Hexamethyldisiloxane (HMDS)1 OSPAR Commission 2004

Total Page:16

File Type:pdf, Size:1020Kb

Hexamethyldisiloxane (HMDS)1 OSPAR Commission 2004 Hazardous Substances Series ------------------------------------------------------------------------------------------------------------------------------------------- Hexamethyldisiloxane (HMDS)1 OSPAR Commission 2004 1 OSPAR 2007 agreed to deselect Hexamethyldisiloxane (HMDS) from the List of Chemicals for Priority Action (OSPAR 07/24/1, §8.3). OSPAR Commission, 2004: OSPAR background document on hexamethyldisiloxane ____________________________________________________________________________________________ The Convention for the Protection of the Marine Environment of the North-East Atlantic (the “OSPAR Convention”) was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992, The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain. La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l’Irlande, l’Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. © OSPAR Commission, 2004. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated. © Commission OSPAR, 2004. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l’Editeur, sous réserve que l’origine de l’extrait soit clairement mentionnée. ISBN 1-904426-41-7 2 OSPAR Commission, 2004: OSPAR background document on hexamethyldisiloxane _______________________________________________________________________________________________ Contents Executive summary ........................................................................................................................................... 5 Récapitulatif....................................................................................................................................................... 6 I. Environmental properties.......................................................................................................................... 7 I.1. General substance information (physico-chemical properties) .................................................... 7 I.1.1. Melting point .................................................................................................................. 7 I.1.2. Boiling point ................................................................................................................... 7 I.1.3. Vapour pressure ............................................................................................................ 7 I.1.4. Solubility ........................................................................................................................ 7 I.1.5. Partition coefficient ........................................................................................................ 8 I.1.6. Summary ....................................................................................................................... 9 I.2. Degradation................................................................................................................................... 9 I.2.1. Abiotic degradation........................................................................................................ 9 I.2.2. Biodegradation ............................................................................................................ 10 I.3. Bioaccumulation.......................................................................................................................... 10 I.4. Aquatic toxicity ............................................................................................................................ 10 I.4.1. Water organisms ......................................................................................................... 10 I.4.2. Sediment-dwelling organisms ..................................................................................... 12 I.4.3. Terrestrial compartment .............................................................................................. 12 I.4.4. Ecotoxicity to micro-organisms.................................................................................... 12 I.4.5. Summary ..................................................................................................................... 12 I.5. Toxicological properties .............................................................................................................. 12 I.5.1. Reproduction studies................................................................................................... 12 I.5.2. Mutagenicity studies .................................................................................................... 13 I.5.3. Carcinogenic potential................................................................................................. 13 I.6. PBT assessment......................................................................................................................... 13 II. Information on sources of HMDS (production and uses) ....................................................................... 13 II.1. Production and import................................................................................................................. 16 II.2. Generation of HMDS from other silicon-containing substances................................................. 16 II.3. Reprocessing of HMDS by-product to hexamethyldisilazane, trimethylsilylurea and trimethylchlorosilane (trimethylsilylchloride – TMCS) ................................................................. 17 II.4. Uses of HMDS ............................................................................................................................ 18 II.5. Overall mass balance ................................................................................................................. 18 III. Concentrations in the environment......................................................................................................... 18 III.1. Exposure assessment................................................................................................................... 18 III.1.1. Release from production ............................................................................................. 18 III.1.2. Release from the generation of HMDS from other silicon-containing substances...... 18 III.1.3. Release from reprocessing of HMDS by-product........................................................ 19 III.1.4. Release from uses....................................................................................................... 19 III.2. Aquatic compartment .................................................................................................................. 19 III.2.1. Inland environment ...................................................................................................... 19 III.2.2. Marine environment..................................................................................................... 21 III.2.3. Terrestrial compartment .............................................................................................. 22 III.2.4. Atmosphere ................................................................................................................. 22 III.2.5. Secondary poisoning................................................................................................... 22 IV. Effects assessment................................................................................................................................. 23 IV.1. Aquatic compartment .................................................................................................................. 23 IV.1.1. Water column............................................................................................................... 23 IV.1.2. Sediment...................................................................................................................... 23 3 OSPAR Commission, 2004: OSPAR background document on hexamethyldisiloxane _______________________________________________________________________________________________ IV.2. Terrestrial compartment.............................................................................................................. 24 IV.3. Atmosphere................................................................................................................................. 24 IV.4. Secondary poisoning .................................................................................................................. 24 IV.4.1. Oral toxicity.................................................................................................................. 24 IV.4.2. PNEC for secondary poisoning ................................................................................... 25 V. Risk assessment....................................................................................................................................
