547-2484 • www.gelest.com 127 Gelest, Inc. SILICON-BASED REDUCING AGENTS Introduction The widely used organometallic-based reducing agents can be broadly classifi ed as either ionic, such as lithium aluminum hydride and sodium borohydride, or free-radical such as tri-n-butyltin hydride. The mechanistic differences between these two classes of reducing agents very often complement one another in their ability to reduce organic substrates. Organosilanes have been found to possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed of than other reagents. Their reductive abilities are accomplished by changes in the nature of the groups attached to silicon, which can modify the character of the Si-H bond in the silane. For example, the combination of a triethylsilane and an acid has proven to be excellent for the reduction of substrates that can generate a “stable” carbenium ion intermediate. Examples of substrates that fall into this class are olefi ns, alcohols, esters, lactones, aldehydes, ketones, acetals, ketals, and other like materials. On the other hand triphenylsilane and especially tris(trimethylsilyl)silane have proven to be free-radical reducing agents that can substitute for tri-n-butyltin hydride.
    [Show full text]
  • Draft Screening Assessment for the Challenge
    Screening Assessment for the Challenge Trisiloxane, octamethyl- (MDM) Chemical Abstracts Service Registry Number 107-51-7 Environment Canada Health Canada March 2015 1 Cat. No.: En14-223/2015E-PDF ISBN 978-1-100-25931-4 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • Exercise due diligence in ensuring the accuracy of the materials reproduced; • Indicate both the complete title of the materials reproduced, as well as the author organization; and • Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the author. For more information, please contact Environment Canada’s Inquiry Centre at 1-800- 668-6767 (in Canada only) or 819-997-2800 or email to [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2015. Aussi disponible en français 2 Synopsis Pursuant to section 74 of the Canadian Environmental Protection Act, 1999 (CEPA 1999), the Ministers of the Environment and of Health have conducted a screening assessment on Trisiloxane, octamethyl-, Chemical Abstracts Service Registry Number1 107-51-7. This substance is referred to by its derived acronym, MDM, in the assessment. MDM was identified as a high priority for screening assessment and included in the Challenge initiative under the Chemicals Management Plan because it was found to meet the ecological categorization criteria for persistence, bioaccumulation potential and inherent toxicity to non-human organisms and was believed to be in commerce in Canada.
    [Show full text]
  • Alkylimido Complexes of Transition Metals
    ALKYLIMIDO COMPLEXES OF TRANSITION METALS A thesis submitted by CINDY JOANNE LONGLEY, B.Sc., A.R.C.S. for the DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF LONDON Department of Chemistry Imperial College of Science & Technology London SW7 2AY July 1988 ABSTRACT The sodium/amalgam reduction of (B^N^ReCOSiN^) in hexane gives the dimeric rhenium(VI) complex, [(B^N^ReCii-NBu1-)^, which has been structurally characterised. This represents the first full report of a homoleptic transition metal imido complex. The structures of (ButN) 3Re(OSiMe3) and (B^N^ReC^ have also been determined. The latter complex reacts with silver acetate to give (B^N^ReCOAc^. The synthesis of a range of organometallic rhenium(VII) complexes, (ButN) 3Re(aryl) (aryl = o-tol, xylyl, mes, Ph, p-Bu^h), from (Bu^N^ReCOSiN^) and the appropriate Grignard reagent is reported. Treatment of these complexes with HC1 yields the corresponding dichloro-complexes, (B^N ^ReC^aryl). The crystal structure of (B^N^ReC^Ctf-tol) reveals a square pyramidal geometry with one linear and one bent imido ligand, which formally suggests a 16-electron configuration. The solid state structure of (B^N^ReC^Ph shows a trigonal bipyramidal molecule, with equatorial imido groups. The reaction of (B^N ^ReC^ with o-tolylmagnesium bromide gives (B utN) 2Re(0- tol)3, whereas with mesitylmagnesium bromide reduction occurs to produce (ButN) 2Re(mes)2 * This paramagnetic d} species has been oxidised chemically to give [(ButN) 2Re(mes)2]X (X = PF^, OTf). The results of preliminary investigations into the insertion chemistry of these complexes are presented.
