Lecture 9 and 10: Pulsed Lasers and Mode-Locking

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 9 and 10: Pulsed Lasers and Mode-Locking Lecture 9 and 10: Pulsed lasers and mode-locking 1. Ultrashort pulses Ultrashort pulse shorter than 1 ps (10-12 s) Shortest pulses generated from lasers: Type of laser Pulse duration Fiber laser ~35 - 50 fs Solid-state laser (e.g. Yb) ~40-50 fs Ti:Sapphire laser ~ 3 fs – 7 fs The shortest possible pulse of a given wavelength is one light cycle long: 1550 nm 4.3 fs 800 nm 2.7 fs Shorter wavelength shorter pulses 2. Measurement of ultrashort pulses Techniques: • Optical autocorrelation • FROG (Frequency Resolved Optical Gating) Improved version: GRENOULLIE • SPIDER (Spectral Phase Interferometry for Direct Electric-field Reconstruction) Autocorrelator Interferometric autocorrelation trace: FROG Source: Rick Trebino, Frequency Resolved Optical Gating SPIDER 3. Mode-locked lasers a) Difference between a CW and mode-locked laser: A mode-locked laser: Emits a train of equally-spaced, ultrashort pulses (femtosecond) - down to almost single- cycle Output spectrum is broad (tens-hundreds of nanometers)/ Broader spectrum shorter pulses In the frequency domain, the output consists of thousands/millions of narrow lines (comb- like structure) b) Relation between the number of synchronized modes and the pulse duration: More synchronized modes shorter pulse. c) Passive mode-locking and saturable absorber In order to achieve passive mode-locking we need a device called saturable absorber. The saturable absorber: - Blocks any CW radiation in the cavity - It forces the laser to synchronize the modes and generate pulses - Only high-intensity pulse can pass the saturable absorber Fig. Transmission of the saturable absorber vs intensity d) Active mode-locking In active mode-locking: • We need a modulator driven with an external signal • We can tune the repetition rate (multiplication by „N”) • The pulses are longer than with passive mode-locking e) Saturable absorbers: f) Artificial saturable absorbers: • It is a nonlinear optical effect acts as a saturable absorber • In general, nonlinear effects are power-dependent • Short pulses have a high peak power, so they can induce nonlinear effects Examples: • Nonlinear polarization rotation/evolution (NPR/NPE) • Nonlinear loop mirror (NOLM), nonlinear amplifying loop mirror (NALM) • Kerr-lens mode-locking (KLM) NPR/NPE: • The polarization state of light changes during propagation through a fiber • If the pulse is intense enough, different parts of the pulse might have different polarizations • Very fast mode-locking mechanism NOLM/NALM Fig. NOLM (a) and NALM (b) setup Laser with NOLM: KLM • Sometimes called „magic mode-locking” • The refractive index depends on the intensity: n(I) = n0 + n2(I) • „Kerr-lensing” – due to nonlinearities, the high intensity pulse is better focused than CW (so called „self-focusing”) • Only the pulsed beam can pass through the aperture g) Real saturable absorbers SESAM • Semiconductor Saturable Absorber Mirror (SESAM) • Mirror structure with GaAs quantum wells Fig. SESAM structure • Variety of SESAMs available commercially for different wavelengths • Flexible design: modulation depth, non-saturable losses and saturation intensity can be designed • Narrow bandwidth • Not always resistant to high optical powers • Degradation over time Fiber lasers with SESAM: Nanomaterial-based SAs • Main drawback of SESAMs: narrow-band operation (you need to have specific SESAMs for each laser) • Is it possible to have a broadband SA which could work in any laser, at any wavelength? • … novel low-dimensional (or two-dimensional nanomaterials) • Materials which can be exfoliated to single atomic layers (nanometer thickness) Graphene – single layer of carbon atoms, ordered in a „honeycomb” hexagonal lattice Optical properties of graphene: • Absorption of a single graphene layer: 2.3% (scales with the number of layers), • The absorption is wavelength-independent, • Due to the 3rd order nonlinearities, it shows saturable absorption at very low optical intensities Fig. Saturable absorption of single layer graphene and multilayer graphene Other SA materials: • Topological insulators (TI) – Sb2Te3, Bi2Te3, Bi2Se3 • Black Phosphorus (phosphorene, BP) • Transition metal dichalcogenides (TMD) – MoS2, MoSe2, WS2, etc. • Carbon Nanotubes (CNT) Integration of SA with fiber laser Saturable absorption measurement: Free-space setup for bulk samples (so called Z-scan) Fiber-based setup for fiber SA samples 4. The role of dispersion in mode-locked lasers • Net dispersion of the resonator determines the mode-locking regime • Generally we distinguish three basic regimes – All-anomalous – Near-zero (balanced) – Normal • The mode-locking regime influences the laser performance (pulse duration, spectral width, output power) Yb Er Tm Fig. dispersion of SMF-28e fiber with dashed spectral regions of typical lasers a) Anomalous dispersion regime • Net GDD < 0 • Typical for 1.55 and 2 µm lasers • Usually transform-limited pulse duration, but >100 fs long • Limited bandwidth and energy • Sech2 pulse shape with Kelly’s sidebands (optical soliton) Fig. typical soliton-like spectrum b) Normal dispersion regime • Net GDD > 0 • Typical for 1.06 µm lasers • Output pulses are chirped • Spectrum with steep edges and flat top (dissipative soliton) Fig. typical spectrum of all-normal dispersion laser (so called dissipative soliton) c) Balanced dispersion regime • Net GDD = 0 • Output pulses are chirped • Very broad and smooth spectra • So called „stretched-pulse” Fig. typical spectrum of balanced dispersion laser (so called stretched pulse regime) Fig. Soliton vs. stretched pulse – comparison of spectra generated in two regimes 5. Modeling of mode-locked fiber lasers The simulation takes info account all important factors: • Dispersion • Nonlinear effects • Saturable absorber • Loss (e.g. the output coupler) • Gain Fig. A numerical simulation enables optimization of lasers and better understanding of pulse dynamics inside the resonator 6. Polarization maintaining fibers “In fiber optics, polarization-maintaining optical fiber (PMF or PM fiber) is a single-mode optical fiber in which linearly polarized light, if properly launched into the fiber, maintains a linear polarization during propagation, exiting the fiber in a specific linear polarization state” (source: Wikipedia ) (Fiberlabs.com) If the mode-locked laser is made only of PM fibers and components: • One polarization propagating in the cavity • Only way to achieve robust, stable, and alignment-free operation • Almost totally resistant to any external disturbances, temperature changes, humidty, vibrations, etc. • Turn-key operation • Defined output polarization • No polarization controller needed .
Recommended publications
  • Demonstration of Inp-On-Si Self-Pulsating DFB Laser Diodes for Optical Microwave Generation Volume 9, Number 4, August 2017
    Open Access Demonstration of InP-on-Si Self-Pulsating DFB Laser Diodes for Optical Microwave Generation Volume 9, Number 4, August 2017 Keqi Ma M. Shahin, Student Member, IEEE A. Abbasi, Member, IEEE G. Roelkens, Member, IEEE G. Morthier, Senior Member, IEEE DOI: 10.1109/JPHOT.2017.2724840 1943-0655 © 2017 IEEE IEEE Photonics Journal Demonstration of InP-on-Si Self-Pulsating DFB Laser Demonstration of InP-on-Si Self-Pulsating DFB Laser Diodes for Optical Microwave Generation Keqi Ma,1 M. Shahin,2,3 Student Member, IEEE, A. Abbasi,2,3 Member, IEEE, G. Roelkens,2,3 Member, IEEE, and G. Morthier,2,3 Senior Member, IEEE 1Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China 2Photonics Research Group, Department of Information Technology (INTEC), Ghent University–IMEC, Gent B-9000, Belgium 3Center for Nano-and Biophotonics, Ghent University, Gent B-9000, Belgium DOI:10.1109/JPHOT.2017.2724840 1943-0655 C 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. Manuscript received June 9, 2017; revised July 5, 2017; accepted July 5, 2017. Date of publication July 11, 2017; date of current version July 26, 2017. This work was supported by the Methusalem program of the Flemish Government. (Keqi Ma and M. Shahin contributed equally to this work.) Corresponding author: M. Shahin (e-mail: [email protected]). Abstract: We demonstrate self-pulsating heterogeneously integrated III-V-on-SOI two- section distributed feedback laser diodes, with a wide range of self-pulsation frequencies between (but not limited to) 12 and 40 GHz.
