Vadose Zone Hydrogeology Data Package for Hanford Assessments

Total Page:16

File Type:pdf, Size:1020Kb

Vadose Zone Hydrogeology Data Package for Hanford Assessments PNNL-14702, Rev. 1 Vadose Zone Hydrogeology Data Package for Hanford Assessments G. V. Last G. W. Gee E. J. Freeman W. E. Nichols K. J. Cantrell B. N. Bjornstad M. J. Fayer D. G. Horton June 2006 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper. PNNL-14702, Rev. 1 Vadose Zone Hydrogeology Data Package for Hanford Assessments G. V. Last G. W. Gee E. J. Freeman W. E. Nichols K. J. Cantrell B. N. Bjornstad M. J. Fayer D. G. Horton June 2006 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Preface This data package was originally prepared to support a 2004 composite analysis (CA) of low-level waste disposal at the Hanford Site. The Technical Scope and Approach for the 2004 Composite Analysis of Low-Level Waste Disposal at the Hanford Site (Kincaid et al. 2004) identified the requirements for that analysis and served as the basis for the data collection effort documented in this data package. Comple- tion of the 2004 CA was later deferred, and the 2004 Annual Status Report for the Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site (DOE 2005) indicated that a comprehensive update to the CA was in preparation and would be submitted in 2006. However, the U.S. Department of Energy (DOE) has recently decided to further defer the CA update and will use the cumulative assessment currently under preparation for the environmental impact statement (EIS) being prepared for tank closure and other site decisions as the updated CA. Submittal of the draft EIS is currently planned for FY 2008. Acknowledgments The authors would like to acknowledge Thomas W. Fogwell and the Groundwater Remediation Project managed by Fluor Hanford, Inc. for supporting this work. We would like to thank Raziuddin Khaleel (Fluor Federal Services), and Charles T. Kincaid, Christopher J. Murray, Stephen P. Reidel, R. Jeffery Serne, and Robert W. Bryce for their technical reviews. The authors would also like to thank Anderson L. Ward for his technical support throughout the completion of this work, and Christopher A. Newbill for preparation of the site location map. We would also like to thank Launa F. Morasch for her technical editorial support, Kathy R. Neiderhiser, Shannon B. Neely, and the rest of the Publication Design team for their support in producing this document. iii Executive Summary This data package documents the technical basis for selecting physical and geochemical parameters and input values that will be used in vadose zone modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc., Richland, Washington, and revised as part of the Characteri- zation of Systems Project managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Richland Operations Office (DOE-RL). This data package describes the geologic framework, the physical, hydrologic, and contaminant transport properties of the geologic materials, and deep drainage (i.e., recharge) estimates, and builds on the general framework developed for the initial assessment conducted using the System Assessment Capability (SAC) (Bryce et al. 2002). The general approach for this work was to update and provide incremental improvements over the previous SAC data package completed in 2001. As with the previous SAC data package, much of the data and interpreted information were extracted from existing documents and databases. Every attempt was made to provide traceability to the original source(s) of the data or interpretations. Kincaid et al. (2004) identified 1,052 waste sites from the Waste Information Data System (WIDS) sites and several existing and future storage sites for inclusion in Hanford assessments, with analyses to be conducted on a site-by-site basis whenever inventory and release data permit.1 The complexity of these assessments, together with the lack of detailed characterization data for some of the fine-scale fate and transport processes necessitates simplification of site features, release events, and contaminant fate and transport processes to those factors considered most dominant. The dominant factors affecting modeling of transport of contaminants through the vadose zone include: (1) waste inventory and release estimates, (2) estimates of deep drainage (recharge), (3) the hydrogeologic profiles and properties of the vadose zone affecting aqueous phase advection and dispersion, and (4) estimates of geochemical reactions (e.g., sorption and precipitation) affecting the retardation of contaminants. The last three of these data types are