Silicon-Based Reducing Agents

Total Page:16

File Type:pdf, Size:1020Kb

Silicon-Based Reducing Agents Gelest, Inc. Silicon-Based Reducing Agents GeraldGerald L. LarsonLarson ViceVice President, President, Research Research && Development Development Materials for the reduction of: Aldehydes Ketones Acetals Ketals Esters Lactones Thioesters Enamines Imines Acids Amides Halides Olefi ns Metal Halides Supplement to the Gelest Catalog, “Silicon, Germanium & Tin Compounds, Metal Alkoxides and Metal Diketonates” which is available on request. 1 AZmax TEL: 035543-1630 • FAX: 03-5543-0312 • www.azmax.co.jp (215) 547-1015 • FAX: (215) 547-2484 • www.gelest.com 127 Gelest, Inc. SILICON-BASED REDUCING AGENTS Introduction The widely used organometallic-based reducing agents can be broadly classifi ed as either ionic, such as lithium aluminum hydride and sodium borohydride, or free-radical such as tri-n-butyltin hydride. The mechanistic differences between these two classes of reducing agents very often complement one another in their ability to reduce organic substrates. Organosilanes have been found to possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed of than other reagents. Their reductive abilities are accomplished by changes in the nature of the groups attached to silicon, which can modify the character of the Si-H bond in the silane. For example, the combination of a triethylsilane and an acid has proven to be excellent for the reduction of substrates that can generate a “stable” carbenium ion intermediate. Examples of substrates that fall into this class are olefi ns, alcohols, esters, lactones, aldehydes, ketones, acetals, ketals, and other like materials. On the other hand triphenylsilane and especially tris(trimethylsilyl)silane have proven to be free-radical reducing agents that can substitute for tri-n-butyltin hydride. The reductions with silanes can take place with acid catalysis in which the silane provides the hydride to a carbenium ion intermediate. This is often the situation in the reduction of carbonyls, ketals, acetals and similar species. Additionally, the silane reductions can also be carried out with fl uoride ion catalysis to generate a silane with more hydridic character. Some of the key reductions possible with silanes are summarized in Table 1. AZmax TEL: 035543-1630 • FAX: 03-5543-0312 • www.azmax.co.jp (215) 547-1015 • FAX: (215) 547-2484 • www.gelest.com 128 2 Gelest, Inc. General Considerations Hydridosilanes are readily produced on an industrial scale through the use of Grignard chemistry starting with trichlorosilane, methyldichlorosilane, and dimethylchlorosilane, among others, as key raw materials. Alternatively, the Si-X (X = primarily Cl or OR) bond can be reduced to Si-H. The organosilanes are basically hydrocarbon-like in that they are stable to water, are, in general, fl ammable and are lipophilic. In contrast to hydrocarbons, the low molecular weight silanes such as monosilane, methylsilane, and dichlorosilane are pyrophoric. The silanes will react with base or, more slowly, with acid to give the corresponding siloxane with the evolution of hydrogen gas. They show a strong, characteristic, carbonyl-like absorption in the infrared at about 2200 cm-1.1 The metallic nature of silicon and its low electronegativity relative to hydrogen - 1.8 versus 2.1 on the Pauling scale - lead to polarization of the Si-H bond such that the hydrogen is hydridic in nature. This provides an ionic, hydridic reducing agent that is milder than the usual aluminum-, boron-, and other metal-based hydrides. Thus, triethylsilane, among others, has been used to provide the hydride in Lewis acid-catalyzed reductions of various carbenium ion precursors. In addition, the Si-H bond can be employed in various radical reductions wherein the silane