Meyers Clemson University University of California, San Diego

Total Page:16

File Type:pdf, Size:1020Kb

Meyers Clemson University University of California, San Diego See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/283450752 Structure and mechanical properties of selected protective systems in marine organisms ARTICLE · FEBRUARY 2016 DOI: 10.1016/j.msec.2015.10.033 READS 69 5 AUTHORS, INCLUDING: Steven E. Naleway Jennifer R.A. Taylor University of California, San Diego University of California, San Diego 15 PUBLICATIONS 24 CITATIONS 9 PUBLICATIONS 71 CITATIONS SEE PROFILE SEE PROFILE Michael M Porter Marc A Meyers Clemson University University of California, San Diego 44 PUBLICATIONS 72 CITATIONS 484 PUBLICATIONS 11,198 CITATIONS SEE PROFILE SEE PROFILE Available from: Marc A Meyers Retrieved on: 15 December 2015 MSC-05849; No of Pages 25 Materials Science and Engineering C xxx (2015) xxx–xxx Contents lists available at ScienceDirect Materials Science and Engineering C journal homepage: www.elsevier.com/locate/msec Review Structure and mechanical properties of selected protective systems in marine organisms Steven E. Naleway a,⁎,JenniferR.A.Taylorb, Michael M. Porter e, Marc A. Meyers a,c,d, Joanna McKittrick a,c a Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA b Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA c Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA d Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA e Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA article info abstract Article history: Marine organisms have developed a wide variety of protective strategies to thrive in their native environments. Received 21 January 2015 These biological materials, although formed from simple biopolymer and biomineral constituents, take on many in- Received in revised form 29 September 2015 tricate and effective designs. The specific environmental conditions that shape all marine organisms have helped Accepted 12 October 2015 modify these materials into their current forms: complete hydration, and variation in hydrostatic pressure, temper- Available online xxxx ature, salinity, as well as motion from currents and swells. These conditions vary throughout the ocean, being more consistent in the pelagic and deep benthic zones while experiencing more variability in the nearshore and shallows Keywords: Marine organisms (e.g. intertidal zones, shallow bays and lagoons, salt marshes and mangrove forests). Of note, many marine organ- Protective mechanisms isms are capable of migrating between these zones. In this review, the basic building blocks of these structural bi- Structural biological materials ological materials and a variety of protective strategies in marine organisms are discussed with a focus on their Bioinspired design structure and mechanical properties. Finally, the bioinspired potential of these biological materials is discussed. © 2015 Elsevier B.V. All rights reserved. Contents 1. Introduction............................................................... 0 2. Basicbuildingblocksofmarineorganisms................................................. 0 2.1. Biopolymers........................................................... 0 2.2. Biominerals............................................................ 0 3. Crushingresistantstructures....................................................... 0 3.1. Molluskshells.......................................................... 0 3.2. Diatomandcoccolithophoreexoskeletons.............................................. 0 3.3. Crustaceanexoskeletons...................................................... 0 3.4. Seahorseskeleton......................................................... 0 4. Flexureresistantstructures........................................................ 0 4.1. Seaspongespicules........................................................ 0 4.2. Seaurchinspines......................................................... 0 4.3. Porcupine fishspines....................................................... 0 5. Piercingresistantstructures........................................................ 0 5.1. Overlapping fishscales....................................................... 0 5.2. Marinescutesandskeletalarmors................................................. 0 6. Impactresistantstructures........................................................ 0 6.1. Mantisshrimpdactylclub..................................................... 0 7. Bioinspiredmaterialspotential...................................................... 0 8. Conclusions............................................................... 0 Acknowledgments.............................................................. 0 References.................................................................. 