Observed Characteristics of Mozambique Channel Eddies N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Structure
Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference. -
Reducing Disease Risk in Aquaculture
Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized AGRICULTURE AND ENVIRONMENTAL SERVICES DISCUSSION PAPER 09 PAPER SERVICES DISCUSSION ENVIRONMENTAL AND AGRICULTURE IN AQUACULTURE IN REDUCING DISEASE RISK RISK DISEASE REDUCING WORLD BANKREPORT NUMBER 88257-GLB JUNE 2014 AGRICULTURE AND ENVIRONMENTAL SERVICES DISCUSSION PAPER 09 REDUCING DISEASE RISK IN AQUACULTURE WORLD BANK REPORT NUMBER 88257-GLB International Coalition of Fisheries Associations International Coalition of Fisheries Associations International Coalition of Fisheries Associations International Coalition of Fisheries Associations © 2014 The International Bank for Reconstruction and Development/The World Bank 1818 H Street NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org Email: [email protected] All rights reserved This volume is a product of the staff of the International Bank for Reconstruction and Development/The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly. -
Deep‐Water Dunes on Drowned Isolated Carbonate Terraces
1 Sedimentology Article In Press Archimer https://archimer.ifremer.fr Acceptation date : 2018 https://doi.org/10.1111/sed.12572 https://archimer.ifremer.fr/doc/00472/58418/ Deep-water dunes on drowned isolated carbonate terraces (Mozambique Channel, south-west Indian Ocean) Miramontes Elda 1, *, Jorry Stephan 2, Jouet Gwenael 2, Counts John 3, Courgeon Simon 4, Roy Philippe 1, Guerin Charline 2, Hernández-Molina F. Javier 5 1 UMR6538; CNRS-UBO; IUEM; Laboratoire Géosciences Océan; 29280 Plouzané, France 2 IFREMER; Géosciences Marines; 29280 Plouzané ,France 3 School of Earth Sciences; University College Dublin; Belfield, Dublin 4 ,Ireland 4 University of Geneva; Department of Earth Sciences; 1205 Geneva, Switzerland 5 Department of Earth Sciences; Royal Holloway; University of London; Egham Surrey TW20 0EX, United Kingdom * Corresponding author : Elda Miramontes, email address : [email protected] Abstract : Subaqueous sand dunes are common bedforms on continental shelves dominated by tidal and geostrophic currents. However, much less is known about sand dunes in deep‐marine settings that are affected by strong bottom currents. In this study, dune fields were identified on drowned isolated carbonate platforms in the Mozambique Channel (south‐west Indian Ocean). The acquired data include multibeam bathymetry, multi‐channel high‐resolution seismic reflection data, sea floor imagery, a sediment sample and current measurements from a moored current meter and hull‐mounted acoustic Doppler current profiler. The dunes are located at water depths ranging from 200 to 600 m on the slope terraces of a modern atoll (Bassas da India Atoll) and within small depressions formed during tectonic deformation of drowned carbonate platforms (Sakalaves Seamount and Jaguar Bank). -
A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations
A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS June 30 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria. L.D. Palomares, Rainer Froese, Brittany Derrick, Simon-Luc Nöel, Gordon Tsui Jessika Woroniak Daniel Pauly A report prepared by the Sea Around Us for OCEANA June 30, 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria L.D. Palomares1, Rainer Froese2, Brittany Derrick1, Simon-Luc Nöel1, Gordon Tsui1, Jessika Woroniak1 and Daniel Pauly1 CITE AS: Palomares MLD, Froese R, Derrick B, Nöel S-L, Tsui G, Woroniak J, Pauly D (2018) A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. The University of British Columbia, Vancouver, p. 64. 1 Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC V6T1Z4 Canada 2 Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany TABLE OF CONTENTS Executive Summary 1 Introduction 2 Material and Methods 3 − Reconstructed catches vs official catches 3 − Marine Ecoregions vs EEZs 3 − The CMSY method 5 Results and Discussion 7 − Stock summaries reports 9 − Problematic stocks and sources of bias 14 − Stocks in the countries where OCEANA operates 22 − Stock assessments on the Sea Around Us website 31 − The next steps 32 Acknowledgements 33 References 34 Appendices I. List of marine ecoregions by EEZ 37 II. Summaries of number of stock by region and 49 by continent III. -