provides the hydrogen radical. Table 2 shows the Si-H bond strengths for several silanes. From these data the rather wide variation in the Si-H bond strengths from tris(trimethylsilyl)silane on the low-energy end to trifl uorosilane on the high-energy end can be noted. This is yet another example of the extraordinary effect that groups attached to silicon can have on the chemistry of the silane and that these effects can go beyond the simple steric effects that have been so successfully applied with the silicon-based blocking agents.2-4 TABLE 2 BOND STRENGTHS OF VARIOUS HYDRIDOSILANES Compound Product Code Bond Strength Reference kJ mol-1 kcal mol-1 F3Si-H SIT8373.0 419 100 5 Et3Si-H SIT8330.0 398 95 6 Me3Si-H SIT8570.0 398 95 7 H3Si-H SIS6950.0 384 92 6 Cl3Si-H SIT8155.0 382 91 5 PhMeHSi-H SIP6742.0 382 91 6 Me3SiSiMe2-H not offered 378 90 6 PhH2Si-H SIP6750.0 377 90 6 (MeS)3Si-H not offered 366 87 6 H3SiSiH2-H SID4594.0 361 86 5 (Me3Si)3Si-H SIT8724.0 351 84 6 Although triethylsilane has been the most popular of the silicon-based reducing agents, in principal any Si-H- containing system can provide the hydride for many or most of these reductions. Considerations would include availability, economics, and silicon-containing by-products. The silicon-containing by-products are usually the silanol or disiloxane in the case of the trisubstituted silanes, or silicones in the case of the di- or monosubstituted silane reducing agents. Such considerations can result in greater ease of handling and purifi cation of the fi nal product. Silicon-based reductions have been reviewed, though never in a comprehensive manner.6,8-13 A comprehensive review has been accepted for publication.14 AZmax TEL: 035543-1630 • FAX: 03-5543-0312 • www.azmax.co.jp (215) 547-1015 • FAX: (215) 547-2484 • www.gelest.com 3 129 Gelest, Inc. Silicon-Based Radical Reductions Griller and Chatgilialoglu6 realized that the low bond energy of the Si-H bond in tris(trimethylsilyl)silane compared well with that of the Sn-H bond in tri-n-butyltin hydride (322 kJmol-1; 77 kcal mol-1), and that this reagent should, therefore, be a viable alternative for radical reductions and one that would avoid the potential problems of working with toxic tin materials and trace tin-containing impurities in the fi nal product. This proved to be the case, and a number of radical reductions with tris(trimethylsilyl)silane have been reported and reviewed.15,16 Included among these are the reductions of organic halides, 17-19 esters,20 xanthates, selenides, sulfi des, thioethers, and isonitriles.21 As an example of a free radical reduction, the diphenylsilane reduction of thioesters to ethers has been recently reported.22 This reaction uses the catalytic triphenyltin hydride as the actual reducing agent. S 1) Ph2SiH2 O Ph3SnH cat. O Et3B/rt/1h 2) AIBN/85-100 °C 60% Ionic Reductions with Silanes – General Considerations As pointed out above the silanes provide a mild form of the hydride and as such can be useful in various hydridic reductions. The general and, admittedly simplifi ed, view of such reductions can be visualized as shown below where a carbenium ion is reduced by a silane. In this scenario, the carbenium ion receives the hydride from the silane, and the silane takes on the leaving group from the carbon center. R3C-X + R3Si-H R3C-H + R3Si-X It has been shown that in the gas phase the reaction shown below is exothermic by approximately 8 kcal/mol indicating that the trimethylsilicenium ion is, at least in the gas phase, more stable than the tert-butyl carbenium ion.23 Although the existence of free silicenium ions do not exist in solution under normal, “unbiased” conditions, it can be assumed that the silicon center is free to take on considerable positive charge in its reactions. Reductions based on this