0 ⁎ Corresponding author. E-mail addresses: [email protected] (S.E. Naleway), [email protected] (J.R.A. Taylor), [email protected] (M.M. Porter), [email protected] (M.A. Meyers), [email protected] (J. McKittrick). http://dx.doi.org/10.1016/j.msec.2015.10.033 0928-4931/© 2015 Elsevier B.V. All rights reserved. Please cite this article as: S.E. Naleway, et al., Structure and mechanical properties of selected protective systems in marine organisms, Mater. Sci. Eng., C (2015), http://dx.doi.org/10.1016/j.msec.2015.10.033 2 S.E. Naleway et al. / Materials Science and Engineering C xxx (2015) xxx–xxx 1. Introduction The combination of these qualities provides for high levels of complexity and performance within marine biological materials. This The study of biological materials within materials science provides the is enacted through hierarchical structural design elements [6].The nexus where the fields of physics, engineering, chemistry and biology con- toughness of biological materials and their constituents is plotted as a verge to understand and harness the vast body of knowledge that can be function of the elastic modulus in Fig. 1. The high toughness of biopoly- learned from the natural world. The findings of this research provide for mers together with the high strength of biominerals is combined into better biological understanding of the complex and unique organisms many composite biological materials (e.g. bone and mollusk shell) [7]. and structures in nature. In addition, this knowledge provides inspiration When compared to engineered synthetic materials, metals and ce- for the peripheral fields of bioinspired materials, where synthetic struc- ramics are capable of providing mechanical properties up to an order tures are inspired by nature, and biomaterials, where materials and struc- of magnitude higher than biological materials. However, biominerals tures are designed for optimum compatibility with biological systems. (natural ceramics) and biopolymers (natural polymers) are mechani- While still bound by the same physical laws, biological materials are cally comparable with many synthetic engineering composites and en- starkly different from synthetic ones. To succinctly describe the unique gineering polymers, respectively [5]. qualities of biological materials, seven interrelated features have been Biological materials can be systematized along different classifi- identified (inspired by Arzt [1] and expanded by Meyers et al. and cation methods. Naleway et al. [6] recently proposed eight structural de- Chen et al. [2–5]). These characteristics are: self-assembly, multi- sign elements as a new paradigm for identifying common features in functionality, hierarchical design, hydration effects, mild synthesis con- different organisms. Using a similar methodology, the organisms and ditions, evolutionary design and environmental constraints, and self- structures in this manuscript can be divided into four classes based healing capability. While they apply throughout biology, marine organ- upon their biomechanical function: isms face a number of specific environmental constraints not shared by 1. Crushing resistant structures: found within the exoskeletons of their terrestrial counterparts. These marine specific conditions include: mollusks, crustaceans, diatoms and coccolithophores, and the complete hydration, and variation in hydrostatic pressure (0.1– skeletal armor of the seahorse. 100 MPa), temperature (−2–38 °C), salinity (34–36 ppt), as well as mo- 2. Flexure resistant structures: found within sea sponge spicules, the tion from currents and swells. These conditions vary throughout the spines of sea urchins and porcupine fish. ocean, being more consistent in the pelagic and deep benthic zones 3. Piercing resistant structures: found within the scales and scutes of while experiencing more variability in the nearshore and shallows fish as well as marine skeletal armors. (e.g. intertidal zones, shallow bays and lagoons, salt marshes and man- 4. Impact resistant structures: found in the dactyl clubs of the mantis grove forests). Of note, many marine organisms are capable of migrating shrimp. between these zones, forcing them to be dynamic through many envi- ronments. Through evolution, these environmental constraints have There are protective structures that provide effective resistance to shaped the form of all structural marine biological materials. multiple forms of stress, however here we aim to highlight the most Fig. 1. Toughness as a function of elastic modulus for biological materials. Adapted from [7]. Please cite this article as: S.E. Naleway, et al., Structure and mechanical properties
Recommended publications
  • Establishment of a New Genus for Arete Borradailei
    Zoological Studies 46(4): 454-472 (2007) Establishment of a New Genus for Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960, with Redefinitions of Arete Stimpson, 1860 and Athanas Leach, 1814 (Crustacea: Decapoda: Alpheidae) Arthur Anker1,* and Ming-Shiou Jeng2 1Smithsonian Tropical Research Institute, Naos Unit 0948, APO AA 34002-0948, USA. E-mail:[email protected] 2Research Center for Biodiversity, Academia Sinica, Taipei 115, Taiwan. E-mail:[email protected] (Accepted October 5, 2006) Arthur Anker and Ming-Shiou Jeng (2007) Establishment of a new genus for Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960, with redefinitions of Arete Stimpson, 1860 and Athanas Leach, 1814 (Crustacea: Decapoda: Alpheidae). Zoological Studies 46(4): 454-472. Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960 are transferred to Rugathanas gen. nov., based on several unique features on the chelipeds, 3rd pereiopods, antennules, and mouthparts. The estab- lishment of Rugathanas enables the redefinition of Athanas Leach, 1814 and Arete Stimpson, 1860, and a for- mal revalidation of Arete, formerly a synonym of Athanas. Two important features, the number of pereiopodal epipods and the number of carpal segments of the 2nd pereiopod, are variable within Rugathanas gen. nov., but may be used to distinguish Athanas from Arete. The distribution ranges of R. borradailei (Coutière, 1903) comb. nov. and R. verrucosus (Banner and Banner, 1960) comb. nov. are considerably extended based on recently collected material from the Ryukyu Is., Japan; Kenting, southern Taiwan; and Norfolk I., off eastern Australia. http://zoolstud.sinica.edu.tw/Journals/46.4/454.pdf Key words: Alpheidae, New genus, Athanas, Arete, Indo-Pacific.