Recommended publications
  • Chlorotrimethylsilane
    Chlorotrimethylsilane Health-based recommended occupational exposure limit Gezondheidsraad Voorzitter Health Council of the Netherlands Aan de Staatssecretaris van Sociale Zaken en Werkgelegenheid Onderwerp : Aanbieding adviezen over Chloortrimethylsilaan en Butylacetaten Uw kenmerk : DGV/MBO/U-932542 Ons kenmerk : U 2173/AvdB/tvdk/459-D35 Bijlagen : 2 Datum : 15 november 2001 Mijnheer de Staatssecretaris, Bij brief van 3 december 1993, nr. DGV/BMO-U-932542, verzocht de Staatssecretaris van Welzijn, Volksgezondheid en Cultuur namens de Minister van Sociale Zaken en Werkgelegenheid om gezondheidskundige advieswaarden af te leiden ten behoeve van de bescherming van beroepsmatig aan stoffen blootgestelde personen. Per 1 januari 1994 heeft mijn voorganger daartoe een commissie ingesteld die de werkzaamheden voortzet van de Werkgroep van Deskundigen (WGD). De WGD was een door de genoemde Minister ingestelde adviescommissie. Hierbij bied ik u - gehoord de Beraadsgroep Gezondheid en Omgeving - twee publicaties aan van de commissie over chloortrimethylsilaan en butylacetaten. Deze publicaties heb ik heden ter kennisname aan de Minister van Volksgezondheid, Welzijn en Sport en aan de Minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer gestuurd. Hoogachtend, w.g. prof. dr JA Knottnerus Bezoekadres Postadres Parnassusplein 5 Postbus 16052 2511 VX Den Haag 2500 BB Den Haag Telefoon (070) 340 75 20 Telefax (070) 340 75 23 Chlorotrimethylsilane Health-based recommended occupational exposure limit report of the Dutch Expert Committee on Occupational Standards, a committee of the Health Council of The Netherlands to the Minister and State Secretary of Social Affairs and Employment No. 2001/05OSH, The Hague, 15 November 2001 The Health Council of the Netherlands, established in 1902, is an independent scientific advisory body.
    [Show full text]
  • Advances in the Understanding of Low Molecular Weight Silicon Formation and Implications for Control by Amc Filters
    APPLICATION NOTE ADVANCES IN THE UNDERSTANDING OF LOW MOLECULAR WEIGHT SILICON FORMATION AND IMPLICATIONS FOR CONTROL BY AMC FILTERS Authors: Jürgen M. Lobert, Philip W. Cate, David J. Ruede, Joseph R. Wildgoose, Charles M. Miller and John C. Gaudreau Abstract Introduction Trimethylsilanol (TMS) is a low molecular Silicon containing hydrocarbons are a class of weight / low boiling point silicon-containing, AMC causing persistent degradation of UV exposure airborne contaminant that has received increased tool optical surfaces.1,2,3 Organic silicon compounds interest over the past few years as an important are efficiently split into components by 193 nm UV cause for contamination of optical surfaces in light, commonly used in photolithography appli- lithography equipment. cations. The resulting, reactive silicon atoms can recombine with oxygen to create a layer of amor- TMS is not captured well by carbon-based filters, phous silicon dioxide on optical surfaces such as and hexamethyldisiloxane (HMDSO), even though exposure tool lenses.3,4 This haze layer can be captured well, can be converted to TMS when using difficult to remove and may require lens exchange acidic filter media commonly used for ammonia and polishing, potentially destroying optical coatings removal. TMS and HMDSO coexist in a chemical and creating substantial tool downtime and cost. equilibrium, which is affected by the acidity and The importance of TMS and related refractory moisture of their environment. species in optical degradation is one reason for This publication shows that HMDSO is converted the low level of allowable refractory compounds to TMS by acidic media at concentrations typically (100 ppt) specified in the International Technology found in cleanroom environments.
