MECOPTERA, MEGALOPTERA and NEUROPTERA by Lt.-Col
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuroptera: Coniopterygidae) of the Arabian Peninsula
FAUNA OF ARABIA 22: 381-434 Date of publication: 18.12.2006 The dusty lacewings (Neuroptera: Coniopterygidae) of the Arabian Peninsula Gyorgy Sziraki and Antonius van Harten A b s t r act: The descriptions of nine new coniopterygid species (Cryptoscenea styfaris n. sp., Coniopteryx (Xeroconiopteryx) pfat yarcus n. sp., C (X) caudata n. sp., C (X) dudichi n. sp., C (X) stylobasalis n. sp., C (X) armata n. sp., C (X) loksai n. sp., C (Coniopteryx) gozmanyi n. sp., Conwentzia obscura n. sp.), and an annotated list of 53 other species of dusty lacewings found in the Arabian Peninsula are given, together with an identification key. Nine described species (Aleuropteryx wawrikae, Coniocompsa smithersi, Nimboa espanoli, N. kasyi, N. ressii, Coniopteryx (X) aegyptiaca, C (X) hastata, C (X) kerzhneri, C (X) mongolica) are also new to the fauna of the Arabian Peninsula. Aleuropteryx cruciata Szid.ki, 1990 is regarded as a junior synonym of A. arabica Meinander, 1977, while Helicoconis serrata Meinander, 1979 is transferred to the genus Cryptoscenea. A new informal species-group (the unguihipandriata-group) is proposed within the subgenus Xeroconiopteryx. Coniopteryx (X) martinmeinanderi nom. nov. is pro posed for C (X) forcata Meinander, 1998, which is a junior primary homonym. 4.~, 0.fi?--' ~ J (Coniopterygidae :~~, ~) o~' ~~, ~~) ~ ~ I! .. ~ :; J.jJpl ;y..ill ~":il 4J.~j if ~y of' ~ ~ WLi ~JJ t.lyl a.........;.....A..PJ f' :~~ 41"';"'i ~ ~ ;~..b:- t.lyi L4i J.>- J.j.J4' y t.'f! a.........; j ~i f' .~ c.l:A.. Jl ~W,l ,~..rJI ; .;:!y.,.1 Helicoconis -
Aquatic Insects Are Dramatically Underrepresented in Genomic Research
insects Communication Aquatic Insects Are Dramatically Underrepresented in Genomic Research Scott Hotaling 1,* , Joanna L. Kelley 1 and Paul B. Frandsen 2,3,* 1 School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; [email protected] 2 Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84062, USA 3 Data Science Lab, Smithsonian Institution, Washington, DC 20002, USA * Correspondence: [email protected] (S.H.); [email protected] (P.B.F.); Tel.: +1-(828)-507-9950 (S.H.); +1-(801)-422-2283 (P.B.F.) Received: 20 August 2020; Accepted: 3 September 2020; Published: 5 September 2020 Simple Summary: The genome is the basic evolutionary unit underpinning life on Earth. Knowing its sequence, including the many thousands of genes coding for proteins in an organism, empowers scientific discovery for both the focal organism and related species. Aquatic insects represent 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. A lack of aquatic genomes is limiting research progress in the field at both fundamental and applied scales. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to empower future research. -
Multispecies Coalescent Analysis Unravels the Non-Monophyly and Controversial
bioRxiv preprint doi: https://doi.org/10.1101/187997; this version posted September 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Multispecies coalescent analysis unravels the non-monophyly and controversial relationships of Hexapoda Lucas A. Freitas, Beatriz Mello and Carlos G. Schrago* Departamento de Genética, Universidade Federal do Rio de Janeiro, RJ, Brazil *Address for correspondence: Carlos G. Schrago Universidade Federal do Rio de Janeiro Instituo de Biologia, Departamento de Genética, CCS, A2-092 Rua Prof. Rodolpho Paulo Rocco, S/N Cidade Universitária Rio de Janeiro, RJ CEP: 21.941-617 BRAZIL Phone: +55 21 2562-6397 Email: [email protected] Running title: Species tree estimation of Hexapoda Keywords: incomplete lineage sorting, effective population size, Insecta, phylogenomics bioRxiv preprint doi: https://doi.org/10.1101/187997; this version posted September 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract With the increase in the availability of genomic data, sequences from different loci are usually concatenated in a supermatrix for phylogenetic inference. However, as an alternative to the supermatrix approach, several implementations of the multispecies coalescent (MSC) have been increasingly used in phylogenomic analyses due to their advantages in accommodating gene tree topological heterogeneity by taking account population-level processes. Moreover, the development of faster algorithms under the MSC is enabling the analysis of thousands of loci/taxa. Here, we explored the MSC approach for a phylogenomic dataset of Insecta. -
ZOOLOGY Zoology 110 (2007) 409–429