    [Show full text]
  • Temporal and Spectral Characterization of Near-Ir Femtosecond Optical Parametric Oscillator Pulses
    MSc in Photonics PHOTONICSBCN Universitat Politècnica de Catalunya (UPC) Universitat Autònoma de Barcelona (UAB) Universitat de Barcelona (UB) Institut de Ciències Fotòniques (ICFO) http://www.photonicsbcn.eu Master in Photonics MASTER THESIS WORK TEMPORAL AND SPECTRAL CHARACTERIZATION OF NEAR-IR FEMTOSECOND OPTICAL PARAMETRIC OSCILLATOR PULSES Parisa Farzam Supervised by Dr. Majid Ebrahim-Zadeh, (ICFO, ICREA) and Dr. Lukasz Kornaszewski (ICFO) Presented on date 9th September 2009 Registered at Temporal and spectral characterization of near-IR femtosecond optical parametric oscillator pulses Parisa Farzam ICFO-Institut de Ciències Fotòniques, Nonlinear optics group, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain E-mail: [email protected] Abstract. Recently, there has been growing interest in ultrashort pulse measurement techniques. The aim of this work is to utilize interferometric autocorrelator in order to characterize near- IR femtosecond optical parametric oscillator (OPO) pulses. Although considerable research has been devoted to using nonlinear crystals in the autocorrelators, an attractive alternative to this approach remains two-photon absorption in photodiodes. In the setup we have used a commercial semiconductor which has several advantages to second harmonic generation technique. Conventional methods in autocorrelation analysis use secant hyperbolic square (sech2) assumption to figure out the shape of pulse; but we have developed a software to find out the pulse shape by guessing the phase. The comparison between results from phase-guessing method and sech2 assumption shows that the first method is more flexible and gives much information but it needs to be enhanced in order to find the best phase automatically. Keywords: ultrashort pulse measurement, autocorrelation, two-photon absorption, optical parametric oscillator.
    [Show full text]
  • Short Pulse Generation Using Multisegment Mode-Locked
    2186 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 28, NO. 10, OCTOBER 1992 Short Pulse Generation Using Multisegment - . * T Mode-Locked Semconductor Lasers Dennis J. Derickson, Member, IEEE, Roger J. Helkey, Member, IEEE, Alan Mar, Judy R. Karin, Student Member, IEEE, John G. Wasserbauer, Student Member, IEEE, and John E. Bowers, Senior Member, IEEE Invited Paper Abstract-Mode-locked semiconductor lasers which incorpo- SectionC SedionB SeetionA rate multiple contacting segments are found to give improved performance over single-segment designs. The functions of gain, saturable absorption, gain modulation, repetition rate tuning, wavelength tuning, and electrical pulse generation can be integrated on a single semiconductor chip. The optimization of the performance of multisegment mode-locked lasers in terms va 7F of material parameters, waveguiding parameters, electrical parasitics, and segment length is discussed experimentally and theoretically. ExternalI Cavity I. INTRODUCTION EMICONDUCTOR lasers are important sources of Sshort optical and electrical pulses. Semiconductor la- sers are small in size, use electrical pumping, are easy to operate, and consequently short optical pulses can now be (b) used in applications that were previously infeasible or un- SedionC SedionA economical. These pulses are used in high-speed optical fiber communication systems using time-division multi- Gain-Switch plexing for transmitters and for demultiplexing at the re- Q-SllitCh ceiver [l], [2]. Short optical pulses are also being used for optoelectronic measurement applications such as elec- trooptic sampling [3], analog to digital (A-D) conversion [4], and impulse response testing of optical components. (C) This paper concentrates on advances in the short pulse Fig. 1. Multisegment structures for generating short optical and electrical generation field that are a result of using multiple-segment pulses.
    [Show full text]
  • Nanoscale Force Sensing of an Ultrafast Nonlinear Optical Response
    Nanoscale force sensing of an ultrafast nonlinear optical response Zeno Schumachera,1,2 , Rasa Rejalia, Raphael Pachlatkoa , Andreas Spielhofera, Philipp Naglerb, Yoichi Miyaharaa, David G. Cookea , and Peter Grutter¨ a,1 aDepartment of Physics, McGill University, Montreal QC H3A 2T8, Canada; and bDepartment of Physics, University of Regensburg, 93053 Regensburg, Germany Edited by Jianming Cao, Florida State University, Tallahassee, FL, and accepted by Editorial Board Member Zachary Fisk July 2, 2020 (received for review March 2, 2020) The nonlinear optical response of a material is a sensitive probe Results of electronic and structural dynamics under strong light fields. We split the output of a mode-locked femtosecond fiber laser The induced microscopic polarizations are usually detected via operating at 80-MHz repetition rate and 780-nm central wave- their far-field light emission, thus limiting spatial resolution. Sev- length, 200 mW (Toptica FemtoFiber pro NIR), to generate eral powerful near-field techniques circumvent this limitation two coherent pulse trains, with a well-defined temporal delay by employing local nanoscale scatterers; however, their signal between the two. The pulse trains can be arranged in a non- strength scales unfavorably as the probe volume decreases. Here, collinear or collinear fashion and focused onto the tip–sample we demonstrate that time-resolved atomic force microscopy is junction of an AFM incorporated in a UHV system. As the two capable of temporally and spatially resolving the microscopic, pulses are delayed with respect to each other, the light inten- electrostatic forces arising from a nonlinear optical polarization sity at the tip–sample junction oscillates, in delay time, with the in an insulating dielectric driven by femtosecond optical fields.