Mozambique Weekly Report Is Currently Being Distributed to Over 30 Embassies, 45 Non-Governmental Organisations and 677 Businesses and Individuals in Mozambique
WEEKLY MEDIA REVIEW: 22 JANUARY TO 29 JANUARY 2016 www.rhula.net Managing Editor: Nigel Morgan Mozambique’s LNG projects are located in a remote area and could be a target for attackers (see page 45 for more). Rhula Intelligent Solutions is a Private Risk Management Company servicing multinational companies, non-governmental organisations and private clients operating in Mozambique. The Rhula Mozambique Weekly Report is currently being distributed to over 30 embassies, 45 non-governmental organisations and 677 businesses and individuals in Mozambique. For additional information or services please contact: Joe van der Walt David Barske Operations Director Operational Coordinator Mobile (SA): +27 79 516 8710 Mobile (SA): +27 76 691 8934 Mobile (Moz): +258 826 780 038 Mobile (Moz): +258 84 689 5140 Email: [email protected] Email: [email protected] Disclaimer: The information contained in this report is intended to provide general information on a particular subject or subjects. While all reasonable steps are taken to ensure the accuracy and the integrity of information and date transmitted electronically and to preserve the confidentiality thereof, no liability or responsibility whatsoever is accepted by us should information or date for whatever reason or cause be corrupted or fail to reach its intended destination. It is not an exhaustive document on such subject(s), nor does it create a business or professional services relationship. The information contained herein is not intended to constitute professional advice or services. The material discussed is meant to provide general information, and should not be acted on without obtaining professional advice appropriately tailored to your individual needs. -
Mozambique Channel, South-West Indian Ocean) E
Deep-water dunes on drowned isolated carbonate terraces (Mozambique Channel, south-west Indian Ocean) E. Miramontes, S.J. Jorry, G. Jouet, J.W. Counts, S. Courgeon, P. Le Roy, C. Guerin, F.J. Hernández-Molina To cite this version: E. Miramontes, S.J. Jorry, G. Jouet, J.W. Counts, S. Courgeon, et al.. Deep-water dunes on drowned isolated carbonate terraces (Mozambique Channel, south-west Indian Ocean). Sedimentology, 2019, 66 (4), pp.1222-1242. 10.1111/sed.12572. hal-02944583 HAL Id: hal-02944583 https://hal.archives-ouvertes.fr/hal-02944583 Submitted on 12 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Sedimentology Article In Press Archimer https://archimer.ifremer.fr Acceptation date : 2018 https://doi.org/10.1111/sed.12572 https://archimer.ifremer.fr/doc/00472/58418/ Deep-water dunes on drowned isolated carbonate terraces (Mozambique Channel, south-west Indian Ocean) Miramontes Elda 1, *, Jorry Stephan 2, Jouet Gwenael 2, Counts John 3, Courgeon Simon 4, Roy Philippe 1, Guerin Charline 2, Hernández-Molina F. Javier 5 1 UMR6538; CNRS-UBO; -
Cowry Shell Money and Monsoon Trade: the Maldives in Past Globalizations
Cowry Shell Money and Monsoon Trade: The Maldives in Past Globalizations Mirani Litster Thesis submitted for the degree of Doctor of Philosophy The Australian National University 2016 To the best of my knowledge the research presented in this thesis is my own except where the work of others has been acknowledged. This thesis has not previously been submitted in any form for any other degree at this or any other university. Mirani Litster -CONTENTS- Contents Abstract xv Acknowledgements xvi Chapter One — Introduction and Scope 1 1.1 Introduction 1 1.2 An Early Global Commodity: Cowry Shell Money 4 1.2.1 Extraction in the Maldives 6 1.2.2 China 8 1.2.3 India 9 