    [Show full text]
  • Chemical Inventory
    Name CAS Number SOP Status Supplier Size Qt. Location Received Purchaser Hazards (1,3-bis)2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene[2-(i-propoxy)-5-(N,N-dimethyl aminosulfonyl)phenyl]methylene Ru(II) dichloride918870-76-5 100mg 1 Storage # 3 (2-bromoethyl) benzene 98% 103-63-9 100G 2 Storage # 3 (3-aminopropyl)triethoxysilane 919-30-2 Sigma 100 mL 1 Storage #3 Apr-13 Stephanie Flammable, toxic, corrosive (3-aminopropyl)trimethoxysilane 13822-56-5 Sigma 100 mL 1 small fridge May-13 Stephanie Corrosive, irritant (3-iodopropyl)trimethoxysilane 14867-28-8 1 Storage # 2 (3-mercaptopropyl) trimethoxysilane 95% 4420-74-0 25g 1 Shelf # 3 (3-mercaptopropyl)-trimethoxysilane 95% 4420-74-0 25G 2 Storage # 2 (iodomethyl)trimethylsilane 4206-67-1 5mL 1 Storage # 2 (Propan-2-yloxy) benzene 2741-16-4 Enamine 1g 1 Storage # 3 Nov-14 Zach (Trimethylsilyl)methyllithium, 1.0M solution in pentane 1822-00-0 SOP on file-Lithium reagents Aldrich 50ml 1 Large fridge Highly flammable 0.5% Rhodium on 1/8 Alumina pellets 7440-16-6 25g 2 Shelf # 1 1% Pt-Al-1DR 7440-06-4 74292-90-5 0.05kg 1 Shelf # 1 1-(2-hydroxyethyl)-2-pyrolidinone 98% 3445-11-2 5ml 2 Storage # 3 1-(Trimethylsiloxy)cyclohexene 6651-36-1 Alfa 1g 1 Small fridge Mar-14 Bethany 1,1,1,3,3,3-Hexafluoro-2-propanol, 99+% 920-66-1 25g 1 Storage # 4 1,1,1,3,3,3-Hexafluoro-2-propanol-d9, 99 atom%D 38701-74-5 1g 2 Storage #7 1,1,1,3,3,3-hexamethyl-disilane 99.9% 1450-14-2 100mL 2 Storage # 2 1,1,2,2-Tetra chloroethane-D2 (D, 99.6%) 33685-54-0 SOP on file- Acutely toxic chem.
    [Show full text]
  • Hexamethyldisiloxane (HMDS)1 OSPAR Commission 2004
    Hazardous Substances Series ------------------------------------------------------------------------------------------------------------------------------------------- Hexamethyldisiloxane (HMDS)1 OSPAR Commission 2004 1 OSPAR 2007 agreed to deselect Hexamethyldisiloxane (HMDS) from the List of Chemicals for Priority Action (OSPAR 07/24/1, §8.3). OSPAR Commission, 2004: OSPAR background document on hexamethyldisiloxane ____________________________________________________________________________________________ The Convention for the Protection of the Marine Environment of the North-East Atlantic (the “OSPAR Convention”) was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992, The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain. La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l’Irlande, l’Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. © OSPAR Commission, 2004. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated. © Commission OSPAR, 2004. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l’Editeur, sous réserve que l’origine de l’extrait soit clairement mentionnée.
    [Show full text]
  • The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Standards 129
    nr 2002:2 The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and The Dutch Expert Committee on Occupational Standards 129. Chlorotrimethylsilane Hans Stouten, Fons Rutten, Iris van de Gevel and Flora de Vrijer Nordic Council of Ministers arbete och hälsa | vetenskaplig skriftserie isbn 91-7045-630-5 issn 0346-7821 http://www.niwl.se/ National Institute for Working Life The National Institute for Working Life is Sweden’s national centre for work life research, development and training. The labour market, occupational safety and health, and work organi- sation are our main fields of activity. The creation and use of knowledge through learning, information and documentation are important to the Institute, as is international co-operation. The Institute is collaborating with interested parties in various develop- ment projects. The areas in which the Institute is active include: • labour market and labour law, • work organisation, • musculoskeletal disorders, • chemical substances and allergens, noise and electromagnetic fields, • the psychosocial problems and strain-related disorders in modern working life. ARBETE OCH HÄLSA Editor-in-chief: Staffan Marklund Co-editors: Mikael Bergenheim, Anders Kjellberg, Birgitta Meding, Bo Melin, Gunnar Rosén and Ewa Wigaeus Tornqvist © National Institut for Working Life & authors 2002 National Institute for Working Life S-112 79 Stockholm Sweden ISBN 91–7045–630–5 ISSN 0346–7821 http://www.niwl.se/ Printed at Elanders Gotab, Stockholm Preface An agreement has been signed by the Dutch Expert Committee on Occupational Standards (DECOS) of the Health Council of the Netherlands and the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals (NEG).
