Variability in the Mozambique Channel Trough and Impacts on Southeast African Rainfall

Total Page:16

File Type:pdf, Size:1020Kb

Variability in the Mozambique Channel Trough and Impacts on Southeast African Rainfall 15 JANUARY 2020 B A R I M A L A L A E T A L . 749 Variability in the Mozambique Channel Trough and Impacts on Southeast African Rainfall RONDROTIANA BARIMALALA,ROSS C. BLAMEY,FABIEN DESBIOLLES, AND CHRIS J. C. REASON Department of Oceanography, University of Cape Town, Rondebosch, South Africa (Manuscript received 5 April 2019, in final form 10 October 2019) ABSTRACT The Mozambique Channel trough (MCT) is a cyclonic region prominent in austral summer in the central and southern Mozambique Channel. It first becomes evident in December with a peak in strength in February when the Mozambique Channel is warmest and the Mascarene high (MH) is located farthest southeast in the Indian Ocean basin. The strength and the timing of the mean MCT are linked to that of the cross-equatorial northeasterly monsoon in the tropical western Indian Ocean, which curves as northwesterlies toward northern Madagascar. The interannual variability in the MCT is associated with moist convection over the Mozam- bique Channel and is modulated by the location of the warm sea surface temperatures in the south Indian Ocean. Variability of the MCT shows a strong relationship with the equatorial westerlies north of Madagascar and the latitudinal extension of the MH. Summers with strong MCT activity are characterized by a prominent cyclonic circulation over the Mozambique Channel, extending to the midlatitudes. These are favorable for the development of tropical–extratropical cloud bands over the southwestern Indian Ocean and trigger an in- crease in rainfall over the ocean but a decrease over the southern African mainland. Most years with a weak MCT are associated with strong positive south Indian Ocean subtropical dipole events, during which the subcontinent tends to receive more rainfall whereas Madagascar and northern Mozambique are anoma- lously dry. 1. Introduction (Cook et al. 2004; Munday and Washington 2017). The MCT is found to be generated by a dynamical adjustment Climate variability over southern Africa is driven by a of the easterlies flowing over the topography of Mada- complex interaction between large-scale climate forcings gascar and may also be sustained by local air–sea inter- such as El Niño–Southern Oscillation (ENSO), regional action due to the relatively warm SST over the channel sea surface temperature (SST) patterns, and regional at- (Barimalala et al. 2018). mospheric circulation systems [e.g., the Angola low (AL) The MCT is located near the source of the south Indian and Botswana high (BH)] at various temporal scales Ocean convergence zone (SICZ; Cook 2000), a dominant (Lindesay 1988; Nicholson and Kim 1997; Reason et al. driver of southern African rainfall (Cook 2000; Lazenby 2000; Behera and Yamagata 2001; Reason and Rouault et al. 2016), and thus modulates the moisture transport 2002; Reason 2001, 2016; Blamey et al. 2018; Driver et al. within the SICZ as well as the mean rainfall over the 2019; Desbiolles et al. 2018; Crétat et al. 2019). An im- subcontinent (Barimalala et al. 2018).Theroleofthe portant regional circulation system, although not well MCT in the distribution and frequency of rainfall events is understood, is the Mozambique Channel trough (MCT), however not well understood. Cook et al. (2004) analyzed characterized by a low pressure area over the central and wet and dry spells over South Africa and found that a southern Mozambique Channel during austral summer cyclonic feature off the east coast could drive moisture away from the mainland, thus leading to a decrease in Supplemental information related to this paper is available at rainfall. By using output from phase 5 of the Coupled the Journals Online website: https://doi.org/10.1175/JCLI-D-19- Model Intercomparison Project (CMIP5), Munday and 0267.s1. Washington (2017) found that models with weak MCT tend to contain a strong positive rainfall bias over south- Corresponding author: Rondrotiana Barimalala, rondrotiana. ern Africa. They indicate that enhanced direct moisture [email protected] inflow from the southwestern Indian Ocean (SWIO) DOI: 10.1175/JCLI-D-19-0267.1 Ó 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses). Unauthenticated | Downloaded 09/30/21 10:05 PM UTC 750 JOURNAL OF CLIMATE VOLUME 33 strengthens the Angola low and favors the increase in dataset (HadISST; Rayner et al. 2003;18318 horizontal rainfall over the subcontinent, if the MCT is weak. In a resolution) and NOAA interpolated outgoing longwave recent study, Barimalala et al. (2018) used a set of ide- radiation (OLR) at the top of the atmosphere (Liebmann alized numerical experiments with the Weather Research and Smith 1996;2.5832.58 horizontal resolution). Forecasting (WRF) regional model in which the topog- raphy of Madagascar was flattened. They found that a b. Methodology