    [Show full text]
  • Benzoic Acid
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Decomposition of Hexamethyldisilazane on Hot Metal Filaments and Its Gas-Phase Chemistry in a Hot-Wire Chemical Vapor Deposition Reactor
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-09-04 Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor Ampong, Eric Ampong, E. (2019). Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/110892 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Decomposition of Hexamethyldisilazane on Hot Metal Filaments and its Gas-phase Chemistry in a Hot-wire Chemical Vapor Deposition Reactor by Eric Ampong A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN CHEMISTRY CALGARY, ALBERTA SEPTEMBER, 2019 © Eric Ampong 2019 Abstract Hot-wire chemical vapor deposition (HWCVD) has been used to produce silicon- containing thin films, nanomaterials, and functional polymer coatings for applications in microelectronic and photovoltaic devices. Silicon carbonitride (SiCyNz) thin films, deposited by HWCVD, have found a wide range of applications due to their nonstoichiometric component that exhibits unique properties from a combination of SiC and Si3N4 binary compounds.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7.455,998 B2 Brandstadt Et Al
    US007455998B2 (12) United States Patent (10) Patent No.: US 7.455,998 B2 Brandstadt et al. (45) Date of Patent: Nov. 25, 2008 (54) METHODS FOR FORMING STRUCTURALLY 2004/OO7781.6 A1 4/2004 Brandstadt et al. DEFINED ORGANIC MOLECULES FOREIGN PATENT DOCUMENTS CA 2422600 * 3f2OO2 (75) Inventors: Kurt Friedrich Brandstadt, WO WO 90,09446 A 8, 1990 Frankenmuth, MI (US); Thomas WO WO 02/22842 A1 3, 2002 Howard Lane, Midland, MI (US); John WO WOO3/O542O5 A2 T 2003 C. Saam, Midland, MI (US); Joseph C. OTHER PUBLICATIONS McAuliffe, Sunnyvale, CA (US) J.N. Cha et al. “Silicatein Filaments and Subunits From a Marine Sponge Direct the Polymerization of Silica and Silcones. In vitro'. (73) Assignees: Dow Corning Corporation, Midland, PNAS 96: 361-365. (Jan. 1999).* MI (US); Genencor International, Inc., 1997 Sigma Catalog, pp. 652-653.* Palo Alto, CA (US) Bassindale et al., Enzyme-catalysed siloxane bond formation, Jour nal of Inorganic Biochemistry, May 21, 2003, pp. 401–406, Elsevier (*) Notice: Subject to any disclaimer, the term of this Inc. patent is extended or adjusted under 35 Fattaklhova et al., Fermentative Hydrolysis of the Silicon-Oxygen Bond, Access Russia, Inc. pp. 100-105. U.S.C. 154(b) by 480 days. Nishino et al., Enzymatic silicon oligomerization catalyzed by a lipid-coated lipase, The Royal Society of Chemistry 2002, pp. 2684 (21) Appl. No.: 10/791.951 2685. Bassindale et al., Biocatalysis of Siloxane Bonds, Polymer Preprints (22) Filed: Mar. 3, 2004 2003, 44(2), pp. 570-571. Bassindale et al: "Siloxane Biocatalysis. Polymer Preprints.” Mid (65) Prior Publication Data Mar.
    [Show full text]
  • Siloxanes in Biogas: Approaches of Sampling Procedure and GC-MS Method Determination
    molecules Article Siloxanes in Biogas: Approaches of Sampling Procedure and GC-MS Method Determination Grzegorz Piechota GP CHEM, Laboratory of Biogas Research and Analysis, Legionów 40a/3, 87-100 Toru´n,Poland; [email protected] Abstract: A new approach of siloxane sampling based on impinger, micro-impinger, adsorption on active carbon, and direct TedlarBag methods followed by gas chromatography-mass spectrometry (GC-MS) was developed for the analysis of three linear (L2–L4) and four cyclic (D3–D5) volatile methyl siloxanes (VMSs). Three kinds of organic liquid-medium characterized by different polarities, namely acetone, methanol, and d-decane as siloxanes trap were arranged in the experiment which is widely discussed below. Thus, the GC-MS equipped with SUPELCOWAX-10 capillary column was employed to perform monitoring of VMS content in the analyzed biogas samples originating from landfill, wastewater treatment plants, and agriculture biogas plants. In all samples that have undergone the analysis, cyclic and linear VMSs were found in quantities exceeding 107.9 and 3.8 mg/m3, respectively. Significant differences between siloxanes concentrations depending on biogas origin were observed. Moreover, the high range of linearity (0.1 to 70.06 mg/m3), low LoD (0.01 mg/m3), low LoQ (0.04 mg/m3), and high recovery (244.1%) indicate that the procedure and can be applied in sensitive analyses of silica biogas contaminants. In addition to the above, the impinger method of sampling performed better than active-carbon Tube and TedlarBag, particularly for quantifying low concentrations of siloxanes. Overall, the evaluation of sampling methods for biogas collection simplified the analytical procedure by reducing the procedural steps, avoiding the Citation: Piechota, G.