addressed by this data package. The first one, waste inventory and release estimates, is addressed in the inventory and release model data packages. Many large scale Hanford assessments will generally use a one-dimensional vadose zone model for computational efficiency (although the SAC framework is not inherently limited to a one-dimensional representation), configured to account for lateral spreading, and in selected cases, conditioned against multi-dimensional model results (Kincaid et al. 2004). In this report, and that of Kincaid et al. (2004), waste sites are grouped into a number of geographic areas assumed to have similar hydrogeologic structure and properties. Hydrogeologic units were identified and their thickness specified for each of these hydrogeologic provinces. To account for uncertainty in the model parameters, a stochastic distribution was developed for each process model parameter for each hydrogeologic unit. 1 Originally 974 of 2,730 Waste Information Data System (WIDS) sites were identified for inclusion in a large-scale Hanford assessment. Further work identified 48 more waste sites bringing the total to 1,022. Subsequent reviews identified an additional 30 sites that have been included, many of which account for offsite transfers of waste and nuclear material. This brings the total to 1,052. v The vadose zone hydrostratigraphic profiles and hydrogeochemical property distributions for Hanford assessments are represented by 30 generalized one-dimensional vertical columns representing 17 general geographic areas and 13 site-specific locations. Each hydrostratigraphic profile (template) is configured with the hydraulic and geochemical parameters necessary to simulate the flow and transport through the vadose zone using the Subsurface Transport Over Multiple Phases (STOMP) code (White and Oostrom 2000). As many as five variations of a single hydrostratigraphic template are incorporated for some geographic areas in order to more accurately represent the depth of waste release, the thickness of the vadose zone beneath the point of release, and variations in contaminant distribution coefficients (Kd values) associated with different waste chemistry designations. Each template represents the vadose zone using a few major hydrostratigraphic units that are treated as horizontal layers with constant thicknesses, and that are homogeneous and isotropic. Hydraulic and geochemical parameters for each hydrostrati- graphic unit are represented by stochastic distributions to facilitate sensitivity and uncertainty analyses. This data package is a compilation of the data available to support Hanford assessments. As site characterization is completed at waste sites, and as investigations into contaminant behavior are completed, the uncertainty in this information will be reduced and, as a result, the uncertainty in future assessments will be reduced. vi Contents Executive Summary............................................................................................................................... iii Preface ..................................................................................................................................................
Recommended publications
  • 1 Depth of the Vadose Zone Controls Aquifer Biogeochemical Conditions and Extent of Anthropogenic Nitrogen Removal Szymczycha B
    Depth of the vadose zone controls aquifer biogeochemical conditions and extent of anthropogenic nitrogen removal Szymczycha B1, 2*, Kroeger KD2, Crusius J3, Bratton JF4 1Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland 2USGS Woods Hole Coastal and Marine Science Center, 384 Woods Hole Road, Woods Hole, MA 02543, USA 3USGS at UW School of Oceanography; 1492 NE Boat St.; Box 355351; Seattle, WA 98195 4LimnoTech, 501 Avis Drive, Ann Arbor, MI 48108, USA *corresponding author Keywords: Excess air, recharge temperature, MIMS, groundwater discharge, dissolved organic carbon, denitrification Abstract We investigated biogeochemical conditions and watershed features controlling the extent of nitrate removal through microbial dinitrogen (N2) production within the surficial glacial aquifer located on the north and south shores of Long Island, NY, USA. The extent of N2 production differs within portions of the aquifer, with greatest N2 production observed at the south shore of Long Island where the vadose zone is thinnest, while limited N2 production occurred under the thick vadose zones on the north shore. In areas with a shallow water table and thin vadose zone, low oxygen concentrations and sufficient DOC concentrations are conducive to N2 production. Results support the hypothesis that in aquifers without a significant supply of 1 sediment-bound reducing potential, vadose zone thickness exerts an important control of the extent of N2 production. Since quantification of excess N2 relies on knowledge of equilibrium N2 concentration at recharge, calculated based on temperature at recharge, we further identify several features, such as land use and cover, seasonality of recharge, and climate change that should be considered to refine estimation of recharge temperature, its deviation from mean annual air temperature, and resulting deviation from expected equilibrium gas concentrations.