    [Show full text]
  • Mid-Infrared Ultra-Short Mode-Locked Fiber Laser Utilizing Topological
    Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator BiR2RTeR3R nano-sheets as the saturable absorber 1 1,2,3 1 1 1,2 1,4 Ke YinP ,P Tian JiangP ,P Hao YuP ,P Xin ZhengP ,P Xiangai ChengP ,P Jing HouP 1 P CollegeP of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, P.R.China; 2 P StateP key laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, P.R.China; 3 P P [email protected] U 4 PU hUP [email protected] Abstract: The newly-emergent two-dimensional topological insulators (TIs) have shown their unique electronic and optical properties, such as good thermal management, high nonlinear refraction index and ultrafast relaxation time. Their narrow energy band gaps predict their optical absorption ability further into the mid-infrared region and their possibility to be very broadband light modulators ranging from the visible to the mid-infrared region. In this paper, a mid-infrared mode-locked fluoride fiber laser with TI Bi2Te3 nano-sheets as the saturable absorber is presented. Continuous wave lasing, Q-switched and continuous-wave mode-locking (CW-ML) operations of the laser are observed sequentially by increasing the pump power. The observed CW-ML pulse train has a pulse repetition rate of 10.4 MHz, a pulse width of ~6 ps, and a center wavelength of 2830 nm. The maximum achievable pulse energy is 8.6 nJ with average power up to 90 mW. This work forcefully demonstrates the promising applications of two-dimensional TIs for ultra-short laser operation and nonlinear optics in the mid-infrared region.
    [Show full text]
  • Complete Characterization of Optical Pulses in the Picosecond Regime for Ultrafast Communication Systems by Jade P
    -A Complete Characterization of Optical Pulses in the Picosecond Regime for Ultrafast Communication Systems by Jade P. Wang Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY August 2002 @ Massachusetts Institute of Technology, 2002. All rights reserved MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUL 3 0 2003 LIBRARIES V, Author.. ..........................................- fDepart'rrisfit of Electrical Engineering and Computer Science August 21, 2002 Certified by........ ........................ Erich P. Ippen Elihu Thomson Professor of Electrical Engineering Thesis Supervisor Certified by....... ............................. Scott A. Hamilton MIT Lincoln Laboratory Staff Member T)p6s Supervisor Accepted by............. Arthur C. Smith Chairman, Deparment Committee on Graduate Theses 10411 2 Complete Characterization of Optical Pulses in the Picosecond Regime for Ultrafast Communication Systems by Jade P. Wang Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract Ultrashort optical pulses have a variety of applications, one of which is the develop- ment of optical time-devision multiplexing (OTDM) networks. Data is encoded in these short optical pulses (typically a few picoseconds in length) which are then inter- leaved in time to provide very high data rates on a single wavelength. Wavelength- division multiplexing (WDM) uses multiple channels by interleaving pulses in fre- quency in order to achieve high data rates. Typical pulse lengths in WDM are on the order of hundreds of picoseconds. OTDM networks have some advantages over WDM networks, but in order to take advantage of these characteristics, a better understanding of short optical pulse characterization needs to be reached.