premise include those of olefi ns, ketones, aldehydes, esters, organic halides, acid chlorides, acetals, ketals, alcohols as well as metal salts. + + (CH3)3C + (CH3)3Si-H (CH3)3C-H + (CH3)3Si Silane Reduction of Alcohols to Alkanes The general equation for the silane reduction of alcohols to alkanes is illustrated below. The reaction proceeds best when the alcohol can lead to a stabilized carbenium ion. Thus, secondary and tertiary aliphatic alcohols and benzylic alcohols are readily reduced. Trialkyl substituted silanes are more reactive than dialkylsilanes and di- or triarylsilanes. Typical and highly effective conditions for these reductions are treatment of the alcohol with the silane and trifl uoroacetic acid in dichloromethane. Triethylsilane is often the silane of choice due to its ease of handling and high reactivity.23,24 Acid R3C-OH + R3Si-H R C-H + R Si-OH and/or R Si-O-SiR catalyst 3 3 3 3 The reduction of secondary alcohols with a silane and a protic acid does not occur. These reductions require the use of a strong Lewis acid such as boron trifl uoride or aluminum chloride.25,26 AZmax TEL: 035543-1630 • FAX: 03-5543-0312 • www.azmax.co.jp (215) 547-1015 • FAX: (215) 547-2484 • www.gelest.com 130 4 Gelest, Inc. Primary aliphatic alcohols are not reduced with silanes.27 Benzylic alcohols, on the other hand, are reduced under rather mild conditions to the corresponding toluene derivative.28 OH Me t t Bu Bu t t R3Si-H Bu Bu CH2Cl2/TFA tBu tBu The selective reduction of a benzylic alcohol in the presence of benzyl ethers, a tetrahydrofuran and an acetal has been reported.29 OEt OEt BnO BnO O O Et3Si-H/TFA OBn HO OBn CH2Cl2/ rt MeO MeO 76% Primary alcohols can be reduced to the alkane when the reaction is catalyzed by the very strong Lews acid, tris(pentafl uorophenyl)borane. The reaction requires two equivalents of the silane as the fi rst equivalent serves to silylate the alcohol.
Recommended publications
  • Chlorotrimethylsilane
    Chlorotrimethylsilane Health-based recommended occupational exposure limit Gezondheidsraad Voorzitter Health Council of the Netherlands Aan de Staatssecretaris van Sociale Zaken en Werkgelegenheid Onderwerp : Aanbieding adviezen over Chloortrimethylsilaan en Butylacetaten Uw kenmerk : DGV/MBO/U-932542 Ons kenmerk : U 2173/AvdB/tvdk/459-D35 Bijlagen : 2 Datum : 15 november 2001 Mijnheer de Staatssecretaris, Bij brief van 3 december 1993, nr. DGV/BMO-U-932542, verzocht de Staatssecretaris van Welzijn, Volksgezondheid en Cultuur namens de Minister van Sociale Zaken en Werkgelegenheid om gezondheidskundige advieswaarden af te leiden ten behoeve van de bescherming van beroepsmatig aan stoffen blootgestelde personen. Per 1 januari 1994 heeft mijn voorganger daartoe een commissie ingesteld die de werkzaamheden voortzet van de Werkgroep van Deskundigen (WGD). De WGD was een door de genoemde Minister ingestelde adviescommissie. Hierbij bied ik u - gehoord de Beraadsgroep Gezondheid en Omgeving - twee publicaties aan van de commissie over chloortrimethylsilaan en butylacetaten. Deze publicaties heb ik heden ter kennisname aan de Minister van Volksgezondheid, Welzijn en Sport en aan de Minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer gestuurd. Hoogachtend, w.g. prof. dr JA Knottnerus Bezoekadres Postadres Parnassusplein 5 Postbus 16052 2511 VX Den Haag 2500 BB Den Haag Telefoon (070) 340 75 20 Telefax (070) 340 75 23 Chlorotrimethylsilane Health-based recommended occupational exposure limit report of the Dutch Expert Committee on Occupational Standards, a committee of the Health Council of The Netherlands to the Minister and State Secretary of Social Affairs and Employment No. 2001/05OSH, The Hague, 15 November 2001 The Health Council of the Netherlands, established in 1902, is an independent scientific advisory body.