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Vadose Water
    Nimmo J R. (2009) Vadose Water. In: GeneAuthor's E. Likens, personal (Editor) copy Encyclopedia of Inland Waters. Volume 1, pp. 766-777 Oxford: Elsevier. Vadose Water J R Nimmo, U.S. Geological Survey, Menlo Park, CA, USA Published by Elsevier Inc. Introduction the porous medium in an oven until the weight is constant, and then calculate how much water was The term vadose is derived from the Latin vadosus, in the soil from the difference between the dry weight meaning ‘shallow.’ In this sense, however, it refers to and the initial wet weight. Other methods in wide- shallow depths beneath the land surface, not shallow spread use have advantages, such as being less disrup- portions of surface water bodies. The vadose zone is tive. Neutron scattering is commonly used for frequently called the unsaturated zone, and some- monitoring y as a function of depth in the field. This times the zone of aeration, as its pore space usually method is based on the high effectiveness of water, contains air as well as water. The vadose zone extends among the various components of the wet soil, in from the land surface to the water table (the lowest slowing neutrons. Commercially available equipment water table if there is more than one). has a neutron source and detector housed in a cylin- Prediction of the transport rates of water and other drical probe that can be lowered to various depths in substances within the vadose zone is critical to infil- a lined hole. Another way to monitor y in the lab or tration, runoff, erosion, plant growth, microbiota, field is by measurement of the dielectric constant of contaminant transport, aquifer recharge, and dis- the medium, usually by time-domain reflectometry charge to surface water.
    [Show full text]
  • Unsaturated Zone Flow Processes, in Anderson, M.G., and Bear, J., Eds., Encyclopedia of Hydrological Sciences: Part 13--Groundwater: Chichester, UK, Wiley, V
    Nimmo, J.R., 2005, Unsaturated Zone Flow Processes, in Anderson, M.G., and Bear, J., eds., Encyclopedia of Hydrological Sciences: Part 13--Groundwater: Chichester, UK, Wiley, v. 4, p. 2299-2322, doi:10.1002/0470848944.hsa161, http://www.mrw.interscience.wiley.com/ehs/articles/hsa161/frame.html. 150: Unsaturated Zone Flow Processes JOHN R NIMMO United States Geological Survey, Menlo Park, CA, US Water flow in the unsaturated zone is greatly influenced by unsaturated hydrostatics (water content, energy, pressure, and retention) and by unsaturated hydrodynamics (diffuse flow and preferential flow). Important multiphase processes include the transport of gases, nonaqueous liquids, and solid particles. Numerous means are available for determination of unsaturated conditions and properties, both measurement (of moisture state, water retention, and dynamic characteristics) and through various formulas and models that are mostly empirical in nature, but in some cases incorporating insight into unsaturated-zone physical processes. Applications to practical problems include models and techniques relating to distributions of water and energy, fluxes at the land surface, inputs, outputs, and fluxes within the unsaturated zone, all of which are frequently complicated by heterogeneity and preferential flow. Further scientific advance requires new measurement techniques and theoretical constructs that more adequately represent the important physical processes within practical modeling schemes. INTRODUCTION flow. The next section presents techniques for obtaining quantitative values of properties that influence unsaturated The unsaturated zone, sometimes called the vadose zone or flow, by direct measurement and by indirect means. The zone of aeration, plays several critical hydrologic roles. As third major section describes some of the main hydrologic a storage medium, it is a zone in which water is immediately applications related to flow in the unsaturated zone.