    [Show full text]
  • Method for Purifying Hexamethyldisiloxane
    turopaiscnes patentamt European Patent Office ® Publication number: 0 277 825 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION (gj) Application number: 88300907.8 © Int. CI.4: C 07 F 7/08 © Date of filing: 03.02.88 Qg) Priority: 03.02.87 JP 23325/87 @ Inventor: Imai, Takeshi 8-18, 2-chome Sakuradai © Date of publication of application : Ichihara-shi Chiba Prefecture (JP) 10.08.88 Bulletin 88/32 Suzuki, Masahiko 1-11, 4-chome Sakuradai @ Designated Contracting States: DE FR GB Ichihara-shi Chiba Prefecture (JP) ® Applicant: Toray Silicone Company, Ltd. Takahashi, Ikuzo 8, 2-chome Muro-machi Nihonbashi 5-3, 5-chome Aobadai Chuo-ku Tokyo 103 (JP) Ichihara-shi Chiba Prefecture (JP) Toida, Shuzo 22-10, 3-chome Sakuradai Ichihara-shi Chiba Prefecture (JP) §) Representative: Lewin, John Harvey et al Elkington and Fife High Holborn House 52/54 High Holborn London WC1V6SH (GB) (§4) Method for purifying hexamethyldisiloxane. (§) A method for purifying impure hexamethyldisiloxane comprising as a major portion hexamethyldisiloxane and as a minor portion a mixture of low-boiling organic solvents, other organosilicon compounds, and odor-producing materials is described. The method comprises (A) first, treating the impure hexamethyldisiloxane with a condensation catalyst to convert the organosilicon compounds to additional hexamethyldisilox- ane; (B) second, washing the treated impure hexamethyldisi- loxane with water; (C) third, separating a water phase from the washed impure hexamethyldisiloxane; (D) fourth, distilling the washed impure hexamethyldisiloxane to yield hexamethyldisi- loxane of enhanced purity; (E) fifth, contacting the hexamethyl- disiloxane of enhanced purity with acid clay at a temperature of greater than about 50° C; and (F) finally, contacting the acid slay treated hexamethyldisiloxane of enhanced purity treated in (E) with activated carbon to yield hexamethyldisiloxane with enhanced purity and minimal unpleasant odor.
    [Show full text]
  • Safety Assessment of Alkoxyl Alkyl Silanes As Used in Cosmetics
    Safety Assessment of Alkoxyl Alkyl Silanes as Used in Cosmetics Status: Draft Final Report for Panel Review Release Date: November 11, 2016 Panel Meeting Date: December 5-6, 2016 The 2016 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Lillian C. Becker, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 Washington, DC 20036-4702 ph 202.331.0651 fax 202.331.0088 [email protected] Commitment & Credibility since 1976 MEMORANDUM To: CIR Expert Panel and Liaisons From: Lillian C. Becker, M.S. Scientific Analyst and Writer Date: November 11, 2016 Subject: Safety Assessment of Alkoxyl Alkyl Silanes as Used in Cosmetics Attached is the draft final report of Alkoxyl Alkyl Silanes as used in cosmetics. [alalsi122016Rep] These four ingredients are grouped because they are structurally related as silanes bearing both simple alkyl and simple alkoxyl groups. These ingredients function as binders, skin-conditioning agents – miscellaneous, and skin-conditioning agents – emollient. In June 2016, the Panel issued a tentative report with the conclusion that these ingredients are safe in cosmetics in the present practices of use and concentration described in this safety assessment. The Panel discussed the use of these ingredients as surface modifiers, the presence of residual starting materials (e.g., disilazane), and the use of inference (read- across) in assessing safety.
    [Show full text]
  • Thesis Analysis Of
    THESIS ANALYSIS OF OCTAMETHYLCYCLOTETRASILOXANE AND DECAMETHYLCYCLOPENTASILOXANE IN WASTEWATER, SLUDGE AND RIVER SAMPLES BY HEADSPACE GAS CHROMATOGRAPHY/MASS SPECTROMETRY Submitted by Yu Zhang Department of Civil and Environmental Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Summer 2014 Master’s Committee: Advisor: Pinar Ömür-Özbek Kenneth Carlson Gregory Dooley Copyright by Yu Zhang 2014 All Rights Reserved ABSTRACT ANALYSIS OF OCTAMETHYLCYCLOTETRASILOXANE AND DECAMETHYLCYCLOPENTASILOXANE IN WASTEWATER, SLUDGE AND RIVER SAMPLES BY HEADSPACE GAS CHROMATOGRAPHY/MASS SPECTROMETRY Siloxanes are commonly used in cosmetic and personal care products, healthcare products and many industrial applications. Because siloxanes are persistent, they end up in the wastewater and go untreated through the wastewater treatment units, which lead to contamination of the surface waters through effluent discharge. Siloxanes tend to be adsorbed onto or absorbed by the activated sludge in the wastewater treatment process. In the digesters, the siloxanes volatilize and accumulate in the biogas, which leads to mechanical problems due to scaling. The two most common siloxanes detected in wastewaters and sludge are: octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5). For this study, the D4 and D5 in wastewater and sludge samples were monitored using headspace gas chromatography/mass spectrometry. Samples were collected from the City of Loveland Wastewater Treatment Plant (WWTP), Loveland, CO and the Drake Wastewater Reclamation Facilities (WWRF), Fort Collins, CO. The levels of D4 were in the range of 0.7-11.3 ng·mL-1 in wastewater and 0.3-1.8 µg·g-1 dry solid in the sludge from Drake WWRF; 1.0-6.7 ng·mL-1 in wastewater and 0.3-1.7 µg·g-1 dry solid in the sludge from Loveland WWTP.
    [Show full text]