    [Show full text]
  • Redalyc.Silanol
    Electronic Journal of Biotechnology E-ISSN: 0717-3458 [email protected] Pontificia Universidad Católica de Valparaíso Chile Kim, Yun-mi; Farrah, Samuel; Baney, Ronald H. Silanol - A novel class of antimicrobial agent Electronic Journal of Biotechnology, vol. 9, núm. 2, abril, 2006, pp. 176-180 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=173313794012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.9 No.2, Issue of April 15, 2006 © 2006 by Pontificia Universidad Católica de Valparaíso -- Chile Received July 18, 2005 / Accepted September 12, 2005 DOI: 10.2225/vol9-issue2-fulltext-4 TECHNICAL NOTE Silanol - A novel class of antimicrobial agent Yun-mi Kim Department of Materials Science and Engineering University of Florida Gainesville, FL 32611, USA Tel: 1 352 846 3793 Fax: 1 352 846 3355 E-mail: [email protected] Samuel Farrah Department of Microbiology and Cell Science University of Florida Gainesville, FL 32611, USA Tel: 1 352 392 5925 Fax: 1-352 392 5922 E-mail: [email protected] Ronald H. Baney* Department of Materials Science and Engineering University of Florida Gainesville, FL 32611, USA Tel: 1 352 846 3785 Fax: 1 352 846 3355 E-mail: [email protected] Financial support: Air force Research Lab. Keywords: antimicrobial agents, bacteria, biocide, silanols. Abbreviations: cfu: Colony Forming Units.
    [Show full text]
  • Hydrolysis of Polydimethylsiloxane Fluids in Controlled Aqueous Solutions
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256201018 Hydrolysis of polydimethylsiloxane fluids in controlled aqueous solutions Article in Water Science & Technology · August 2013 DOI: 10.2166/wst.2013.308 · Source: PubMed CITATIONS READS 10 1,323 6 authors, including: Gaëlle Ducom Baptiste Laubie Institut National des Sciences Appliquées de Lyon University of Lorraine 26 PUBLICATIONS 615 CITATIONS 30 PUBLICATIONS 138 CITATIONS SEE PROFILE SEE PROFILE Claire Chottier Institut National des Sciences Appliquées de Lyon 7 PUBLICATIONS 18 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: H2S emissions in sewer systems View project Agromine des terres rares View project All content following this page was uploaded by Vincent Chatain on 01 July 2015. The user has requested enhancement of the downloaded file. Provided for non-commercial research and educational use only. Not for reproduction or distribution or commercial use. This article was originally published by IWA Publishing. IWA Publishing recognizes the retention of the right by the author(s) to photocopy or make single electronic copies of the paper for their own personal use, including for their own classroom use, or the personal use of colleagues, provided the copies are not offered for sale and are not distributed in a systematic way outside of their employing institution. Please note that you are not permitted to post the IWA Publishing PDF version of your paper
    [Show full text]
  • Silicon-Based Reducing Agents
    Gelest, Inc. Silicon-Based Reducing Agents GeraldGerald L. LarsonLarson ViceVice President, President, Research Research && Development Development Materials for the reduction of: Aldehydes Ketones Acetals Ketals Esters Lactones Thioesters Enamines Imines Acids Amides Halides Olefi ns Metal Halides Supplement to the Gelest Catalog, “Silicon, Germanium & Tin Compounds, Metal Alkoxides and Metal Diketonates” which is available on request. 1 AZmax TEL: 035543-1630 • FAX: 03-5543-0312 • www.azmax.co.jp (215) 547-1015 • FAX: (215) 547-2484 • www.gelest.com 127 Gelest, Inc. SILICON-BASED REDUCING AGENTS Introduction The widely used organometallic-based reducing agents can be broadly classifi ed as either ionic, such as lithium aluminum hydride and sodium borohydride, or free-radical such as tri-n-butyltin hydride. The mechanistic differences between these two classes of reducing agents very often complement one another in their ability to reduce organic substrates. Organosilanes have been found to possess the ability to serve as both ionic and free-radical reducing agents. These reagents and their reaction by-products are safer and more easily handled and disposed of than other reagents. Their reductive abilities are accomplished by changes in the nature of the groups attached to silicon, which can modify the character of the Si-H bond in the silane. For example, the combination of a triethylsilane and an acid has proven to be excellent for the reduction of substrates that can generate a “stable” carbenium ion intermediate. Examples of substrates that fall into this class are olefi ns, alcohols, esters, lactones, aldehydes, ketones, acetals, ketals, and other like materials. On the other hand triphenylsilane and especially tris(trimethylsilyl)silane have proven to be free-radical reducing agents that can substitute for tri-n-butyltin hydride.
