BIOLOGICAL SYSTEMATICS and EVOLUTIONARY THEORY By

Total Page:16

File Type:pdf, Size:1020Kb

BIOLOGICAL SYSTEMATICS and EVOLUTIONARY THEORY By BIOLOGICAL SYSTEMATICS AND EVOLUTIONARY THEORY by Aleta Quinn BA, University of Maryland, 2005 BS, University of Maryland, 2005 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Aleta Quinn It was defended on July 1, 2015 and approved by James Lennox, PhD, History & Philosophy of Science Sandra Mitchell, PhD, History & Philosophy of Science Kenneth Schaffner, PhD, History & Philosophy of Science Jeffrey Schwartz, PhD, Anthropology Dissertation Director: James Lennox, PhD, History & Philosophy of Science ii Copyright © by Aleta Quinn 2015 iii BIOLOGICAL SYSTEMATICS AND EVOLUTIONARY THEORY Aleta Quinn, PhD University of Pittsburgh, 2015 In this dissertation I examine the role of evolutionary theory in systematics (the science that discovers biodiversity). Following Darwin’s revolution, systematists have aimed to reconstruct the past. My dissertation analyzes common but mistaken assumptions about sciences that reconstruct the past by tracing the assumptions to J.S. Mill. Drawing on Mill’s contemporary, William Whewell, I critique Mill’s assumptions and develop an alternative and more complete account of systematic inference as inference to the best explanation. First, I analyze the inadequate view: that scientists use causal theories to hypothesize what past chains of events must have been, and then form hypotheses that identify segments of a network of events and causal transactions between events. This model assumes that scientists can identify events in the world by reference to neatly delineated properties, and that discovering causal laws is simply a matter of testing what regularities hold between events so delineated. Twentieth century philosophers of science tacitly adopted this assumption in otherwise distinct models of explanation. As Whewell pointed out in his critique of Mill, the problem with this assumption is that the delineation of events via properties is itself the hard part of science. Drawing on Whewell’s philosophy of science, and my work as a member of a team of systematists revising the genus Bassaricyon, I show how historical scientists avoid the problems of the inadequate view. Whewell’s account of historical science and of consilience provide a better foothold for understanding systematics. Whewell’s consilience describes the fit between a single hypothesis and lines of reasoning that draw on distinct conceptual structures. My analysis clarifies the significance of two revolutions in systematics. Whereas pre-Darwinian systematists used consilience as an evidentiary criterion without explicit justification, after Darwin’s revolution iv consilience can be understood as a form of inference to the best explanation. I show that the adoption of Hennig’s phylogenetic framework formalized methodological principles at the core of Whewell’s philosophy of historical science. I conclude by showing how two challenges that are frequently pressed against inference to the best explanation are met in the context of phylogenetic inference. v TABLE OF CONTENTS PREFACE .......................................................................................................................................................................... ix 1.0 INTRODUCTION ..................................................................................................................................................... 1 2.0 MILL’S PHILOSOPHY OF SCIENCE .................................................................................................................. 6 2.1 MILL’S INDUCTION AND CAUSAL REASONING ................................................................................. 6 2.1.1 Induction: Particulars and General Propositions ........................................................................................ 6 2.1.2 Justifying Induction: Causal Necessity........................................................................................................ 12 2.1.3 Justifying Induction: Relevant Resemblances ............................................................................................ 21 2.1.4 Mill’s Causal Ontology .................................................................................................................................. 23 2.2 NATURAL KINDS .............................................................................................................................................. 24 2.2.1 Mill on Natural Kinds ................................................................................................................................... 24 2.2.2 Scientific Investigation: Biological Natural Kinds .................................................................................... 31 2.2.3 Justifying Mill’s Natural Kinds ..................................................................................................................... 35 3.0 WHEWELL’S PHILOSOPHY OF SCIENCE ................................................................................................... 40 3.1 WHEWELL’S INDUCTION AND CRITIQUE OF MILL ........................................................................ 41 3.1.1 The Role of Concepts in Science ................................................................................................................ 41 3.1.2 Concepts and Causes in Kepler’s Discovery ............................................................................................. 