    [Show full text]
  • Towards On-Chip MEMS-Based Optical Autocorrelator
    This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/JLT.2018.2867473 > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Towards On-Chip MEMS-Based Optical Autocorrelator Ahmed M. Othman, Student Member, IEEE, Hussein E. Kotb, Member, IEEE, Yasser M. Sabry, Member, IEEE, Osama Terra, and Diaa A. Khalil, Senior Member, IEEE have a very limited wavelength range of operation [7], or only Abstract—We propose a compact MEMS-based optical capable of measuring pulses having a time-bandwidth product autocorrelator based on a micromachined Michelson greater than 100 [8]. In addition, some work has been reported interferometer in silicon and the two-photon absorption non- based on CdS or CdTe nanowires [9]–[10] but the use of linearity in a photodetector. The miniaturized autocorrelator has alignment-sensitive optical components for coupling light into a scanning range of 1.2 ps and operates in the wavelength range of 1100-2000 nm. The device measures the interferometric the nanowires is still a challenge. Another technique that autocorrelation due to its collinear nature, from which the requires high spatial coherence for few-cycle pulses intensity autocorrelation can be calculated. The field measurement using an angular tunable bi-mirror for non- autocorrelation can also be measured, from which the optical pulse collinear autocorrelation is reported in ref. [11]. spectrum can be calculated. A theoretical model based on In this work, a MEMS-based autocorrelator that uses a Gaussian beam propagation is developed to study the effect of Michelson interferometer fabricated using silicon optical beam divergence, pulse dispersion, tilt angle between the interferometer mirrors, and amplitude mismatch between the micromachining technology is reported.
    [Show full text]
  • Numerical Simulation of Passively Q-Switched Solid State Lasers
    Chapter 14 Numerical Simulation of Passively Q-Switched Solid State Lasers I. Lăncrănjan, R. Savastru, D. Savastru and S. Micloş Additional information is available at the end of the chapter http://dx.doi.org/10.5772/47812 1. Introduction Short laser light pulses have a large number of applications in many civilian and military applications [1-10]. To a large percentage these short laser pulses are generated by solid state lasers using various active media types (crystals, glasses or ceramic) operated in Q- switching and/or mode-locking techniques [1-10]. Among the short light pulses laser generators, those operated in Q-switching regime and emitting pulses of nanosecond FWHM duration occupy a large part of civilian (material processing - for example: nano- materials formation by using ablation technique [3,7]) and military (projectile guidance over long distances and range finding) applications. Basically, Q-switching operation relies on a fast switching of laser resonator quality factor Q from a low value (corresponding to large optical losses) to a high one (representing low radiation losses). Depending on the proposed application, two main Q-switching techniques are used: active, based on electrical (in some cases operation with high voltages up to about 1 kV being necessary) or mechanical (spinning speeds up to about 1 kHz being used) actions on an optical component at least, coming from the outside of the laser resonator, and passive relying entirely on internal to the laser resonator induced variation of one optical component transmittance. 2. Theory Figure 1 displays a general schematic of electronic energy levels of laser active centers embedded in an active medium and of saturable absorption centers embedded into solid state passive optical Q-switch cell laser oscillator operated in passive optical Q-switching regime [11-18,26].
    [Show full text]
  • Soliton Molecules and Multisoliton States in Ultrafast Fibre Lasers: Intrinsic Complexes in Dissipative Systems
    applied sciences Review Soliton Molecules and Multisoliton States in Ultrafast Fibre Lasers: Intrinsic Complexes in Dissipative Systems Lili Gui 1,*, Pan Wang 2, Yihang Ding 2, Kangjun Zhao 2, Chengying Bao 3, Xiaosheng Xiao 2 and Changxi Yang 2,* 1 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany 2 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China; [email protected] (P.W.); [email protected] (Y.D.); [email protected] (K.Z.); [email protected] (X.X.) 3 Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] * Correspondence: [email protected] (L.G.); [email protected] (C.Y.); Tel.: +86-10-6277-2824 (C.Y.) Received: 14 December 2017; Accepted: 23 January 2018; Published: 29 January 2018 Featured Application: High-capacity telecommunication, advanced time-resolved spectroscopy, self-organization and chaos in dissipative systems. Abstract: Benefiting from ultrafast temporal resolution, broadband spectral bandwidth, as well as high peak power, passively mode-locked fibre lasers have attracted growing interest and exhibited great potential from fundamental sciences to industrial and military applications. As a nonlinear system containing complex interactions from gain, loss, nonlinearity, dispersion, etc., ultrafast fibre lasers deliver not only conventional single soliton but also soliton bunching with different types. In analogy to molecules consisting of several atoms in chemistry, soliton molecules (in other words, bound solitons) in fibre lasers are of vital importance for in-depth understanding of the nonlinear interaction mechanism and further exploration for high-capacity fibre-optic communications.