    [Show full text]
  • Draft Scope of the Risk Evaluation for D4
    Public Comment Draft – Do Not Cite or Quote EPA Document# EPA-740-D-21-001 August 2021 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Draft Scope of the Risk Evaluation for Octamethylcyclotetra- siloxane (Cyclotetrasiloxane, 2,2,4,4,6,6,8,8-octamethyl-) (D4) CASRN 556-67-2 August 2021 Public Comment Draft – Do Not Cite or Quote TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................6 ABBREVIATIONS AND ACRONYMS ..................................................................................................7 EXECUTIVE SUMMARY .......................................................................................................................9 1 INTRODUCTION ............................................................................................................................12 2 SCOPE OF THE EVALUATION ...................................................................................................13 2.1 Reasonably Available Information ..............................................................................................13 Search of Gray Literature ...................................................................................................... 14 Search of Literature from Publicly Available Databases (Peer-Reviewed Literature) .......... 14 Search of TSCA Submissions ................................................................................................ 24
    [Show full text]
  • Draft Screening Assessment for the Challenge
    Screening Assessment for the Challenge Trisiloxane, octamethyl- (MDM) Chemical Abstracts Service Registry Number 107-51-7 Environment Canada Health Canada March 2015 1 Cat. No.: En14-223/2015E-PDF ISBN 978-1-100-25931-4 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • Exercise due diligence in ensuring the accuracy of the materials reproduced; • Indicate both the complete title of the materials reproduced, as well as the author organization; and • Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the author. For more information, please contact Environment Canada’s Inquiry Centre at 1-800- 668-6767 (in Canada only) or 819-997-2800 or email to [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2015. Aussi disponible en français 2 Synopsis Pursuant to section 74 of the Canadian Environmental Protection Act, 1999 (CEPA 1999), the Ministers of the Environment and of Health have conducted a screening assessment on Trisiloxane, octamethyl-, Chemical Abstracts Service Registry Number1 107-51-7. This substance is referred to by its derived acronym, MDM, in the assessment. MDM was identified as a high priority for screening assessment and included in the Challenge initiative under the Chemicals Management Plan because it was found to meet the ecological categorization criteria for persistence, bioaccumulation potential and inherent toxicity to non-human organisms and was believed to be in commerce in Canada.
    [Show full text]
  • Alkylimido Complexes of Transition Metals
    ALKYLIMIDO COMPLEXES OF TRANSITION METALS A thesis submitted by CINDY JOANNE LONGLEY, B.Sc., A.R.C.S. for the DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF LONDON Department of Chemistry Imperial College of Science & Technology London SW7 2AY July 1988 ABSTRACT The sodium/amalgam reduction of (B^N^ReCOSiN^) in hexane gives the dimeric rhenium(VI) complex, [(B^N^ReCii-NBu1-)^, which has been structurally characterised. This represents the first full report of a homoleptic transition metal imido complex. The structures of (ButN) 3Re(OSiMe3) and (B^N^ReC^ have also been determined. The latter complex reacts with silver acetate to give (B^N^ReCOAc^. The synthesis of a range of organometallic rhenium(VII) complexes, (ButN) 3Re(aryl) (aryl = o-tol, xylyl, mes, Ph, p-Bu^h), from (Bu^N^ReCOSiN^) and the appropriate Grignard reagent is reported. Treatment of these complexes with HC1 yields the corresponding dichloro-complexes, (B^N ^ReC^aryl). The crystal structure of (B^N^ReC^Ctf-tol) reveals a square pyramidal geometry with one linear and one bent imido ligand, which formally suggests a 16-electron configuration. The solid state structure of (B^N^ReC^Ph shows a trigonal bipyramidal molecule, with equatorial imido groups. The reaction of (B^N ^ReC^ with o-tolylmagnesium bromide gives (B utN) 2Re(0- tol)3, whereas with mesitylmagnesium bromide reduction occurs to produce (ButN) 2Re(mes)2 * This paramagnetic d} species has been oxidised chemically to give [(ButN) 2Re(mes)2]X (X = PF^, OTf). The results of preliminary investigations into the insertion chemistry of these complexes are presented.
    [Show full text]