1.2.4 Mainland Southeast Asia 9 1.2.5 West and East Africa 10 1.3 Previous Perspectives and Frameworks: The Indian Ocean 11 and Early Globalization 1.4 Research Aims 13 1.5 Research Background and Methodology 15 1.6 Thesis Structure 16 Chapter Two — Past Globalizations: Defining Concepts and 18 Theories 2.1 Introduction 18 2.2 Defining Globalization 19 2.3 Theories of Globalization 21 2.3.1 World Systems Theory 21 2.3.2 Theories of Global Capitalism 24 2.3.3 The Network Society 25 2.3.4 Transnationality and Transnationalism 26 2.3.5 Cultural Theories of Globalization 26 2.4 Past Globalizations and Archaeology 27 2.4.1 Globalization in the Past: Varied Approaches 28 i -CONTENTS- 2.4.2 Identifying Past Globalizations in the Archaeological 30 Record 2.5 Summary 32 Chapter Three — Periods of Indian Ocean Interaction 33 3.1 Introduction 33 3.2 Defining the Physical Parameters 34 3.2.1 -
Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G. -
Circulation, Renewal, and Modification of Antarctic Mode And
APRIL 2001 SLOYAN AND RINTOUL 1005 Circulation, Renewal, and Modi®cation of Antarctic Mode and Intermediate Water* BERNADETTE M. SLOYAN1 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany STEPHEN R. RINTOUL Antarctic CRC, University of Tasmania, and CSIRO Division of Marine Research, Hobart, Australia (Manuscript received 18 October 1999, in ®nal form 10 July 2000) ABSTRACT Nine hydrographic sections are combined in an inverse box model of the Southern Ocean south of ;128S. The inverse model has two novel features: the inclusion of independent diapycnal ¯ux unknowns for each property and the explicit inclusion of air±sea ¯uxes (heat, freshwater, and momentum) and the water mass transformation they drive. Transformation of 34 3 106 m3 s21 of Antarctic Surface Water by air±sea buoyancy ¯uxes, and cooling and freshening where Subantarctic Mode Water outcrops, renews cold, fresh Antarctic Intermediate Water of the southeast Paci®c and southwest Atlantic. Relatively cold, fresh mode and intermediate water enter the subtropical gyres, are modi®ed by air±sea ¯uxes and interior mixing, and return poleward as warmer, saltier mode and intermediate water. While the zonally integrated meridional transport in these layers is small, the gross exchange is approximately 80 3 106 m3 s21. The air±sea transformation of Antarctic surface water to intermediate water is compensated in the Southern Ocean by an interior diapycnal ¯ux of 32 3 106 m3 s21 of intermediate water to upper deep water. The small property differences between slightly warmer, saltier intermediate water and cold, fresh Antarctic Surface Water results in a poleward transfer of heat and salt across the Polar Front zone. -
NOTE D'identification DE PROJET Gestion Concertée Des
Comité de pilotage X juillet 2017 Secrétariat du Fonds Français pour l’Environnement Mondial NOTE D’IDENTIFICATION DE PROJET Gestion concertée des ressources marines et côtières du Nord du Canal du Mozambique Note - this document passed the 2nd stage of approval (Note Information du Project) in June 2017. Integrated management of the marine and coastal resources of the Northern TITLE OF PROJET Mozambique Channel SHORT TITLE Northern Mozambique Channel initiative (NMCi) COUNTRIES / REGION Comoros, France, Madagascar, Mozambique, Seychelles, Tanzania INSTITUTION MEMBRE MAEDI, MEEM PORTEUSE DU PROJET DOMAINE D’APPLICATION International Waters THEMATIC AREA Integrated management and resilience of coastal and marine zones TOTAL AMOUNT OF PROJET 6 million € CO-FINANCIERS SIDA, UNEP/NCS, members of the WIO-C CONTRIBUTION OF FFEM 1,5 millions € BENEFICIARIES Nairobi Convention Secretariat (via UNEP) in partnership with the WIO-C1 Governments of the NMC area, Regional Organisations, and local authorities, civil FINAL BENEFICIARIES society, MPAs, economic operators/sectors. START DATE January 2018 DURATION OF PROJET 4 years 1 Here, the WIO-C is represented by WWF and CORDIO. These two organizations are members of the WIOC and have signed a Memorandum of Agreement with the Secretariat of the Nairobi Convention. NIP-FFEM-NMC_ENG_Submitted FFEM.docx 1/36 EXECUTIVE SUMMARY Context and challenges The Northern Mozambique Channel (NMC) is under the jurisdiction of Madagascar, Mozambique, Tanzania, France, Seychelles and the Comoros, covering an area of approximately 700,000 km2. It is among the world's richest regions for biodiversity. It serves as a biological reservoir for the entire Eastern African coast, in particular for coral reefs and associated ecosytems, and is an important breeding and foraging areas for flagship marine and migratory species. -