flattening of the topography over Madagascar results in In sections 3a and 3b, we analyze the annual cycle weakening of the MCT. They also confirmed that a and interannual variability of the trough. The MCTrv weak (strong) MCT strengthens (weakens) the SICZ, and index is defined as the area averaged of the relative hence favors (weakens) the transport of moisture from vorticity at 850 hPa over the southern Mozambique SWIO toward mainland southern Africa, leading to an Channel (Barimalala et al. 2018). For comparison, we also increase (decrease) in local rainfall. In addition, these make use of the 850-hPa geopotential height (MCThgt) authors proposed that the persisting rainfall bias over averaged over the same area, as an alternative index to southern Africa in the state-of-the art climate models characterize the annual cycle and variability of the MCT. (e.g., Munday and Washington 2017, 2018) could be due An empirical orthogonal function (EOF) analysis is to a poor representation of the MCT in those models. conducted to confirm that these MCT indices represent Moreover, recent work by Pascale et al. (2019) shows the dominant mode of variability in the channel. that a weakening of the MCT leads to stronger northerly To investigate the processes that drive the variability moisture flux from the tropical Indian Ocean penetrating in the MCTrv, analysis of the vorticity budget is per- to the African mainland, which then strengthens the formed in section 3b, with the corresponding equation Angola low and triggers an increase in regional rainfall. described in the online supplemental material. These studies indicate that the MCT likely plays a key An analysis on the links between the MCT and the role in southern African climate variability. However, northeast (NE) monsoon flow that exists in the austral despite being a prominent circulation in the area, the summer across the tropical western Indian Ocean is also mean state and variability of the trough, to our knowl- performed. In doing so, four indices are defined to char- edge, have never thoroughly investigated. Moreover, acterize the flow from the tropical western Indian Ocean little to no work has been focused on the impacts of the toward eastern Africa. They are defined as follows: MCT on southern African rainfall, especially at time scales other than climatology. Thus, the main objective (i) VN, mean meridional wind averaged over 408–508E of this study is to investigate the mean state, annual at 18S(Fig. 1b); cycle, and interannual variability of the MCT and its (ii) VS, same as VN but farther to the south, at 98S relationships with regional rainfall. (Fig. 1b); (iii) UW, mean zonal wind that penetrates into south- ern African mainland (Fig. 1b, between 18 and 128S 2. Data and methodology at 388E); and (iv) UE, mean zonal wind over the northern Mozambi- a. Data que channel that flows toward Madagascar (Fig. 1b, ThedatausedtoanalyzetheMCTseasonalityand between 98 and 158Sat448E). variability are monthly low-level (at 850 hPa) relative The roles of large-scale forcing and regional circula- vorticity, geopotential height, specific humidity, total tion patterns on the interannual variability of the cloud cover, wind, and mean sea level pressure (MSLP) MCT are analyzed in section 3d by using the following represented in the ERA-Interim reanalysis (Dee et al. indices: 2011) for the period of 1980–2017. These data have a horizontal resolution of 0.75830.758. Rainfall data were d NINO34, area averaged SST anomaly within 1908– obtained from the Climate Hazards Group Infrared Pre- 2408E, 58S–58N(Trenberth and Stepaniak 2001). cipitation with Stations (CHIRPS) data at 0.05830.058 d The oceanic Niño index (ONI) from the National horizontal resolution (Funk et al. 2015), available for Centers for Environmental Prediction is used to de- 1981–2017, and from the Climate Prediction Center Merged termine the presence of El Niño/La Niña events. Such Analysis of Precipitation (CMAP; Xie and Arkin 1997), an event is characterized by a 3-month running mean at 1.25831.258 horizontal resolution, for 1980–2017 to in- of NINO34 that exceeds the threshold 60.58C for five vestigate the link between the MCT and regional rainfall consecutive overlapping seasons. variability. Included in the analysis are SST data from the d Indian Ocean dipole (IOD), the SST anomaly dif- Hadley Centre Global Sea Ice and Sea Surface Temperature ference between one pole averaged over 508–708E, Unauthenticated | Downloaded 09/30/21 10:05 PM UTC 15 JANUARY 2020 B A R I M A L A L A E T A L . 751 21 FIG. 1. (a)–(f) Monthly 850-hPa wind (vectors; m s ) and geopotential height (shaded; m) from November to April, respectively. In (b), the lines demarcate where the zonal/meridional flow linked to the NE monsoon is determined (see text). UW refers to zonal wind penetrating into mainland, UE is zonal wind recurving toward Madagascar, VN is cross-equatorial northeasterly monsoon, and VS is meridional wind reaching the north of Madagascar.