    [Show full text]
  • S-Block Amidoboranes: Syntheses, Structures, Reactivity and Applications Cite This: Chem
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue s-Block amidoboranes: syntheses, structures, reactivity and applications Cite this: Chem. Soc. Rev., 2016, 45, 1112 Tom E. Stennett and Sjoerd Harder* Metal amidoborane compounds of the alkali- and alkaline earth metals have in recent years found applications in diverse disciplines, notably as hydrogen storage materials, as reagents for the reduction of organic functional groups and as catalysts and intermediates in dehydrocoupling reactions. These functions are connected by the organometallic chemistry of the MNR2BH3 group.† This review focusses on central aspects of the s-block amidoborane compounds – their syntheses, structures and reactivity. Well-defined amidoborane complexes of group 2 metals are now available by a variety of solution-phase routes, which has allowed a more detailed analysis of this functional group, which was previously largely confined to solid-state materials chemistry. Structures obtained from X-ray crystallography have begun to provide increased understanding of the fundamental steps of key processes, including amine–borane Creative Commons Attribution 3.0 Unported Licence. dehydrocoupling and hydrogen release from primary and secondary amidoboranes. We review structural parameters and reactivity to rationalise the effects of the metal, nitrogen substituents and supporting Received 10th July 2015 ligands on catalytic performance and dehydrogenative decomposition routes. Mechanistic features of DOI: 10.1039/c5cs00544b key processes involving amidoborane compounds as starting materials or intermediates are discussed, alongside emerging applications such as the use of group 1 metal amidoboranes in synthesis. Finally, the www.rsc.org/chemsocrev future prospects of this vibrant branch of main group chemistry are evaluated.
    [Show full text]
  • Advances in the Understanding of Low Molecular Weight Silicon Formation and Implications for Control by Amc Filters
    APPLICATION NOTE ADVANCES IN THE UNDERSTANDING OF LOW MOLECULAR WEIGHT SILICON FORMATION AND IMPLICATIONS FOR CONTROL BY AMC FILTERS Authors: Jürgen M. Lobert, Philip W. Cate, David J. Ruede, Joseph R. Wildgoose, Charles M. Miller and John C. Gaudreau Abstract Introduction Trimethylsilanol (TMS) is a low molecular Silicon containing hydrocarbons are a class of weight / low boiling point silicon-containing, AMC causing persistent degradation of UV exposure airborne contaminant that has received increased tool optical surfaces.1,2,3 Organic silicon compounds interest over the past few years as an important are efficiently split into components by 193 nm UV cause for contamination of optical surfaces in light, commonly used in photolithography appli- lithography equipment. cations. The resulting, reactive silicon atoms can recombine with oxygen to create a layer of amor- TMS is not captured well by carbon-based filters, phous silicon dioxide on optical surfaces such as and hexamethyldisiloxane (HMDSO), even though exposure tool lenses.3,4 This haze layer can be captured well, can be converted to TMS when using difficult to remove and may require lens exchange acidic filter media commonly used for ammonia and polishing, potentially destroying optical coatings removal. TMS and HMDSO coexist in a chemical and creating substantial tool downtime and cost. equilibrium, which is affected by the acidity and The importance of TMS and related refractory moisture of their environment. species in optical degradation is one reason for This publication shows that HMDSO is converted the low level of allowable refractory compounds to TMS by acidic media at concentrations typically (100 ppt) specified in the International Technology found in cleanroom environments.
    [Show full text]
  • Flexible Solar Cells
    Flexible Solar Cells A Major Qualifying Project Submitted to the Faculty Of Worcester Polytechnic Institute In Partial Fulfillment of the requirements for the Degree in Bachelor of Science In Mechanical Engineering By Francis LaRovere Edward Peglow Michael McMahon Project Advisor Professor Pratap Rao, Advisor This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its w ebsite without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. 1 Table of Contents Table of Figures ............................................................................................................................................. 5 Table of Tables .............................................................................................................................................. 6 Acknowledgments ......................................................................................................................................... 7 Abstract ......................................................................................................................................................... 8 1. Introduction .............................................................................................................................................. 9 2. Scope ......................................................................................................................................................
