Passively Q-Switched Ytterbium-Doped Fiber Laser
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Demonstration of Inp-On-Si Self-Pulsating DFB Laser Diodes for Optical Microwave Generation Volume 9, Number 4, August 2017
Open Access Demonstration of InP-on-Si Self-Pulsating DFB Laser Diodes for Optical Microwave Generation Volume 9, Number 4, August 2017 Keqi Ma M. Shahin, Student Member, IEEE A. Abbasi, Member, IEEE G. Roelkens, Member, IEEE G. Morthier, Senior Member, IEEE DOI: 10.1109/JPHOT.2017.2724840 1943-0655 © 2017 IEEE IEEE Photonics Journal Demonstration of InP-on-Si Self-Pulsating DFB Laser Demonstration of InP-on-Si Self-Pulsating DFB Laser Diodes for Optical Microwave Generation Keqi Ma,1 M. Shahin,2,3 Student Member, IEEE, A. Abbasi,2,3 Member, IEEE, G. Roelkens,2,3 Member, IEEE, and G. Morthier,2,3 Senior Member, IEEE 1Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China 2Photonics Research Group, Department of Information Technology (INTEC), Ghent University–IMEC, Gent B-9000, Belgium 3Center for Nano-and Biophotonics, Ghent University, Gent B-9000, Belgium DOI:10.1109/JPHOT.2017.2724840 1943-0655 C 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. Manuscript received June 9, 2017; revised July 5, 2017; accepted July 5, 2017. Date of publication July 11, 2017; date of current version July 26, 2017. This work was supported by the Methusalem program of the Flemish Government. (Keqi Ma and M. Shahin contributed equally to this work.) Corresponding author: M. Shahin (e-mail: [email protected]). Abstract: We demonstrate self-pulsating heterogeneously integrated III-V-on-SOI two- section distributed feedback laser diodes, with a wide range of self-pulsation frequencies between (but not limited to) 12 and 40 GHz. -
Simultaneous Intensity Profiling of Multiple Laser Beams Using the Bladecam-XHR Camera
Simultaneous Intensity Profiling of Multiple Laser Beams Using the BladeCam-XHR Camera Shaun Pacheco College of Optical Sciences, University of Arizona Rongguang Liang College of Optical Sciences, University of Arizona Rocco Dragone Vice President of Engineering, DataRay, Inc. Real-Time Profiling of Multiple Laser Beams There are several applications where the parallel processing of multiple beams can significantly decrease the overall time needed for the process. Intensity profile measurements that can characterize each of those beams can lead to improvements in that application. If each beam had to be characterized individually, the process would be very time consuming, especially for large numbers of beams. This white paper describes how the BladeCam-XHR can be used to simultaneously measure the intensity profile measurements for multiple beams by measuring the diffraction pattern from a diffraction grating and the intensity profile from a 3x3 fiber array focused using a 0.5 NA objective. Diffraction Gratings Diffraction gratings are periodic optical components that diffract an incident beam into several outgoing beams. The grating profile determines both the angle of the diffracted beam modes and the efficiency of light sent into each of those modes. Grating fabrication errors or a change in the incident wavelength can significantly change the performance of a diffraction grating. The BladeCam- XHR, Figure 1, can be used to measure the point spread function (PSF) of each mode, the relative efficiency of each mode and the spacing between diffraction modes. Figure 1 BladeCam-XHR Using the BladeCam-XHR for Diffraction Grating Evaluation The profiling mode in the DataRay software can be used to evaluate the performance of a diffraction grating. -
Applications of Laser Spectroscopy Constitute a Vast Field, Which Is Difficult to Spectroscopy Cover Comprehensively in a Review
LASERS & OPTICS 151 many cases non-destructively. A variety of beam manipulation schemes are avail able for the irradiation of samples either directly or after preparation. The unique properties of laser radiation in terms of coherence, intensity and directionality permit remote chemical sensing, where the analytical equipment and the sample are separated by large distances, even of several kilometres. Absorption, and in particular differential absorption, can be utilised in long-path measurements, whereas elastic and inelastic backscatter- ing as well as fluorescence can be used for range-resolved radar-like measure ments (LIDAR: light detection and rang ing). Laser light can also be efficiently transported in optical fibres to remotely located measurement sites. Various prop erties of the fibre itself influence the laser light propagating through the fibre, thus Applications of Laser forming a basis for fibre optic sensors. Applications of laser spectroscopy constitute a vast field, which is difficult to Spectroscopy cover comprehensively in a review. Rather than attempting such a review, examples from a variety of fields are cho Costas Fotakis sen for illustrating the power of applied University of Crete, Greece laser spectroscopy. Sune Svanberg Lund Institute of Technology, Sweden Applications in Analytical Chemistry Laser spectroscopy is making a major impact in many traditional fields of ana As the new millennium approaches the Above The Italian research vessel Urania, carrying a lytical spectroscopy. For instance, opto- know how in the field of laser-matter Swedish laser radar system, which has sailed under the galvanic spectroscopy on analytical smoky plumes of Sicilian volcanos in Italy measuring the interactions has matured to the stage of sulphur dioxide content flames increases the sensitivity of enabling several exciting real life applica absorption and emission flame spec tions. -