Recommended publications
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Reducing Disease Risk in Aquaculture
    Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized AGRICULTURE AND ENVIRONMENTAL SERVICES DISCUSSION PAPER 09 PAPER SERVICES DISCUSSION ENVIRONMENTAL AND AGRICULTURE IN AQUACULTURE IN REDUCING DISEASE RISK RISK DISEASE REDUCING WORLD BANKREPORT NUMBER 88257-GLB JUNE 2014 AGRICULTURE AND ENVIRONMENTAL SERVICES DISCUSSION PAPER 09 REDUCING DISEASE RISK IN AQUACULTURE WORLD BANK REPORT NUMBER 88257-GLB International Coalition of Fisheries Associations International Coalition of Fisheries Associations International Coalition of Fisheries Associations International Coalition of Fisheries Associations © 2014 The International Bank for Reconstruction and Development/The World Bank 1818 H Street NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org Email: [email protected] All rights reserved This volume is a product of the staff of the International Bank for Reconstruction and Development/The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly.
    [Show full text]
  • Waves in the Westerlies
    Operational Weather Analysis … www.wxonline.info Chapter 9 Waves in the Westerlies Operational meteorologists track middle latitude disturbances in the middle to upper troposphere as part of their analysis of the atmosphere. This chapter describes these waves and highlights the importance of these waves to day-to-day weather changes at the Earth’s surface. The Westerlies Atmospheric flow above the Earth’s surface in the middle latitudes is primarily westerly. That is, the winds have a prevailing westerly component with numerous north and south meanders that impose wave-like undulations upon the basic west- to-east flow. This flow extends from the subtropical high pressure belt poleward to around 65 degrees latitude. A glance at any upper level chart from 700 mb upward to 200 mb shows that the westerlies dominate in the middle and upper troposphere. The term westerlies will refer to this layer unless otherwise specified. Upper Level Charts The westerlies are easily identified on charts of constant pressure in the middle to upper troposphere. That is, charts are prepared from upper level data at specified pressure levels (called standard levels). Traditionally, lines are drawn on these charts to represent the height of the pressure surface above mean sea level, temperature, and, on some charts, wind speed. With modern computer workstations, any observed or derived parameter may be drawn on an upper level chart. Standard levels include charts for 925, 850, 700, 500, 300, 250, 200, 150 and 100 mb. For our discussion of the westerlies, only levels from 700 mb upward to 200 mb will be considered.
    [Show full text]
  • A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations
    A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS June 30 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria. L.D. Palomares, Rainer Froese, Brittany Derrick, Simon-Luc Nöel, Gordon Tsui Jessika Woroniak Daniel Pauly A report prepared by the Sea Around Us for OCEANA June 30, 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria L.D. Palomares1, Rainer Froese2, Brittany Derrick1, Simon-Luc Nöel1, Gordon Tsui1, Jessika Woroniak1 and Daniel Pauly1 CITE AS: Palomares MLD, Froese R, Derrick B, Nöel S-L, Tsui G, Woroniak J, Pauly D (2018) A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. The University of British Columbia, Vancouver, p. 64. 1 Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC V6T1Z4 Canada 2 Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany TABLE OF CONTENTS Executive Summary 1 Introduction 2 Material and Methods 3 − Reconstructed catches vs official catches 3 − Marine Ecoregions vs EEZs 3 − The CMSY method 5 Results and Discussion 7 − Stock summaries reports 9 − Problematic stocks and sources of bias 14 − Stocks in the countries where OCEANA operates 22 − Stock assessments on the Sea Around Us website 31 − The next steps 32 Acknowledgements 33 References 34 Appendices I. List of marine ecoregions by EEZ 37 II. Summaries of number of stock by region and 49 by continent III.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Synoptic Meteorology