46 3.1.3 Concepts and Causes in Classificatory Science ......................................................................................... 51 3.2 WHEWELL ON NATURAL AFFINITY ....................................................................................................... 53 3.2.1 Goals and Problems of Classification ........................................................................................................ 53 3.2.2 Successful Classificatory Science ................................................................................................................. 61 3.2.3 Justifying Natural Affinity ............................................................................................................................ 65 vi 3.3 WHEWELL’S NATURAL THEOLOGY ....................................................................................................... 68 4.0 NETWORK ASSUMPTIONS AND THE RELEVANCE PROBLEM ....................................................... 73 4.1 THE NETWORK ASSUMPTIONS AND MODELS OF EXPLANATION ........................................ 74 4.1.1 The Network Assumptions and the Covering Law Model ..................................................................... 74 4.1.2 The Network Assumptions and Historical Explanation ......................................................................... 76 4.2 THE NETWORK ASSUMPTIONS AND THE RELEVANCE PROBLEM ........................................ 82 4.2.1 The ‘Hard Part’ Objection ............................................................................................................................ 82 4.2.2 The Conceptual Structure of Science ......................................................................................................... 86 4.2.3 Event Chains and Historical Hypotheses .................................................................................................. 90 5.0 HISTORICAL HYPOTHESES .............................................................................................................................. 95 5.1 HISTORICAL HYPOTHESES AND CAUSAL DEPENDENCE ........................................................... 96 5.1.1 Historical Causal Reasoning ......................................................................................................................... 96 5.1.2 Historical Hypotheses and Whewell’s Practice of Historical Architecture ......................................... 101 5.2 SYSTEMATICS AS HISTORICAL SCIENCE ............................................................................................ 108 5.2.1 Lamarck and Gegenbaur ............................................................................................................................. 108 5.2.2 Hennig’s Methodology and Tree Diagrams ............................................................................................. 112 6.0 PHYLOGENETIC INFERENCE TO THE BEST EXPLANATION ...................................................... 123 6.1 THE UNDERCONSIDERATION OBJECTION AND THE PROBLEM OF EVIDENCE ......... 125 6.2 CONSILIENCE AND THE TAUTOLOGY OBJECTION .................................................................... 141 7.0 CONCLUSION ....................................................................................................................................................... 158 BIBLIOGRAPHY .......................................................................................................................................................... 160 vii LIST OF FIGURES 5.1. A square space with equal semicircular arches. Whewell's (1830) plate I, figure 1. ...................................... 103 5.2. Church with two side aisles and only semicircular vaults. Whewell’s (1830) plate IV, figure 6. ................ 104 5.3. Vaulting a rectangular space using pointed and semicircular arches.
Recommended publications
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Species Names in Phylogenetic Nomenclature
    Syst. Biol. 48(4):790–807, 1999 Species Names in Phylogenetic Nomenclature PHILIP D. CANTINO,1* HAROLD N. BRYANT,2 KEVIN DE QUEIROZ,3 MICHAEL J. DONOGHUE,4 TORSTEN ERIKSSON,5 DAVID M. HILLIS,6 AND MICHAEL S. Y. LEE7 1Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, USA; E-mail: [email protected] 2Royal Saskatchewan Museum, 2340 Albert Street, Regina, Saskatchewan S4P 3V7, Canada; E-mail: [email protected] 3Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; E-mail: [email protected] 4Harvard University Herbaria, 22 Divinity Ave., Cambridge, Massachusetts 02138, USA; E-mail: [email protected] 5Bergius Foundation, Royal Swedish Academy of Sciences, Box 50017, 104 05 Stockholm, Sweden; E-mail: [email protected] 6Section of Integrative Biology, School of Biological Sciences, University of Texas, Austin, Texas 78712, USA; E-mail: [email protected] 7Department of Zoology, University of Queensland, Brisbane, Queensland 4072, Australia; E-mail: [email protected] Abstract.—Linnaean binomial nomenclature is logically incompatible with the phylogenetic nomenclature of de Queiroz and Gauthier (1992, Annu. Rev. Ecol. Syst. 23:449–480): The former is based on the concept of genus, thus making this rank mandatory, while the latter is based on phylo- genetic definitions and requires the abandonment of mandatory ranks. Thus, if species are to re- ceive names under phylogenetic nomenclature, a different method must be devised to name them. Here, 13 methods for naming species in the context of phylogenetic nomenclature are contrasted with each other and with Linnaean binomials.