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,56,31 METHOD of REDUCING and by DRO GENATING CHEMICA, COMPOUNDS by REACTING WITE: ALUMNUM-CONAN NG BYOFREDES Hermann E
    Patented Nov. 27, 1951 2,576,31 UNITED STATES PATENT OFFICE 2,56,31 METHOD OF REDUCING AND BY DRO GENATING CHEMICA, COMPOUNDS BY REACTING WITE: ALUMNUM-CONAN NG BYOFREDES Hermann E. Schlesirager and Albert E. Finholt, Chicago, Ill.; said Schlesinger assignor of one fourth to. Edaa, M. Schlesinger and said Fin holt assignor of one-fourth to Marion H. Finholt No Drawing. Application June 3, 1947, Serial No. 752,286 2 (Cairns. (C. 260-638) 2 This invention relates to methods of making LiAlH4. Although this new compound will be aluminum-containing hydrides and the reactions called lithium aluminum hydride in the present thereof, and also relates to products prepared by application, it may also be called lithium alumi said methods. nohydride or lithium tetrahydroaluminide. In This application is a continuation-in-part of one method of making lithium aluminum hydride, our copending application Serial No. 717,312, filed lithium hydride is reacted with an aluminum December 19, 1946, now Patent No. 2,567,972, halide such as aluminum chloride in the presence issued September 18, 1951. of a suitable liquid medium such as an ether. If We have discovered that these compounds, es the reagents are mixed in the proportions of the pecially the ether soluble lithium aluminum hy 0 following equation, or if an excess of lithium hy dride, are extremely useful chemical reagents. dride is used, the reaction proceeds as follows: - They may be employed for replacing halogens or Organic radicals by hydrogen in a great variety 4Li H--AlCl3->LiAlH4--3LiCl of compounds. As a result, their discovery has led to new methods, safer, more convenient, and 16 The liquid medium used is one in which one of more efficient than those hitherto known, for pro the reaction products, e.
    [Show full text]
  • Preparations, Solution Composition, and Reactions of Complex Metal Hydrides and Ate Complexes of Zinc, Aluminum, and Copper a Th
    PREPARATIONS, SOLUTION COMPOSITION, AND REACTIONS OF COMPLEX METAL HYDRIDES AND ATE COMPLEXES OF ZINC, ALUMINUM, AND COPPER A THESIS Presented to The Faculty of the Division of Graduate Studies By John Joseph Watkins In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry Georgia Institute of Technology April, 1977 PREPARATIONS, SOLUTION COMPOSITION, AND REACTIONS OF COMPLEX METAL HYDRIDES AND ATE COMPLEXES OF ZINC, ALUMINUM, AND COPPER Approved: Erlin^rbrovenstein, Jr., Chairman H. 0. House E. C. Ashby Date approved by Chairman £~^3c>l~l~f ii ACKNOWLEDGMENTS Many individuals and organizations have contributed to the successful completion of this thesis. The following acknowledgments are not complete, but I hope I have expressed my gratitude to the people and organizations upon whom I depended the most. The School of Chemistry supported my first three years of work by the award of an NSF fellowship. My last year of work was generously supported by the St. Regis Paper Company, who graciously gave me leave of absence with salary so that the requirements for this thesis could be completed. This stipend and tuition support of my work freed me to concentrate on research without the financial difficulties encountered by many graduate students. All the faculty and staff of the School of Chemistry supported my research. I particularly would like to recognize Professor W. M. Spicer, Professor J. A. Bertrand, Professor C. L. Liotta, Mr. Gerald O'Brien, and Mr. D. E. Lillie. Post-doctoral assistants and fellow graduate students who contributed to my experience at the Georgia Insti­ tute of Technology include Dr.