    Lecture Notes on Synoptic Meteorology For Integrated Meteorological Training Course By Dr. Prakash Khare Scientist E India Meteorological Department Meteorological Training Institute Pashan,Pune-8 186 IMTC SYLLABUS OF SYNOPTIC METEOROLOGY (FOR DIRECT RECRUITED S.A’S OF IMD) Theory (25 Periods) ❖ Scales of weather systems; Network of Observatories; Surface, upper air; special observations (satellite, radar, aircraft etc.); analysis of fields of meteorological elements on synoptic charts; Vertical time / cross sections and their analysis. ❖ Wind and pressure analysis: Isobars on level surface and contours on constant pressure surface. Isotherms, thickness field; examples of geostrophic, gradient and thermal winds: slope of pressure system, streamline and Isotachs analysis. ❖ Western disturbance and its structure and associated weather, Waves in mid-latitude westerlies. ❖ Thunderstorm and severe local storm, synoptic conditions favourable for thunderstorm, concepts of triggering mechanism, conditional instability; Norwesters, dust storm, hail storm. Squall, tornado, microburst/cloudburst, landslide. ❖ Indian summer monsoon; S.W. Monsoon onset: semi permanent systems, Active and break monsoon, Monsoon depressions: MTC; Offshore troughs/vortices. Influence of extra tropical troughs and typhoons in northwest Pacific; withdrawal of S.W. Monsoon, Northeast monsoon, ❖ Tropical Cyclone: Life cycle, vertical and horizontal structure of TC, Its movement and intensification. Weather associated with TC. Easterly wave and its structure and associated weather. ❖ Jet Streams – WMO definition of Jet stream, different jet streams around the globe, Jet streams and weather ❖ Meso-scale meteorology, sea and land breezes, mountain/valley winds, mountain wave. ❖ Short range weather forecasting (Elementary ideas only); persistence, climatology and steering methods, movement and development of synoptic scale systems; Analogue techniques- prediction of individual weather elements, visibility, surface and upper level winds, convective phenomena.
    [Show full text]
  • Chapter 10: Cyclones: East of the Rocky Mountain
    Chapter 10: Cyclones: East of the Rocky Mountain • Environment prior to the development of the Cyclone • Initial Development of the Extratropical Cyclone • Early Weather Along the Fronts • Storm Intensification • Mature Cyclone • Dissipating Cyclone ESS124 1 Prof. Jin-Yi Yu Extratropical Cyclones in North America Cyclones preferentially form in five locations in North America: (1) East of the Rocky Mountains (2) East of Canadian Rockies (3) Gulf Coast of the US (4) East Coast of the US (5) Bering Sea & Gulf of Alaska ESS124 2 Prof. Jin-Yi Yu Extratropical Cyclones • Extratropical cyclones are large swirling storm systems that form along the jetstream between 30 and 70 latitude. • The entire life cycle of an extratropical cyclone can span several days to well over a week. • The storm covers areas ranging from several Visible satellite image of an extratropical cyclone hundred to thousand miles covering the central United States across. ESS124 3 Prof. Jin-Yi Yu Mid-Latitude Cyclones • Mid-latitude cyclones form along a boundary separating polar air from warmer air to the south. • These cyclones are large-scale systems that typically travels eastward over great distance and bring precipitations over wide areas. • Lasting a week or more. ESS124 4 Prof. Jin-Yi Yu Polar Front Theory • Bjerknes, the founder of the Bergen school of meteorology, developed a polar front theory during WWI to describe the formation, growth, and dissipation of mid-latitude cyclones. Vilhelm Bjerknes (1862-1951) ESS124 5 Prof. Jin-Yi Yu Life Cycle of Mid-Latitude Cyclone • Cyclogenesis • Mature Cyclone • Occlusion ESS124 6 (from Weather & Climate) Prof. Jin-Yi Yu Life Cycle of Extratropical Cyclone • Extratropical cyclones form and intensify quickly, typically reaching maximum intensity (lowest central pressure) within 36 to 48 hours of formation.