    [Show full text]
  • MAF Underwatermission Synopsis Final
    Conceived by Max Serio Developed by Max Serio, John Hopkins, Martin Kase, Tina Dalton Directed by Max Serio, Tina Dalton Narrated by Rachel King, Juliet Jordan, Marcello Fabrizi Underwater Mission: Cleaner Friends First episode of the series. Our heroes: Sara,Maxi and Emma the sea turtle will explore who are their Cleaner Friends. Their adventure will be supported with the valuable information of "Sea Pad" their "friend-board computer". Cleaner Friends : Cleaner shrimp,moray eel,Blue Streak Cleaner Wrasse,Moorish Idols,Humphead Wrasse,Spadefish, sea star,Mushroom Coral,Bristletooths. Underwater Mission: Predators In this episode Sara and Max will experience an interesting trip with Emma the sea tur- tle. “Sea Pad” is going to show them the most interesting underwater predators and their habbits. Predators : Mooray eel (Ribbon eel, White eyed moray eel), Sand conger eel, Barracudas, Stonefish, Anglerfish, Lionfish, Mantis Shrimp, White tip reef shark, Tiger Shark Underwater Mission: Crazy Colours Maxi and Sara are going to visit the most colourful environment they have ever seen. Emma the sea turtle will take them to an underwater trip where they find the beautiful wolrd of crazy-coloured fish. Crazy-coloured fish : Gold Belly Damsel Fish, Emperor Angelfish, Yellow Ribbon Sweetlip, Peach Fairies, Anemones, Corals, Clown Trigger fish, Butterfly fish, Leopard coral trout, Scribbled Filefish, Lionfish, Cuttlefish, Nudibranch, Parrotfish Underwater Mission: Startling Shapes There are many shapes that the sea creatures and objects have. Emma, Sara and Maxi are going to discover as much of them as they can. Those they can’t spot on the first glance will be uncovered by the trusted clever “Sea pad”.
    [Show full text]
  • (1104L) Animal Kingdom Part I
    (1104L) Animal Kingdom Part I By: Jeffrey Mahr (1104L) Animal Kingdom Part I By: Jeffrey Mahr Online: < http://cnx.org/content/col12086/1.1/ > OpenStax-CNX This selection and arrangement of content as a collection is copyrighted by Jerey Mahr. It is licensed under the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). Collection structure revised: October 17, 2016 PDF generated: October 17, 2016 For copyright and attribution information for the modules contained in this collection, see p. 58. Table of Contents 1 (1104L) Animals introduction ....................................................................1 2 (1104L) Characteristics of Animals ..............................................................3 3 (1104L)The Evolutionary History of the Animal Kingdom ..................................11 4 (1104L) Phylum Porifera ........................................................................23 5 (1104L) Phylum Cnidaria .......................................................................31 6 (1104L) Phylum Rotifera & Phylum Platyhelminthes ........................................45 Glossary .............................................................................................53 Index ................................................................................................56 Attributions .........................................................................................58 iv Available for free at Connexions <http://cnx.org/content/col12086/1.1> Chapter 1 (1104L) Animals introduction1
    [Show full text]
  • Skeletonized Microfossils from the Lower–Middle Cambrian Transition of the Cantabrian Mountains, Northern Spain
    Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain SÉBASTIEN CLAUSEN and J. JAVIER ÁLVARO Clausen, S. and Álvaro, J.J. 2006. Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 51 (2): 223–238. Two different assemblages of skeletonized microfossils are recorded in bioclastic shoals that cross the Lower–Middle Cambrian boundary in the Esla nappe, Cantabrian Mountains. The uppermost Lower Cambrian sedimentary rocks repre− sent a ramp with ooid−bioclastic shoals that allowed development of protected archaeocyathan−microbial reefs. The shoals yield abundant debris of tube−shelled microfossils, such as hyoliths and hyolithelminths (Torellella), and trilobites. The overlying erosive unconformity marks the disappearance of archaeocyaths and the Iberian Lower–Middle Cambrian boundary. A different assemblage occurs in the overlying glauconitic limestone associated with development of widespread low−relief bioclastic shoals. Their lowermost part is rich in hyoliths, hexactinellid, and heteractinid sponge spicules (Eiffelia), chancelloriid sclerites (at least six form species of Allonnia, Archiasterella, and Chancelloria), cambroclaves (Parazhijinites), probable eoconchariids (Cantabria labyrinthica gen. et sp. nov.), sclerites of uncertain af− finity (Holoplicatella margarita gen. et sp. nov.), echinoderm ossicles and trilobites. Although both bioclastic shoal com− plexes represent similar high−energy conditions, the unconformity at the Lower–Middle Cambrian boundary marks a drastic replacement of microfossil assemblages. This change may represent a real community replacement from hyolithelminth−phosphatic tubular shells to CES (chancelloriid−echinoderm−sponge) meadows. This replacement coin− cides with the immigration event based on trilobites previously reported across the boundary, although the partial infor− mation available from originally carbonate skeletons is also affected by taphonomic bias.