Hair Reduction by Laser
Ames Locations To Eldora, Iowa Falls, McFarland Clinic North Ames Story City, Urgent Care Webster City Treatment McFarland Clinic (3815 Stange Rd.) Bloomington Road McFarland Clinic Physical Therapy - Somerset West Ames e. (2707 Stange Rd., Suite 102) 24th Street Av f e. Duf Av You should not use any Accutane (a prescribed oral US 69 Ontario Street 13th Street Grand 13th Street acne medication) or gold medications (for arthritis) McFarland Clinic (1215 Duff) MGMC - North Addition for six months prior to a treatment. You should William R. Bliss Cancer Center 12th Street Stange Road . e. Mary Greeley Medical Center (MGMC) McFarland Eye Center not use retinoids (e.g. Retin A, Fifferin, Differin, Av (1111 Duff Ave.) (1128 Duff) e. 11th Street Ramp Av McFarland Family Avita, Tazorac), alpha-hydroxy acid moisturizers, Medicine East Hyland St Medical Arts Building (1018 Duff) To Boone, Carroll I-35 bleaching creams (hydroquinone) or chemical peels Iowa State (1015 Duff) Jefferson N. Dakota Marshall University for two weeks prior to a treatment. Do not pluck the Lincoln Way Lincoln Way Express Care Express Care hairs, wax or use depilatories or electrolysis for six e. (3800 Lincoln Way) (640 Lincoln Way) weeks prior to a treatment. Av McFarland Clinic West Ames Hy-Vee (3600 Lincoln Way) Hy-Vee e. Av ff You may be asked to shave the area prior to your S. Dakota To Nevada, Du first treatment appointment. You may also be Marshalltown prescribed a topical anesthetic (numbing) cream to Highway 30 help reduce any discomfort the laser may cause. Blvd University First Treatment: The laser will be used to treat the N areas by your dermatologist or one of the trained Oakwood Road Airport Road dermatology staff. -
Laser Pointer Safety About Laser Pointers Laser Pointers Are Completely Safe When Properly Used As a Visual Or Instructional Aid
Harvard University Radiation Safety Services Laser Pointer Safety About Laser Pointers Laser pointers are completely safe when properly used as a visual or instructional aid. However, they can cause serious eye damage when used improperly. There have been enough documented injuries from laser pointers to trigger a warning from the Food and Drug Administration (Alerts and Safety Notifications). Before deciding to use a laser pointer, presenters are reminded to consider alternate methods of calling attention to specific items. Most presentation software packages offer screen pointer options with the same features, but without the laser hazard. Selecting a Safe Laser Pointer 1) Choose low power lasers (Class 2) Whenever possible, select a Class 2 laser pointer because of the lower risk of eye damage. 2) Choose red-orange lasers (633 to 650 nm wavelength, choose closer to 635 nm) The National Institute of Standards and Technology (NIST) researchers found that some green laser pointers can emit harmful levels of infrared radiation. The green laser pointers create green light beam in a three step process. A standard laser diode first generates near infrared light with a wavelength of 808nm, and pumps it into a ND:YVO4 crystal that converts the 808 nm light into infrared with a wavelength of 1064 nm. The 1064 nm light passes into a frequency doubling crystal that emits green light at a wavelength of 532nm finally. In most units, a combination of coatings and filters keeps all the infrared energy confined. But the researchers found that really inexpensive green lasers can lack an infrared filter altogether. One tested unit was so flawed that it released nine times more infrared energy than green light. -
Radius Manual