    [Show full text]
  • British Imperial Medicine in Late Nineteenth-Century China and The
    British Imperial Medicine in Late Nineteenth-Century China and the Early Career of Patrick Manson Shang-Jen Li Thesis submitted for the degree of Doctor of Philosophy, Imperial College. University of London 1999 1 LIliL Abstract This thesis is a study of the early career of Patrick Manson (1844-4922) in the context of British Imperial medicine in late nineteenth-century China. Recently historians of colonial medicine have identified a distinct British approach to disease in the tropics. It is named Mansonian tropical medicine, after Sir Patrick Manson. He was the medical advisor to the Colonial Office and founded the London School of Tropical Medicine. His approach to tropical diseases, which targeted the insect vectors, played a significant role in the formulation of British medical policy in the colonies. This thesis investigates how Manson devised this approach. After the Second Opium War, the Chinese Imperial Maritime Customs was administered by British officers. From 1866 to 1883 Manson served as a Customs medical officer. In his study of elephantiasis in China, Manson discovered that this disease was caused by filarial worms and he developed the concept of an intermediate insect host. This initiated a new research orientation that led to the elucidation of the etiology of malaria, yellow fever, sleeping sickness and several other parasitological diseases. This thesis examines Manson's study of filariasis and argues that Manson derived his conceptual tools and research framework from philosophical natural history. It investigates Hanson's natural historical training in the University of Aberdeen where some of his teachers were closely associated with transcendental biology.
    [Show full text]
  • Phylocode: a Phylogenetic Code of Biological Nomenclature
    PhyloCode: A Phylogenetic Code of Biological Nomenclature Philip D. Cantino and Kevin de Queiroz (equal contributors; names listed alphabetically) Advisory Group: William S. Alverson, David A. Baum, Harold N. Bryant, David C. Cannatella, Peter R. Crane, Michael J. Donoghue, Torsten Eriksson*, Jacques Gauthier, Kenneth Halanych, David S. Hibbett, David M. Hillis, Kathleen A. Kron, Michael S. Y. Lee, Alessandro Minelli, Richard G. Olmstead, Fredrik Pleijel*, J. Mark Porter, Heidi E. Robeck, Greg W. Rouse, Timothy Rowe*, Christoffer Schander, Per Sundberg, Mikael Thollesson, and Andre R. Wyss. *Chaired a committee that authored a portion of the current draft. Most recent revision: April 8, 2000 1 Table of Contents Preface Preamble Division I. Principles Division II. Rules Chapter I. Taxa Article 1. The Nature of Taxa Article 2. Clades Article 3. Hierarchy and Rank Chapter II. Publication Article 4. Publication Requirements Article 5. Publication Date Chapter III. Names Section 1. Status Article 6 Section 2. Establishment Article 7. General Requirements Article 8. Registration Chapter IV. Clade Names Article 9. General Requirements for Establishment of Clade Names Article 10. Selection of Clade Names for Establishment Article 11. Specifiers and Qualifying Clauses Chapter V. Selection of Accepted Names Article 12. Precedence Article 13. Homonymy Article 14. Synonymy Article 15. Conservation Chapter VI. Provisions for Hybrids Article 16. Chapter VII. Orthography Article 17. Orthographic Requirements for Establishment Article 18. Subsequent Use and Correction of Established Names Chapter VIII. Authorship of Names Article 19. Chapter IX. Citation of Authors and Registration Numbers Article 20. Chapter X. Governance Article 21. Glossary Table 1. Equivalence of Nomenclatural Terms Appendix A.