    [Show full text]
  • Review of the Mineralogy of Calcifying Sponges
    Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean.
    [Show full text]
  • Stabilization of Amorphous Calcium Carbonate by Specialized Macromolecules in Biological and Synthetic Precipitates
    CED Communications MATERIALS mono-thiophene (N-[(6-(thien-3-yl)hexanoyloxy]-pyrroli- [13] H. Rockel, J. Huber, R. Gleiter, W. Schuhmann. Adv. Muter. 1994,6,568. [I41 P. Bauerle, G. Gotz, P. Emerle, H. Port, Adv. Muter. 1992, 4, 564. dine-2,5-dione; see Scheme 1) instead of the bithiophene [IS] P. Bauerle, G. Gotz, U. Segelbacher, D. Huttenlocher, M. Mehring, derivative, we have been able to prepare analogous glucose Synth. Met. 1993, 57, 4768. oxidase-modified polymer films. The functionalized poly- [16] P. Biuerle, Adv. Mater. 1993, 5, 879. [17] P. Bauerle, S. Scheib, Adv. Mater. 1993, 5, 848. thiophene film has been obtained using a similar multi- [18] S. E. Wolowacz, B. F. Y. Yon Hin, C. R. Lowe, Anal. Chem. 1992,64, sweep regime, however, with potential scans up to a vertex 1541. potential of 1.7 V vs. SCE, reflecting the higher potential of [I91 B. F. Y. Yon Hin, M. Smolander, T. Crompton, C. R. Lowe, Anal. Chem. 1993,65,2067. the radical cations formation. The second step, the covalent [20] B. F. Y. Yon Hin, C. R. Lowe, J. Electroanal. Chem. 1994, 374, 167. immobilization of the enzyme is of course equivalent and [21] W. Schuhmann, in Proc. BIOELECTROANALYSIS 2 (Ed: E. Pungor), Akad6miai Kiado, Budapest 1993, 113. independent from the specific needs for the formation of the [22] W. Schuhmann, in Diagnostic Biosensor Polymers (Eds: A. M. Usmani, polymer film. The obtained enzyme electrodes show a N. Akmal), ACS Symp. Ser. 1994, 556, 110-123. slightly lower response as those obtained with the func- [23] P.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review” by W
    Biogeosciences Discuss., 4, S262–S276, 2007 Biogeosciences www.biogeosciences-discuss.net/4/S262/2007/ BGD Discussions c Author(s) 2007. This work is licensed 4, S262–S276, 2007 under a Creative Commons License. Interactive Comment Interactive comment on “The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review” by W. E. G. Müller et al. W. E. G. Müller et al. Received and published: 3 April 2007 3rd April 2007 Full Screen / Esc From : Prof. Dr. W.E.G. Müller, Institut für Physiologische Chemie, Abteilung Ange- wandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz; GERMANY. tel.: Printer-friendly Version +49-6131-392-5910; fax.: +49-6131-392-5243; E-mail: [email protected] To the Editorial Board Interactive Discussion MS-NR: bgd-2006-0069 Discussion Paper S262 EGU Dear colleagues: BGD Thank you for your email from April 2nd informing me that our manuscript entitled: 4, S262–S276, 2007 The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review by: Werner E.G. Müller, Jinhe Li, Heinz C. Schröder, Li Qiao and Xiaohong Wang Interactive Comment which we submit for the Journal Biogeosciences must be revised. In the following we discuss point for point the arguments raised by the referees/reader. In detail: Interactive comment on “The unique skeleton of siliceous sponges (Porifera; Hex- actinellida and Demospongiae) that evolved first from the Urmetazoa during the Pro- terozoic: a review” by W. E. G. Müller et al. By: M.