    [Show full text]
  • Advances in All-Solid-State Passively Q-Switched Lasers Based on Cr4+:YAG Saturable Absorber
    hv photonics Review Advances in All-Solid-State Passively Q-Switched Lasers Based on Cr4+:YAG Saturable Absorber Jingling Tang 1,2, Zhenxu Bai 1,2,3,*, Duo Zhang 1,2, Yaoyao Qi 1,2, Jie Ding 1,2, Yulei Wang 1,2 and Zhiwei Lu 1,2 1 Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; [email protected] (J.T.); [email protected] (D.Z.); [email protected] (Y.Q.); [email protected] (J.D.); [email protected] (Y.W.); [email protected] (Z.L.) 2 Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China 3 MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia * Correspondence: [email protected] Abstract: All-solid-state passively Q-switched lasers have advantages that include simple structure, high peak power, and short sub-nanosecond pulse width. Potentially, these lasers can be applied in multiple settings, such as in miniature light sources, laser medical treatment, remote sensing, and precision processing. Cr4+:YAG crystal is an ideal Q-switch material for all-solid-state passively Q-switched lasers owing to its high thermal conductivity, low saturation light intensity, and high damage threshold. This study summarizes the research progress on all-solid-state passively Q- switched lasers that use Cr4+:YAG crystal as a saturable absorber and discusses further prospects for the development and application of such lasers. Keywords: laser; Cr4+:YAG; all-solid-state; passively Q-switch Citation: Tang, J.; Bai, Z.; Zhang, D.; Qi, Y.; Ding, J.; Wang, Y.; Lu, Z.
    [Show full text]
  • Multi-Purpose Device for Analyzing and Measuring Ultra-Short Pulses
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2016 Multi-Purpose device for analyzing and measuring ultra-short pulses Naman Anilkumar Mehta University of Central Florida Part of the Electromagnetics and Photonics Commons, and the Optics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Mehta, Naman Anilkumar, "Multi-Purpose device for analyzing and measuring ultra-short pulses" (2016). Electronic Theses and Dissertations, 2004-2019. 5135. https://stars.library.ucf.edu/etd/5135 MULTI-PURPOSE DEVICE FOR ANALYZING AND MEASURING ULTRA-SHORT PULSES by NAMAN ANILKUMAR MEHTA B.S. U.V. Patel College of Engineering, 2013 A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Engineering in the College of Optics and Photonics: CREOL & FPCE at the University of Central Florida Orlando, Florida Summer Term 2016 Major Professor: Axel Schulzgen c 2016 Naman Anilkumar Mehta ii ABSTRACT Intensity auto correlator is device to measure pulse widths of ultrashort pulses on the order of pi- coseconds and femtoseconds. I have built an in-house, compact, portable, industry standard inten- sity auto correlator for measuring ultrashort pulse-widths. My device is suitable for pulse-widths from 500 ps to 50 fs. The impetus for developing this instrument stemmed from our development of a multicore-fiber laser for high power laser applications, which also produces very short pulses that cannot be measured with an oscilloscope.
    [Show full text]
  • Mechanisms of Spatiotemporal Mode-Locking
    Mechanisms of Spatiotemporal Mode-Locking Logan G. Wright1, Pavel Sidorenko1, Hamed Pourbeyram1, Zachary M. Ziegler1, Andrei Isichenko1, Boris A. Malomed2,3, Curtis R. Menyuk4, Demetrios N. Christodoulides5, and Frank W. Wise1 1. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA 2. Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and the Center for Light-Matter Interaction, Tel Aviv University, 69978 Tel Aviv, Israel 3. ITMO University, St. Petersburg 197101, Russia 4. Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA 5. CREOL/College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA Abstract Mode-locking is a process in which different modes of an optical resonator establish, through nonlinear interactions, stable synchronization. This self-organization underlies light sources that enable many modern scientific applications, such as ultrafast and high-field optics and frequency combs. Despite this, mode-locking has almost exclusively referred to self-organization of light in a single dimension - time. Here we present a theoretical approach, attractor dissection, for understanding three-dimensional (3D) spatiotemporal mode-locking (STML). The key idea is to find, for each distinct type of 3D pulse, a specific, minimal reduced model, and thus to identify the important intracavity effects responsible for its formation and stability. An intuition for the results follows from the “minimum loss principle,” the idea that a laser strives to find the configuration of intracavity light that minimizes loss (maximizes gain extraction). Through this approach, we identify and explain several distinct forms of STML.
    [Show full text]