    [Show full text]
  • Tropical Cyclone: Climatology
    ESCI 344 – Tropical Meteorology Lesson 5 – Tropical Cyclones: Climatology References: A Global View of Tropical Cyclones, Elsberry (ed.) The Hurricane, Pielke Tropical Cyclones: Their evolution, structure, and effects, Anthes Forecasters’ Guide to Tropical Meteorology, Atkinsson Forecasters Guide to Tropical Meteorology (updated), Ramage Global Guide to Tropical Cyclone Forecasting, Holland (ed.) Reading: Introduction to the Meteorology and Climate of the Tropics, Chapter 9 A Global View of Tropical Cyclones, Chapter 3 REQUIREMENTS FOR FORMATION In order for a tropical cyclone to form, the following general conditions must be present: Deep, warm ocean mixed layer. ◼ Sea-surface temperature at least 26.5C. ◼ Mixed layer depth of 45 meters or more. Relative maxima in absolute vorticity in the lower troposphere ◼ Need a preexisting cyclonic disturbance. ◼ Must be more than a few degrees of latitude from the Equator. Small values of vertical wind shear. ◼ Disturbance must be in deep easterly flow, or in a region of light upper- level winds. Mean upward vertical motion with humid mid-levels. GLOBAL CLIMATOLOGY Note: Most of the statistics given in this section are from Gray, W.M., 1985: Tropical Cyclone Global Climatology, WMO Technical Document WMO/TD-72, Vol. I, 1985. About 80 tropical cyclones per year world-wide reach tropical storm strength ( 34 kts). About 50 – 55 each year world-wide reach hurricane/typhoon strength ( 64 kts). The rate of occurrence globally is very steady. Global average annual variation is small (about 7%). Extreme variations are in the range of 16 to 22%. Variability within a particular region is much larger than global variability. Most (87%) form within 20 of the Equator.
    [Show full text]
  • 1.11 the Influence of Meteorological Phenomena on Midwest Pm2.5 Concentrations: a Case Study Analysis
    1.11 THE INFLUENCE OF METEOROLOGICAL PHENOMENA ON MIDWEST PM2.5 CONCENTRATIONS: A CASE STUDY ANALYSIS David E. Strohm,* Timothy S. Dye, Clinton P. MacDonald Sonoma Technology, Inc., Petaluma, CA 1. INTRODUCTION 2. PLANETARY-SCALE WEATHER Fine particulate matter (PM2.5) forecasting has Planetary-scale weather features strongly influence become an increasingly important part of air quality regional and local weather. Figure 1 shows the 500-mb public outreach programs designed to inform the public height pattern on September 10, 2003 and illustrates the about air quality conditions, protect public health, and planetary-scale weather features important to the encourage the public to reduce activities that contribute Midwest PM2.5 episode. The figure shows two high- to air pollution. Starting in January 2003, current- and amplitude troughs and a high-amplitude ridge (HAR) in next-day forecasts for PM2.5 were issued for cities place over North America and the North Atlantic. The throughout the United States, including a number of high-amplitude ridge also had an upper-level low- cities in the Midwest: Columbus, Cleveland, and pressure trough to its south (signified by a trough in the Cincinnati, Ohio; Chicago, Illinois; and Detroit, Michigan. 590-dm height contour south of the ridge). This pattern, Through daily forecasts, it became clear that certain called a rex block, persisted for several days because atmospheric phenomena and their impact on PM2.5 the upper-level flow split the high-low couplet. concentrations needed more analysis to better understand the atmospheric mechanics that influence PM2.5 episodes in the Midwest. As a result, a case study of meteorological and air quality conditions was performed for the period of September 9 through September 15, 2003.
    [Show full text]
  • NOTE D'identification DE PROJET Gestion Concertée Des
    Comité de pilotage X juillet 2017 Secrétariat du Fonds Français pour l’Environnement Mondial NOTE D’IDENTIFICATION DE PROJET Gestion concertée des ressources marines et côtières du Nord du Canal du Mozambique Note - this document passed the 2nd stage of approval (Note Information du Project) in June 2017. Integrated management of the marine and coastal resources of the Northern TITLE OF PROJET Mozambique Channel SHORT TITLE Northern Mozambique Channel initiative (NMCi) COUNTRIES / REGION Comoros, France, Madagascar, Mozambique, Seychelles, Tanzania INSTITUTION MEMBRE MAEDI, MEEM PORTEUSE DU PROJET DOMAINE D’APPLICATION International Waters THEMATIC AREA Integrated management and resilience of coastal and marine zones TOTAL AMOUNT OF PROJET 6 million € CO-FINANCIERS SIDA, UNEP/NCS, members of the WIO-C CONTRIBUTION OF FFEM 1,5 millions € BENEFICIARIES Nairobi Convention Secretariat (via UNEP) in partnership with the WIO-C1 Governments of the NMC area, Regional Organisations, and local authorities, civil FINAL BENEFICIARIES society, MPAs, economic operators/sectors. START DATE January 2018 DURATION OF PROJET 4 years 1 Here, the WIO-C is represented by WWF and CORDIO. These two organizations are members of the WIOC and have signed a Memorandum of Agreement with the Secretariat of the Nairobi Convention. NIP-FFEM-NMC_ENG_Submitted FFEM.docx 1/36 EXECUTIVE SUMMARY Context and challenges The Northern Mozambique Channel (NMC) is under the jurisdiction of Madagascar, Mozambique, Tanzania, France, Seychelles and the Comoros, covering an area of approximately 700,000 km2. It is among the world's richest regions for biodiversity. It serves as a biological reservoir for the entire Eastern African coast, in particular for coral reefs and associated ecosytems, and is an important breeding and foraging areas for flagship marine and migratory species.