    [Show full text]
  • Reversible Coordination of Boron−, Aluminum−, Zinc−, Magnesium
    Forum Article pubs.acs.org/IC Reversible Coordination of Boron−, Aluminum−, Zinc−, − − Magnesium , and Calcium Hydrogen Bonds to Bent {CuL2} Fragments: Heavy σ Complexes of the Lightest Coinage Metal Alexandra Hicken,†,‡ Andrew J. P. White,‡ and Mark R. Crimmin*,‡ † ‡ SSCP DTP, Grantham Institute, and Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K. *S Supporting Information ABSTRACT: A series of copper(I) complexes bearing electron-deficient β- diketiminate ligands have been prepared. The study includes [{{ArNC(CR3)}2CH}- η2 · · Cu( -toluene)n] (Ar = Mes, R = F, n = 0.5, [12 tol]; Ar = C6F5, R = Me, n =1,[2 · − · tol]; Ar = 2,6-Cl2C6H3,R=H,n = 0.5, [32 tol]). Reactions of [1 3n tol] with boranes, alanes, a zinc hydride, a magnesium hydride, and a calcium hydride generate the corresponding σ complexes ([1−3·B], [3·B′], [3·Al], [3·Al′], [1−3·Zn], [1·Mg], and [1·Ca]). These species all form reversibly, being in equilibrium with the arene solvates in solution. With the exception of the calcium complex, the complexes have all been characterized by single-crystal X-ray diffraction studies. In solution, the σ-hydride of the aluminum, zinc, magnesium, and − − − σ calcium derivatives resonates between 0.12 and 1.77 ppm (C6D6 or toluene-d8, 193 298 K). For the -borane complexes, the hydrides are observed as a single resonance between 2 and 3.5 ppm (C6D6, 298 K) and bridging and terminal hydrides rapidly exchange on the NMR time scale even at 193 K. Quantification of the solution dynamics by van’tHoff analysis yields expectedly small values of ΔH° and negative values of ΔS° consistent with weak binding and a reversible process that does not involve aggregation of the copper species.
    [Show full text]
  • Decomposition of Hexamethyldisilazane on Hot Metal Filaments and Its Gas-Phase Chemistry in a Hot-Wire Chemical Vapor Deposition Reactor
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-09-04 Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor Ampong, Eric Ampong, E. (2019). Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/110892 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor by Eric Ampong A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN CHEMISTRY CALGARY, ALBERTA SEPTEMBER, 2019 © Eric Ampong 2019 Abstract Hot-wire chemical vapor deposition (HWCVD) has been used to produce silicon- containing thin films, nanomaterials, and functional polymer coatings for applications in microelectronic and photovoltaic devices. Silicon carbonitride (SiCyNz) thin films, deposited by HWCVD, have found a wide range of applications due to their nonstoichiometric component that exhibits unique properties from a combination of SiC and Si3N4 binary compounds.