ARTICLE IN PRESS ZOOLOGY Zoology 110 (2007) 409–429 www.elsevier.de/zool Towards an 18S phylogeny of hexapods: Accounting for group-specific character covariance in optimized mixed nucleotide/doublet models Bernhard Misofa,Ã, Oliver Niehuisa, Inge Bischoffa, Andreas Rickerta, Dirk Erpenbeckb, Arnold Staniczekc aAbteilung fu¨r Entomologie, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany bDepartment of Coelenterata and Porifera (Zoologisch Museum), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cStaatliches Museum fu¨r Naturkunde Stuttgart, Abt. Entomologie, Rosenstein 1, D-70191 Stuttgart, Germany Received 19 May 2007; received in revised form 2 August 2007; accepted 22 August 2007 Abstract The phylogenetic diversification of Hexapoda is still not fully understood. Morphological and molecular analyses have resulted in partly contradicting hypotheses. In molecular analyses, 18S sequences are the most frequently employed, but it appears that 18S sequences do not contain enough phylogenetic signals to resolve basal relationships of hexapod lineages. Until recently, character interdependence in these data has never been treated seriously, though possibly accounting for the occurrence of biased results. However, software packages are readily available which can incorporate information on character interdependence within a Bayesian approach. Accounting for character covariation derived from a hexapod consensus secondary structure model and applying mixed DNA/RNA substitution models, our Bayesian analysis of 321 hexapod sequences yielded a partly robust tree that depicts many hexapod relationships congruent with morphological considerations. It appears that the application of mixed DNA/RNA models removes many of the anomalies seen in previous studies. We focus on basal hexapod relationships for which unambiguous results are missing. -
Nuevos Datos Sobre Algunas Especies De Hemeróbidos (Insecta: Neuroptera: Hemerobiidae)
Heteropterus Revista de Entomología 2004 Heteropterus Rev. Entomol. 4: 1-26 ISSN: 1579-0681 Nuevos datos sobre algunas especies de hemeróbidos (Insecta: Neuroptera: Hemerobiidae) V.J. MONSERRAT Departamento de Zoología y Antropología Física; Facultad de Biología; Universidad Complutense; 28040 Madrid (España); E-mail: [email protected] Resumen Se anotan nuevos datos sobre la distribución, biología, fenología, morfología alar o genital, variabilidad, nomen- clatura y/o taxonomía de 68 especies de hemeróbidos de las faunas paleártica, neártica, afrotropical, oriental y neotropical. Alguna de ellas no había sido citada desde su descripción original y de otras se amplía significati- vamente su distribución. Se anotan nuevos datos sobre las alas y la genitalia masculina y/o femenina de Heme- robius productus (Tjeder, 1961), Psectra diptera (Burmeister, 1839), P. jeanneli (Navás, 1914), P. mozambica Tjeder, 1961, Sympherobius pygmaeus (Rambur, 1842), S. fallax Navás, 1908, S. zelenyi Alayo, 1968, Notiobiella nitidula Navás, 1910, N. hargreavesi Kimmins, 1936, N. ugandensis Kimmins, 1939, N. vicina Kimmins, 1936, N. turneri Kimmins, 1933, Micromus plagatus Navás, 1934, M. sjostedti Weele, 1910, M. canariensis Esben-Petersen, 1936 y M. africanus Weele, 1910. Se proponen Hemerobius falciger (Tjeder, 1963) nov. comb. y Hemerobius anomalus (Monserrat, 1992) nov. comb. como nuevas combinaciones y el nombre de Nusalala ilusionata nom. nov. para Nusalala falcata Kimmins, 1940 nec Nusalala falcata (Banks, 1910). Se apoya la validez de Micromus canariensis frente a M. sjostedti y Hemerobius con- vexus n. sp. se describe como una nueva especie braquíptera de Kenia. Palabras clave: Insecta, Neuroptera, Hemerobiidae, faunística, biología, fenología, morfología, variabilidad, Paleártico, Neártico, Oriental, Afrotropical, Neotropical. -
Final Report 1
Sand pit for Biodiversity at Cep II quarry Researcher: Klára Řehounková Research group: Petr Bogusch, David Boukal, Milan Boukal, Lukáš Čížek, František Grycz, Petr Hesoun, Kamila Lencová, Anna Lepšová, Jan Máca, Pavel Marhoul, Klára Řehounková, Jiří Řehounek, Lenka Schmidtmayerová, Robert Tropek Březen – září 2012 Abstract We compared the effect of restoration status (technical reclamation, spontaneous succession, disturbed succession) on the communities of vascular plants and assemblages of arthropods in CEP II sand pit (T řebo ňsko region, SW part of the Czech Republic) to evaluate their biodiversity and conservation potential. We also studied the experimental restoration of psammophytic grasslands to compare the impact of two near-natural restoration methods (spontaneous and assisted succession) to establishment of target species. The sand pit comprises stages of 2 to 30 years since site abandonment with moisture gradient from wet to dry habitats. In all studied groups, i.e. vascular pants and arthropods, open