500 Corporate Circle - Suite L Golden, CO 80401 Phone (303) 277-1188 Fax (303) 277-9669 Owner's Manual for EPILOG Radius Model 4000 Revision E, December 1998 Table Of Contents Title Page No. SECTION 1: GETTING STARTED.......................................................................... 5 UNPACKING YOUR MACHINE ........................................................................................... 5 CONNECTING POWER AND CONNECTING THE COMPUTER .................................. 5 CONNECTING THE EXHAUST ............................................................................................ 7 CONFIGURE YOUR COMPUTER ........................................................................................ 8 INSTALLING THE EPILOG RADIUS PRINT DRIVER .................................................................... 8 SECTION 2: SAFETY ............................................................................................. 10 LASER SAFETY ..................................................................................................................... 10 ELECTRICAL SAFETY. ....................................................................................................... 11 FIRE SAFETY. ........................................................................................................................ 11 SAFETY FEATURES AND REGULATORY COMPLIANCE.......................................... 12 SECTION 3: USING THE EPILOG RADIUS PRINT DRIVER .......................... 15 RESOLUTION........................................................................................................................ -
Fabication and Analysis of Cnc Laser Engraving on Different Materials
© 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162) FABICATION AND ANALYSIS OF CNC LASER ENGRAVING ON DIFFERENT MATERIALS Sridutt H R1, Sachin M2, Pramod M3, Surendra M4, Bhaskar B Katti5, Chakrasali Chandrakumar6, 1,2,3,4 B E Students, Department of Mechanical Engineering, Proudhadevaraya Institute of Technology, Hosapete, 5, 6, Assistant Professor, Department of Mechanical Engineering, Proudhadevaraya Institute of Technology, Hosapete high power density results in fast heating, melting and fractional or complete vaporizing of the material. ABSTRACT There are mainly three types of laser machines: i) The CO2 laser which is best for cutting, boring, and Engraving is special art of carving of design on harden engraving, ii) The neodymium (Nd) and surface. It is advance and recent technology which uses the neodymium yttrium-aluminium-garnet (Nd:YAG) lasers. laser to imprint shapes and designs on materials what you The Nd:YAG laser is used for boring and engraving where needed to engrave. Basically it used for industrial very high power is needed. For welding operation CO2 and Nd/Nd: YAG laser both can be used [1]. In addition other applications like in schools, small scale business and micro jet laser is a water-jet guided laser is used to perform hobbyists. Laser engraver works on directing the High laser cutting functions while using the water jet to guide the Power Laser beam through optic on materials. In laser laser beam, through total internal reflection. The main engrave method two ways one is by cutting material and advantages of this type laser are that the water also removes other is without cutting by simply changing the color. -
Solid State Laser
SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H. -
Part 2: Laser in Pulsed Operation
Part 2: Laser in pulsed operation 1 Theoretical principles 1.1 Generation of short laser pulses The output power of existing continuous wave laser systems is between a few milliwatts (He-Ne lasers) and a few hundred watts (Nd or CO2 lasers). However, there is a possibility to increase the output power of the laser for a small period of time by pulsed laser operation. Solid-state lasers are particularly suitable for this purpose, as they can achieve pulse peak output powers of up to 1012 W. This value corresponds approximately to the average electrical energy generation of the entire world. The difference, however, lies in the period in which this performance is achieved. While all the power plants together reach this value continuously, a single laser produces this high output power only for a duration of 10−13 s. In this case, the extremely short pulse duration appears to be disadvantageous, but there are also applications which exactly require this. One example is laser ablation, which is a method in material processing. Here, a small volume of material at the surface of a work piece can be evaporated if it is heated high enough in a very short amount of time. On the other hand, supplying the energy gradually would allow the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature above the evaporation point of the material. Other applications rely on the very high peak pulse power to obtain strong non-linear optical effects, like it is necessary for efficient second-harmonic generation or for optical parametric oscillators (OPO) which converts an input laser wave into two output waves of lower frequencies. -
OSI Newsletter