    [Show full text]
  • Física Y Química Physics &Chemistry
    O in English Learn 3ES SAMPLE FísicaPhysics y& QuímicaChemistry EUGENIO MANUEL FERNÁNDEZ AGUILAR CARLOS JAVIER REINA JIMÉNEZ MANUEL GARCÍA DÍAZ CARLOS LOBATO FERNÁNDEZ MYRIAM QUIJADA SÁNCHEZ DIEGO CASTELLANO SÁNCHEZ Adapted by: MARÍA CONCEPCIÓN REYES MERLO TEACHER’S BOOK algaida ANDALUSIA Oin English 3ESLearn FísicaPhysics y& QuímicaChemistry EUGENIO MANUEL FERNÁNDEZ AGUILAR CARLOS JAVIER REINA JIMÉNEZ MANUEL GARCÍA DÍAZ CARLOS LOBATO FERNÁNDEZ MYRIAM QUIJADA SÁNCHEZ DIEGO CASTELLANO SÁNCHEZ Adapted by: MARÍA CONCEPCIÓN REYES MERLO TEACHER’S BOOK algaida ANDALUSIA Publishing coordination: Luis Pino García. Editor: María Prior Venegas. Design and layout: Alegría Sánchez G. and Aurora Tristán López. Cover design: Alegría Sánchez G. Translator: Owen Howard. Corrections: Marina Temprano Benítez. Illustrations: Isabel Correa, Joaquín González, Kaffa, Juan Pablo Mora, Juan Venegas and Luis Domínguez. Picture editing: Olga Sayans. Photographs: ge Fotostock (Ann Ronan Pictures, Artepics, BABAK TAFRESHI, Bridgeman Images, De Agostini / Biblioteca Ambrosiana, Edward Kinsman, EMILIO SEGRE VISUAL ARCHIVES/AMERICAN INSTITUTE, Giphotostock Images, INTERFOTO / Sammlung Rauch, Jack Fields, LAWRENCE LAWRY, LOUISE BARKER, Mary Evans Picture Library, Mary Evans/AF Archive/Cinetext/Richter, NYPL, Science Museum/SSPL, Science Photo Library, Science Source, See caption, SHEILA TERRY/SCIENCE, SM/ SSPL, Ted Kinsman, The Granger Collection, UNIVERSITY OF CALIFORNIA, World History Archive/Ann Ronan Picture Library), Agencia EFE (EFE/ lafototeca.com), Alamy (Eden
    [Show full text]
  • Cobalt Precipitation by Reduction with Sodium
    COBALT PRECIPITATION BY REDUCTION WITH SODIUM BOROHYDRIDE by Jianming Lu B. Eng., Northeastern University of Technology, P. R. China, 1983 M. Eng., Shanghai University of Technology, P. R. China, 1990 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Metals and Materials Engineering We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 1995 © Jianming Lu, 1995 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) 11 ABSTRACT The reaction of cobalt reduction with borohydride is very complicated. Various authors obtained different reaction stoichiometries and have proposed a number of mechanisms. There are conflicting claims about the removal of cobalt from zinc electrolyte with sodium borohydride. The present research has focused on the stoichiometry of cobalt reduction with borohydride and on the removal of cobalt from zinc sulphate solution. Cobalt reduction with borohydride releases hydrogen ions resulting in a decrease in the pH of the solution. The efficiency of cobalt reduction increased with increasing concentration of NaOH in the reducing solution.
    [Show full text]
  • Beryllium Chloride Apparatus. Figure M
    Durham E-Theses Organic and hydride chemistry of beryllium Bell, N.A How to cite: Bell, N.A (1964) Organic and hydride chemistry of beryllium, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8894/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk ORGANIC AND HYDRIDE CHEMISTRY OF BERYLLIUM oy N.A. BELL. A thesis.submitted for the Degree of Doctor of Philosophy in the University- of Durham. June 196^-. I Acknowledgements. The author wishes to express his sincere thanks to Professor G-.E. Coates, M.A., D.Sc., F.R.I.C., under whose direction this research was carried out, for his constant encouragement and extremely valuable advice. ' The author is also indebted to the Department of Scien• tific and Industrial Research for a Research StudiSntshrp. I I Memorandum. The work described in this thesis was carried out in the University of Durham between September 19b1 and May 196A-.
    [Show full text]
  • Magnesium and Zinc Hydride Complexes: from Fundamental Investigations to Potential Applications in Hydrogen Storage and Catalysis
    University of Groningen Magnesium and zinc hydride complexes Intemann, Julia IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Intemann, J. (2014). Magnesium and zinc hydride complexes: From fundamental investigations to potential applications in hydrogen storage and catalysis. [S.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 02-10-2021 Reactivity studies Chapter 4 Reactivity studies This chapter contains investigations on the reactivity of the novel magnesium hydride clusters.
    [Show full text]