    [Show full text]
  • Arrested Development, New Forms Produced by Retrogression Were Neither Imperfect Nor Equivalent to a Stage in the Embryo’S Development
    Retrogressive Development: Transcendental Anatomy and Teratology in Nineteenth- Century Britain Alan W.H. Bates University College London Abstract In 1855 the leading British transcendental anatomist Robert Knox proposed a theory of retrogressive development according to which the human embryo could give rise to ancestral types or races and the animal embryo to other species within the same family. Unlike monsters attributed to the older theory of arrested development, new forms produced by retrogression were neither imperfect nor equivalent to a stage in the embryo’s development. Instead, Knox postulated that embryos contained all possible specific forms in potentio. Retrogressive development could account for examples of atavism or racial throwbacks, and formed part of Knox’s theory of rapid (saltatory) species change. Knox’s evolutionary theorizing was soon eclipsed by the better presented and more socially acceptable Darwinian gradualism, but the concept of retrogressive development remained influential in anthropology and the social sciences, and Knox’s work can be seen as the scientific basis for theories of physical, mental and cultural degeneracy. Running Title: Retrogressive Development Key words: transcendentalism; embryology; evolution; Robert Knox Introduction – Recapitulation and teratogenesis The revolutionary fervor of late-eighteenth century Europe prompted a surge of interest in anatomy as a process rather than as a description of static nature. In embryology, preformation – the theory that the fully formed animal exists
    [Show full text]
  • Styles of Reasoning in Early to Mid-Victorian Life Research: Analysis:Synthesis and Palaetiology
    Journal of the History of Biology (2006) Ó Springer 2006 DOI 10.1007/s10739-006-0006-4 Styles of Reasoning in Early to Mid-Victorian Life Research: Analysis:Synthesis and Palaetiology JAMES ELWICK Science and Technology Studies Faculties of Arts and Science and Engineering York University 4700 Keele St. M3J 1P3 Toronto, ON Canada E-mail: [email protected] Abstract. To better understand the work of pre-Darwinian British life researchers in their own right, this paper discusses two different styles of reasoning. On the one hand there was analysis:synthesis, where an organism was disintegrated into its constituent parts and then reintegrated into a whole; on the other hand there was palaetiology, the historicist depiction of the progressive specialization of an organism. This paper shows how each style allowed for development, but showed it as moving in opposite directions. In analysis:synthesis, development proceeded centripetally, through the fusion of parts. Meanwhile in palaetiology, development moved centrifugally, through the ramifying specialization of an initially simple substance. I first examine a com- munity of analytically oriented British life researchers, exemplified by Richard Owen, and certain technical questions they considered important. These involved the neu- rosciences, embryology, and reproduction and regeneration. The paper then looks at a new generation of British palaetiologists, exemplified by W.B. Carpenter and T.H. Huxley, who succeeded at portraying analysts’ questions as irrelevant. The link between styles of reasoning and physical sites is also explored. Analysts favored museums, which facilitated the examination and display of unchanging marine organisms while providing a power base for analysts. I suggest that palaetiologists were helped by vivaria, which included marine aquaria and Wardian cases.