Mozambique Channel Eddies As Transport Mechanisms: the Case of Red Sea Water
Mozambique Channel eddies as transport mechanisms: The case of Red Sea Water T. Morris1, J-F Ternon2 and M.J. Roberts3 1 Bayworld Centre for Research and Education, Cape Town, South Africa 2 Institut de Recherche pour le Développement, La Réunion 3 Oceans and Coast, Department of Environmental Affairs, Cape Town, South Africa [email protected] “20 Years of Progress in Radar Altimetry” Symposium including the 4th Argo Science Workshop Venice, Italy 24-29 September 2012 Outline • The Indian Ocean and Mozambique Channel circulation • Red Sea Water – how is it thought to be transported through the Mozambique Channel and why is it so important? • Argo and SLA Altimetry historical data analysis – what does our data show? • Future Argo Projects Photo credit: www.webbresearch.com 4th Argo Science Workshop: Venice, Italy 24-29 September 2012 The Southern and Indian Oceans The large-scale perspective • Southern Ocean Antarctic Circumpolar Current Flow around the globe completely unhindered Fronts and areas of convergence Source of Antarctic Intermediate Water (AAIW) • Indian Ocean Seasonal monsoonal circulation No temperate and polar region to the north South Equatorial Current (SEC) flows east to west, strengthening en route Fed by throughflow of Pacific water through the Indonesian Sea SEC bifurcates around Madagascar: NEMC – Northeast Madagascar Current (S)EMC – (South)East Madagascar Current Black – mean current flows without seasonal trends Gray – Monsoonal reversing circulation Talley et al (2011) 4th Argo Science Workshop: Venice, -
Transnational Organized Crime in the Fishing Industry
TRANSNATIONAL ORGANIZED CRIME IN THE FISHING INDUSTRY Focus on: Trafficking in Persons Smuggling of Migrants Illicit Drugs Trafficking UNITED NATIONS Vienna, 2011 The description and classification of countries and territories in this study and the arrangement of the material do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries, or regarding its economic system or degree of development. © United Nations Office on Drugs and Crime, 2011 This document was not formally edited. Acknowledgements The present publication was prepared by Eve de Coning (consultant) under the supervision of Alexia Taveau of the Human Trafficking and Migrant Smuggling Section at the United Nations Office on Drugs and Crime (UNODC). Special gratitude is extended to Celso Coracini, Ian Munro, Morgane Nicot, Ric Power, Riikka Puttonen, and Fabrizio Sarrica at UNODC, Vienna. We would like to express our appreciation to the experts attending the expert consultation in Vienna 8-9 March 2011: Kresno Buntoro (the Indonesian Navy); Duncan Copeland (Sea Change Consulting); Alexander Dalli (Frontex); Shaun Driscoll (the Food and Agriculture Organization of the United Nations (FAO)); Annette Hübschle (Institute for Security Studies (ISS)); Kristiina Kangaspunta (United Nations Interregional Crime and Justice Research Institute (UNICRI)); Paola Monzini (independent expert); Barbara Salcher (International Organization for Migration (IOM)); Gunnar Stølsvik (Norwegian National Advisory Group against Organized IUU Fishing); as well as Beate Andrees and Brandt Wagner (International Labour Organization (ILO)) via telecom. The author would also like to thank Stephen Cederrand (Community Fisheries Control Agency), Douglas Guilfoyle (University College London), and Gail Lugten (University of Tasmania) for their comments on excerpts of earlier drafts of this study.