    [Show full text]
  • Mozambique Channel Eddies As Transport Mechanisms: the Case of Red Sea Water
    Mozambique Channel eddies as transport mechanisms: The case of Red Sea Water T. Morris1, J-F Ternon2 and M.J. Roberts3 1 Bayworld Centre for Research and Education, Cape Town, South Africa 2 Institut de Recherche pour le Développement, La Réunion 3 Oceans and Coast, Department of Environmental Affairs, Cape Town, South Africa [email protected] “20 Years of Progress in Radar Altimetry” Symposium including the 4th Argo Science Workshop Venice, Italy 24-29 September 2012 Outline • The Indian Ocean and Mozambique Channel circulation • Red Sea Water – how is it thought to be transported through the Mozambique Channel and why is it so important? • Argo and SLA Altimetry historical data analysis – what does our data show? • Future Argo Projects Photo credit: www.webbresearch.com 4th Argo Science Workshop: Venice, Italy 24-29 September 2012 The Southern and Indian Oceans The large-scale perspective • Southern Ocean Antarctic Circumpolar Current Flow around the globe completely unhindered Fronts and areas of convergence Source of Antarctic Intermediate Water (AAIW) • Indian Ocean Seasonal monsoonal circulation No temperate and polar region to the north South Equatorial Current (SEC) flows east to west, strengthening en route Fed by throughflow of Pacific water through the Indonesian Sea SEC bifurcates around Madagascar: NEMC – Northeast Madagascar Current (S)EMC – (South)East Madagascar Current Black – mean current flows without seasonal trends Gray – Monsoonal reversing circulation Talley et al (2011) 4th Argo Science Workshop: Venice,
    [Show full text]
  • Transnational Organized Crime in the Fishing Industry
    TRANSNATIONAL ORGANIZED CRIME IN THE FISHING INDUSTRY Focus on: Trafficking in Persons Smuggling of Migrants Illicit Drugs Trafficking UNITED NATIONS Vienna, 2011 The description and classification of countries and territories in this study and the arrangement of the material do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries, or regarding its economic system or degree of development. © United Nations Office on Drugs and Crime, 2011 This document was not formally edited. Acknowledgements The present publication was prepared by Eve de Coning (consultant) under the supervision of Alexia Taveau of the Human Trafficking and Migrant Smuggling Section at the United Nations Office on Drugs and Crime (UNODC). Special gratitude is extended to Celso Coracini, Ian Munro, Morgane Nicot, Ric Power, Riikka Puttonen, and Fabrizio Sarrica at UNODC, Vienna. We would like to express our appreciation to the experts attending the expert consultation in Vienna 8-9 March 2011: Kresno Buntoro (the Indonesian Navy); Duncan Copeland (Sea Change Consulting); Alexander Dalli (Frontex); Shaun Driscoll (the Food and Agriculture Organization of the United Nations (FAO)); Annette Hübschle (Institute for Security Studies (ISS)); Kristiina Kangaspunta (United Nations Interregional Crime and Justice Research Institute (UNICRI)); Paola Monzini (independent expert); Barbara Salcher (International Organization for Migration (IOM)); Gunnar Stølsvik (Norwegian National Advisory Group against Organized IUU Fishing); as well as Beate Andrees and Brandt Wagner (International Labour Organization (ILO)) via telecom. The author would also like to thank Stephen Cederrand (Community Fisheries Control Agency), Douglas Guilfoyle (University College London), and Gail Lugten (University of Tasmania) for their comments on excerpts of earlier drafts of this study.
    [Show full text]