    [Show full text]
  • Phylocode: a Phylogenetic Code of Biological Nomenclature Version 2B
    PhyloCode: A Phylogenetic Code of Biological Nomenclature Version 2b Philip D. Cantino and Kevin de Queiroz (equal contributors; names listed alphabetically) Advisory Group: William S. Alverson, David A. Baum, Christopher A. Brochu, Harold N. Bryant, David C. Cannatella, Peter R. Crane, Michael J. Donoghue, Torsten Eriksson, Jacques Gauthier, Kenneth Halanych, David S. Hibbett, Kathleen A. Kron, Michel Laurin, Michael S. Y. Lee, Alessandro Minelli, Brent D. Mishler, Gerry Moore, Richard G. Olmstead, Fredrik Pleijel, J. Mark Porter, Greg W. Rouse, Timothy Rowe, Christoffer Schander, Per Sundberg, Mikael Thollesson, and André R. Wyss. Most recent revision: June 17, 2004* *The only change since the previous version (December 21, 2003) in a rewording of Recommendation 10A. 1 Table of Contents Preface 3 Preamble 15 Division I. Principles 16 Division II. Rules 17 Chapter I. Taxa 17 Article 1. The Nature of Taxa 17 Article 2. Clades 17 Article 3. Hierarchy and Rank 19 Chapter II. Publication 19 Article 4. Publication Requirements 19 Article 5. Publication Date 20 Chapter III. Names 20 Section 1. Status 20 Article 6 20 Section 2. Establishment 21 Article 7. General Requirements 21 Article 8. Registration 22 Chapter IV. Clade Names 23 Article 9. General Requirements for Establishment of Clade Names 23 Article 10. Selection of Clade Names for Establishment 26 Article 11. Specifiers and Qualifying Clauses 27 Chapter V. Selection of Accepted Names 34 Article 12. Precedence 34 Article 13. Homonymy 34 Article 14. Synonymy 37 Article 15. Conservation 37 Chapter VI. Provisions for Hybrids 38 Article 16. 38 Chapter VII. Orthography 39 Article 17. Orthographic Requirements for Establishment 39 Article 18.
    [Show full text]
  • The Changing Role of the Embryo in Evolutionary Thought
    P1: JZZ/KAB P2: IKB/JZN QC: KOD/JZN T1: KOD 0521806992agg.xml CB793B/Amundson 0 521 80699 2 April 24, 2005 17:42 The Changing Role of the Embryo in Evolutionary Thought In this book, Ron Amundson examines 200 years of scientific views on the evolution–development relationship from the perspective of evolutionary devel- opmental biology (evo–devo). This new perspective challenges several popular views about the history of evolutionary thought by claiming that many earlier authors made history come out right for the Evolutionary Synthesis. The book starts with a revised history of nineteenth-century evolutionary thought. It then investigates how development became irrelevant to evolution with the Evolutionary Synthesis. It concludes with an examination of the contrasts that persist between mainstream evolutionary theory and evo–devo. This book will appeal to students and professionals in the philosophy of science, and the philosophy and history of biology. Ron Amundson is Professor of Philosophy, University of Hawaii at Hilo. i P1: JZZ/KAB P2: IKB/JZN QC: KOD/JZN T1: KOD 0521806992agg.xml CB793B/Amundson 0 521 80699 2 April 24, 2005 17:42 ii P1: JZZ/KAB P2: IKB/JZN QC: KOD/JZN T1: KOD 0521806992agg.xml CB793B/Amundson 0 521 80699 2 April 24, 2005 17:42 cambridge studies in philosophy and biology General Editor Michael Ruse Florida State University Advisory Board Michael Donoghue Yale University Jean Gayon University of Paris Jonathan Hodge University of Leeds Jane Maienschein Arizona State University Jes´us Moster´ın Instituto de Filosof´ıa (Spanish Research Council) Elliott Sober University of Wisconsin Alfred I.
    [Show full text]
  • Phylogenetic Analyses of Rates of Body Size Evolution Should Show
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... The origins of diversity in frog communities: phylogeny, morphology, performance, and dispersal A Dissertation Presented by Daniel Steven Moen to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Ecology and Evolution Stony Brook University August 2012 Stony Brook University The Graduate School Daniel Steven Moen We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. John J. Wiens – Dissertation Advisor Associate Professor, Ecology and Evolution Douglas J. Futuyma – Chairperson of Defense Distinguished Professor, Ecology and Evolution Stephan B. Munch – Ecology & Evolution Graduate Program Faculty Adjunct Associate Professor, Marine Sciences Research Center Duncan J. Irschick – Outside Committee Member Professor, Biology Department University of Massachusetts at Amherst This dissertation is accepted by the Graduate School Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation The origins of diversity in frog communities: phylogeny, morphology, performance, and dispersal by Daniel Steven Moen Doctor of Philosophy in Ecology and Evolution Stony Brook University 2012 In this dissertation, I combine phylogenetics, comparative methods, and studies of morphology and ecological performance to understand the evolutionary and biogeographical factors that lead to the community structure we see today in frogs. In Chapter 1, I first summarize the conceptual background of the entire dissertation. In Chapter 2, I address the historical processes influencing body-size evolution in treefrogs by studying body-size diversification within Caribbean treefrogs (Hylidae: Osteopilus ).