    [Show full text]
  • Arctic and Antarctic Bryozoan Communities and Facies
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Bryozoans in polar latitudes: Arctic and Antarctic bryozoan communities and facies B. BADER & P. SCHÄFER Abstract: Bryozoan community patterns and facies of high to sub-polar environments of both hemi- spheres were investigated. Despite the overall similarities between Arctic/Subarctic and Antarctic ma- rine environments, they differ distinctly regarding their geological history and hydrography which cause differences in species characteristics and community structure. For the first time six benthic communi- ties were distinguished and described for the Artie realm where bryozoans play an important role in the community structure. Lag deposits resulting from isostatic uplift characterise the eastbound shelves of the Nordic Seas with bryozoan faunas dominated by species encrusting glacial boulders and excavated infaunal molluscs. Bryozoan-rich carbonates occur on shelf banks if terrigenous input is channelled by fjords and does not affect sedimentary processes on the banks. Due to strong terrigenous input on the East Greenland shelf, benthic filter feeding communities including a larger diversity and abundance of bryozoans are rare and restricted to open shelf banks separated from the continental shelf. Isolated ob- stacles like seamount Vesterisbanken, although under fully polar conditions, provide firm substrates and high and seasonal food supply, which favour bryozoans-rich benthic filter-feeder communities. In con- trast, the Weddell Sea/Antarctic shelf is characterised by iceberg grounding that causes considerable damage to the benthic communities. Sessile organisms are eradicated and pioneer species begin to grow in high abundances on the devastated substrata. Whereas the Arctic bryozoan fauna displays a low de- gree of endemism due to genera with many species, Antarctic bryozoans show a high degree of en- demism due to a high number of genera with only one or few species.
    [Show full text]
  • Invertebrate Predators and Grazers
    9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966).
    [Show full text]
  • The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review
    Biogeosciences, 4, 219–232, 2007 www.biogeosciences.net/4/219/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review W. E. G. Muller¨ 1, Jinhe Li2, H. C. Schroder¨ 1, Li Qiao3, and Xiaohong Wang4 1Institut fur¨ Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Duesbergweg 6, 55099 Mainz, Germany 2Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, P. R. China 3Department of Materials Science and Technology, Tsinghua University, 100084 Beijing, P. R. China 4National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, 100037 Beijing, P. R. China Received: 8 January 2007 – Published in Biogeosciences Discuss.: 6 February 2007 Revised: 10 April 2007 – Accepted: 20 April 2007 – Published: 3 May 2007 Abstract. Sponges (phylum Porifera) had been considered an axial filament which harbors the silicatein. After intracel- as an enigmatic phylum, prior to the analysis of their genetic lular formation of the first lamella around the channel and repertoire/tool kit. Already with the isolation of the first ad- the subsequent extracellular apposition of further lamellae hesion molecule, galectin, it became clear that the sequences the spicules are completed in a net formed of collagen fibers. of sponge cell surface receptors and of molecules forming the The data summarized here substantiate that with the find- intracellular signal transduction pathways triggered by them, ing of silicatein a new aera in the field of bio/inorganic chem- share high similarity with those identified in other metazoan istry started.
    [Show full text]
  • The Role of Collagen in the Dermal Armor of the Boxfish
    j m a t e r r e s t e c h n o l . 2 0 2 0;9(xx):13825–13841 Available online at www.sciencedirect.com https://www.journals.elsevier.com/journal-of-materials-research-and-technology Original Article The role of collagen in the dermal armor of the boxfish a,∗ b c b Sean N. Garner , Steven E. Naleway , Maryam S. Hosseini , Claire Acevedo , d e a e c Bernd Gludovatz , Eric Schaible , Jae-Young Jung , Robert O. Ritchie , Pablo Zavattieri , f Joanna McKittrick a Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093–0411, USA b Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA c Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA d School of Mechanical & Manufacturing Engineering, UNSW Sydney, NSW 2052, Australia e Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA f Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093–0411, USA a r t i c l e i n f o a b s t r a c t Article history: This research aims to further the understanding of the structure and mechanical properties Received 1 June 2020 of the dermal armor of the boxfish (Lactoria cornuta). Structural differences between colla- Accepted 24 September 2020 gen regions underlying the hexagonal scutes were observed with confocal microscopy and Available online 5 October 2020 microcomputed tomography (␮-CT). ␮-CT revealed a tapering of the mineral plate from the center of the scute to the interface between scutes, suggesting the structure allows for more ␮ Keywords: flexibility at the interface.
    [Show full text]