View this email in your browser Welcome to ePulse: Laser Measurement News, a review of new developments in laser beam measurements, beam diagnoscs, and beam profiling. Each issue contains industry news, product informaon, and technical ps to help you solve challenging laser measurement and spectral Subscribe analysis requirements. Please forward to interested colleagues or have them subscribe. Don't forget to see all our new product demos at SPIE Photonics West, Booth 1400, San Francisco, CA, Jan. 31 ‐ Feb. 2, 2017. By Mark S. Szorik, Pacific Northwest Regional Sales Manager, Ophir Photonics By Mark S. Szorik, Pacific Northwest Regional One of the most common Sales Manager, Ophir Photonics quesons I am asked is, "Why do I A laser profiling system can need a beam profiler and what characterize and idenfy which tools and methods do I need to variables affect product quality profile my beam?" All industries and waste. But many laser users require specialized tools to be have never evaluated the quality efficient and effecve. The laser of the beam beyond the inial industry is no different, having delivery. This leads to frequent evolved from wooden blocks, process adjustments to try to get burn paper, and photographic film back to "normal" and franc calls to powerful digital tools. Here are to outside laser services. Wouldn't the quesons you need to ask to it be beer to avoid these find the right profiling tools. problems and added expenses? Laser Profiling Laser Characterization Find out how others have put laser By Roei Yiah, Industrial Product Manager; measurement to work in their Moshe Danziger, Applicaon Engineer, and applicaons, from quality control to Shmulik Barzilay, Internaonal Sales Manager, Opmet (Ophir Photonics) medical devices to industrial materials processing. -
Short Pulse Generation Using Multisegment Mode-Locked
2186 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 28, NO. 10, OCTOBER 1992 Short Pulse Generation Using Multisegment - . * T Mode-Locked Semconductor Lasers Dennis J. Derickson, Member, IEEE, Roger J. Helkey, Member, IEEE, Alan Mar, Judy R. Karin, Student Member, IEEE, John G. Wasserbauer, Student Member, IEEE, and John E. Bowers, Senior Member, IEEE Invited Paper Abstract-Mode-locked semiconductor lasers which incorpo- SectionC SedionB SeetionA rate multiple contacting segments are found to give improved performance over single-segment designs. The functions of gain, saturable absorption, gain modulation, repetition rate tuning, wavelength tuning, and electrical pulse generation can be integrated on a single semiconductor chip. The optimization of the performance of multisegment mode-locked lasers in terms va 7F of material parameters, waveguiding parameters, electrical parasitics, and segment length is discussed experimentally and theoretically. ExternalI Cavity I. INTRODUCTION EMICONDUCTOR lasers are important sources of Sshort optical and electrical pulses. Semiconductor la- sers are small in size, use electrical pumping, are easy to operate, and consequently short optical pulses can now be (b) used in applications that were previously infeasible or un- SedionC SedionA economical. These pulses are used in high-speed optical fiber communication systems using time-division multi- Gain-Switch plexing for transmitters and for demultiplexing at the re- Q-SllitCh ceiver [l], [2]. Short optical pulses are also being used for optoelectronic measurement applications such as elec- trooptic sampling [3], analog to digital (A-D) conversion [4], and impulse response testing of optical components. (C) This paper concentrates on advances in the short pulse Fig. 1. Multisegment structures for generating short optical and electrical generation field that are a result of using multiple-segment pulses. -
Laser Engraving Tips and Tricks for Glassware
Laser Engraving Tips and Tricks for Glassware By Mike Dean, vice-president of sales and marketing, Epilog Laser Engraving on glass and crystal can produce stunning results. From engraving the names of the bride and groom on wedding champagne flutes to etching a company logo on a set of beer mugs and beyond, glass etching and engraving creates a sense of sophistication and beauty that is very popular among consumers. CO2 laser engraving equipment generally offers a quicker and more convenient alternative to traditional glass engraving techniques, such as sandblasting, which necessitates the creation of a template prior to starting the project. While engraved and etched glassware is in huge demand, depending on the type and lead content, glass is typically a very delicate material to work with. But don’t let the delicacy of the material dissuade you from glass engraving and etching – just keep the following tips and tricks in mind when working with glass and crystal and you’ll produce the results that keep customers coming back for more. Glassware Options First, you might find it easier to work with “everyday” glassware as opposed to crystal. Crystal contains a greater amount of lead, which retains heat very well (too well for a laser!). When you use a CO2 laser to engrave glass, the surface is heated as the laser beam blasts away delicate glass particles. If the glass is unable to cool down adequately, as is sometimes the case with crystal, the markings expand in size, which can produce a distorted look. Avoid a Second Pass Prior to running any glass engraving job, it's very important to test your speed and power settings on the type of glass you'll be using.