    [Show full text]
  • The Species Problem: a Conceptual Problem?
    Chapter 2 The Species Problem: A Conceptual Problem? Richard A. Richards Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54134 1. Introduction There have long been multiple ways of conceiving species that divide up biodiversity in dif‐ ferent and inconsistent ways. This “species problem” goes back at least to Aristotle, who used the Greek term eidos (translated as the Latin species) in at least three different ways. [1] Two thousand years later, Darwin confronted the species problem, listing some of the differ‐ ent ways species were conceived. How various are the ideas, that enter into the minds of naturalists when speaking of species. With some, resemblance is the reigning idea & descent goes for little; with others descent is the infallible criterion; with others resemblance goes for almost nothing, & Creation is everything; with other sterility in crossed forms is an unfailing test, whilst with oth‐ ers it is regarded of no value. [2] And one hundred years after Darwin, Ernst Mayr worried about this same problem in a book he edited, titled The Species Problem. Few biological problems have remained as consistently challenging through the past two centuries as the species prob‐ lem. Time after time attempts were made to cut the Gordian knot and declare the species problem solved either by asserting dogmatically that species did not exist or by defining, equally dogmatically, the precise characteristics of spe‐ cies. Alas, these pseudosolutions were obviously unsatisfactory. One might ask: “Why not simply ignore the species © 2013 Richards; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Phylonyms; a Companion to the Phylocode
    Pan-Lepidosauria J. A. Gauthier and K. de Queiroz, new clade name Registration Number: 118 2009; Evans and Borsuk-Bialylicka, 2009; Evans and Jones, 2010; but see Müller, 2004; De!nition: !e total clade of the crown clade Jones et al., 2013). More recently, kuehneosaurs Lepidosauria. !is is a crown-based total-clade have been inferred to be stem archosaurs close de"nition. Abbreviated de"nition: total ∇ of to Trilophosaurus buettneri by Pritchard and Lepidosauria. Nesbitt (2017), although Simões et al. (2018) placed them as either stem saurians or stem Etymology: Derived from pan (Greek), here archosaurs depending on the analysis, but in referring to “pan-monophylum,” another term either case only distantly related to T. buettneri. for “total clade,” and Lepidosauria, the name !e Early Triassic Sophineta cracoviensis and the of the corresponding crown clade; hence, “the Middle Jurassic Marmoretta oxoniensis have been total clade of Lepidosauria.” more consistently regarded as stem lepidosaurs, although that inference depends upon cor- Reference Phylogeny: Gauthier et al. (1988) rect association among disarticulated remains Figure 13, where the clade in question is named (Evans, 1991; Waldman and Evans, 1994; Lepidosauromorpha and is hypothesized to Evans, 2009; Evans and Borsuk-Bialylicka, include Younginiformes, which is no longer con- 2009; Evans and Jones, 2010; Jones et al., 2013; sidered part of the clade (see Composition). Renesto and Bernardi, 2014). Depending on the analysis, Simões et al. (2018) inferred S. Composition: Pan-Lepidosauria is composed cracoviensis to be either a stem lepidosaurian of Lepidosauria (Pan-Sphenodon plus Pan- or a stem squamatan, but they consistently Squamata, see entry in this volume) and all inferred M.
    [Show full text]
  • Systematic Biology
    This article was downloaded by:[De Queiroz, Kevin] [Smithsonian Institution Libraries] On: 16 November 2007 Access Details: [subscription number 777121151] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Systematic Biology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713658732 Species Concepts and Species Delimitation Kevin De Queiroz a a Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA First Published on: 01 December 2007 To cite this Article: De Queiroz, Kevin (2007) 'Species Concepts and Species Delimitation', Systematic Biology, 56:6, 879 - 886 To link to this article: DOI: 10.1080/10635150701701083 URL: http://dx.doi.org/10.1080/10635150701701083 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]