hv photonics Review Advances in All-Solid-State Passively Q-Switched Lasers Based on Cr4+:YAG Saturable Absorber Jingling Tang 1,2, Zhenxu Bai 1,2,3,*, Duo Zhang 1,2, Yaoyao Qi 1,2, Jie Ding 1,2, Yulei Wang 1,2 and Zhiwei Lu 1,2 1 Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China;
[email protected] (J.T.);
[email protected] (D.Z.);
[email protected] (Y.Q.);
[email protected] (J.D.);
[email protected] (Y.W.);
[email protected] (Z.L.) 2 Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China 3 MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia * Correspondence:
[email protected] Abstract: All-solid-state passively Q-switched lasers have advantages that include simple structure, high peak power, and short sub-nanosecond pulse width. Potentially, these lasers can be applied in multiple settings, such as in miniature light sources, laser medical treatment, remote sensing, and precision processing. Cr4+:YAG crystal is an ideal Q-switch material for all-solid-state passively Q-switched lasers owing to its high thermal conductivity, low saturation light intensity, and high damage threshold. This study summarizes the research progress on all-solid-state passively Q- switched lasers that use Cr4+:YAG crystal as a saturable absorber and discusses further prospects for the development and application of such lasers. Keywords: laser; Cr4+:YAG; all-solid-state; passively Q-switch Citation: Tang, J.; Bai, Z.; Zhang, D.; Qi, Y.; Ding, J.; Wang, Y.; Lu, Z.