spontaneously revegetated sites continuously disturbed by intensive recreation activities hosted the largest proportion of target and endangered species which occurred less in the more closed spontaneously revegetated sites and which were nearly absent in technically reclaimed sites. Out results provide clear evidence that the mosaics of spontaneously established forests habitats and open sand habitats are the most valuable stands from the conservation point of view. It has been documented that no expensive technical reclamations are needed to restore post-mining sites which can serve as secondary habitats for many endangered and declining species. The experimental restoration of rare and endangered plant communities seems to be efficient and promising method for a future large-scale restoration projects in abandoned sand pits. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
First Record of Thaumastocoris Peregrinus in Portugal and of the Neotropical Predator Hemerobius Bolivari in Europe
Bulletin of Insectology 66 (2): 251-256, 2013 ISSN 1721-8861 First record of Thaumastocoris peregrinus in Portugal and of the neotropical predator Hemerobius bolivari in Europe 1 2 3 4 1 André GARCIA , Elisabete FIGUEIREDO , Carlos VALENTE , Victor J. MONSERRAT , Manuela BRANCO 1Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Portugal 2Centro de Engenharia de Biossistemas (CEER), Instituto Superior de Agronomia, Universidade de Lisboa, Portugal 3RAIZ – Instituto de Investigação da Floresta e Papel, Aveiro, Portugal 4Departamento de Zoología y Antropología Física, Universidad Complutense de Madrid, Spain Abstract The Eucalyptus pest Thaumastocoris peregrinus Carpintero et Dellape, (Hemiptera Thaumastocoridae) was found in a Eucalyptus arboretum in Lisbon, Portugal, in April 2012. This is the first report for this species in Western Europe. Separate surveys were conducted to assess the geographical distribution, host plant susceptibility and natural enemies of T. peregrinus. To ascertain the geographical distribution of T. peregrinus surveys were conducted between May and June 2012 at 53 sites in central and southern Portugal. T. peregrinus was present in only three sites, which were all located in Lisbon and surrounding areas suggesting an in- troduction pathway through the harbors or the airport in this coastal city. Of the 30 Eucalyptus species present in Lisbon’s Euca- lyptus arboretum, 14 were confirmed as infested by T. peregrinus during the first survey in April 2012. In August 2012 the host range had increased to 19 Eucalyptus species, revealing an expansion phase. We report the first record of Hemerobius bolivari Banks (Neuroptera Hemerobiidae), a native of South America, preying on T. -
Insects and Molluscs, According to the Procedures Outlined Below
Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying -
Comparative Biology of Some Australian Hemerobiidae
Progress in World's Neuropterologv. Gepp J, H. Aspiick & H. H6hel ed., 265pp., DM, Gnu Comparative Biology of some Australian Hemerobiidae JSy T. R NEW (%toria) Abstract Aspects of the field ecology of the two common Hemerobiidae in southern Australia (Micromus tas- maniae WALKER,Drepanacra binocula (NEWMAN)) are compared from data from three years samp- ling near Melbourne. M. tmmaniae occurs in a range of habitats, is polyphagous and is found throughout much of the year. D.binocula is more closely associated with acacias, feeds particularly on Acacia Psylli- dae and is strictly seasonal. The developmental biology and aspects of feeding activity of these 'relative generalist' and 'relative specialist' species are compared in the laboratory at a range of temperatures and on two prey species with the aim of assessing their potential for biocontrol of Psyllidae. Introduction About 20 species of brown lacewings, Hemerobiidae, are known from Australia. Most of these are uncommon and represented by few individuals in collections, and only two can be considered common in south eastern Australia. One of these, Micromus tasmaniae WAL- KER, represents a widely distributed genus and is abundant on a range of vegetation types. The other, Drepanacra binocula (NEWMAN), represents a monotypic genus from Australia and New Zealand and is more particularly associated with native shrubs and trees - in Austra- lia, perhaps especially with acacias, These species are the only Hemerobiidae found on Acacia during a three year survey of arboreal insect predators on several Acacia species around Mel- bourne, Victoria, and some aspects of their life-histories and feeding biology are compared in this paper. -
VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<! -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.