    [Show full text]
  • Hydrogeological Properties of Fault Zones in a Karstified Carbonate Aquifer (Northern Calcareous Alps, Austria)
    Hydrogeol J DOI 10.1007/s10040-016-1388-9 PAPER Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria) H. Bauer1 & T. C. Schröckenfuchs 1 & K. Decker1 Received: 17 July 2015 /Accepted: 14 February 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract This study presents a comparative, field-based impermeable fault cores only very locally have the potential hydrogeological characterization of exhumed, inactive fault to create barriers. zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic Keywords Fractured rocks . Carbonate rocks . Fault zones . importance supplying 60 % of the drinking water of Austria’s Hydrogeological properties . Austria capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by Introduction a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and per- Fault zones in the upper crust produce permeability heteroge- meabilities >1,000 mD form high-permeability domains. With neities that have a large impact on subsurface fluid migration respect to fault-zone architecture and rock content, which is and storage patterns (e.g. Agosta et al. 2010, 2012; Caine et al. demonstrated to be different for dolostone and limestone, four 1996;Faulkneretal.2010;Jourdeetal.2002; Mitchell and types of faults are presented. Faults with single-stranded mi- Faulkner 2012; Shipton and Cowie 2003; Shipton et al. 2006; nor fault cores, faults with single-stranded permeable fault Wibberley and Shimamoto 2003; Wibberley et al.
    [Show full text]
  • Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau: SX Tank Farm Case Study
    PNNL-23737 RPT-DVZ-AFRI-026 Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau: SX Tank Farm Case Study September 2015 M.J. Truex M. Oostrom G.V. Last C.E. Strickland G.D. Tartakovsky PNNL-23737 RPT-DVZ-AFRI-026 Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau: SX Tank Farm Case Study M.J. Truex M. Oostrom G.V. Last C.E. Strickland G.D. Tartakovsky September 2015 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary At the U.S. Department of Energy’s (DOE’s) Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site.
    [Show full text]
  • Influence of the Vadose Zone on Groundwater Pollution- a Review DOI:10
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sri Shakthi SIET Journals /ijceae1916 ARTICLE 34256 REVIEW REVIEW Influence of the vadose zone on groundwater pollution- A review DOI:10. Banajarani Panda a, S. Chidambaram b* a Department of Earth Sciences, Annamalai University, Tamilnadu, India -608002. b Research Scientist, Water Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait. *Corresponding Author ABSTRACT: The vadose zone is the geologic profile that lies between the water table and sabarathinam.chidambaram@ the ground surface. It has low water content relative to the saturated zone and commonly gmail.com referred as the unsaturated zone. Recharge to the water table passes through the vadose (S. Chidambaram) zone and understanding transport through this region is critical in groundwater pollution studies. Groundwater pollution is controlled by a number of physical and chemical Received : 26-03-2019 processes which may retard or transform contaminants as they pass through the vadose Accepted : 05-05-2019 zone. Porous materials hold water under tension as a component of soil structure, ambient fluid pressures and other factors. When vadose zone water content is below saturation, leakage liquid as well as the dissolved materials passed on in it are retained. Hydrologically, the depth of unsaturated zone plays an important role in controlling water movement and contaminant transport from the land surface to the aquifer. The purpose of this study is to present an overview of the principles of fluid flow and moisture retention in the vadose zone and its influence on groundwater pollution. The study is presented in two parts: Part I includes descriptions of zones of soil moisture, basic principles of properties controlling the fluid distribution in pore spaces and how subsurface soil properties can be used to assess the leachate mobility.
    [Show full text]
  • Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods
    water Editorial Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods Sylvain Ouillon ID LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected]; Tel.: +33-56133-2935 Received: 22 February 2018; Accepted: 22 March 2018; Published: 27 March 2018 Abstract: Scientific research on sediment dynamics in the coastal zone and along the littoral zone has evolved considerably over the last four decades. It benefits from a technological revolution that provides the community with cheaper or free tools for in situ study (e.g., sensors, gliders), remote sensing (satellite data, video cameras, drones) or modelling (open source models). These changes favour the transfer of developed methods to monitoring and management services. On the other hand, scientific research is increasingly targeted by public authorities towards finalized studies in relation to societal issues. Shoreline vulnerability is an object of concern that grows after each marine submersion or intense erosion event. Thus, during the last four decades, the production of knowledge on coastal sediment dynamics has evolved considerably, and is in tune with the needs of society. This editorial aims at synthesizing the current revolution in the scientific research related to coastal and littoral hydrosedimentary dynamics, putting into perspective connections between coasts and other geomorphological entities concerned by sediment transport, showing the links between many fragmented approaches of the topic, and introducing the papers published in the special issue of Water on “Sediment transport in coastal waters”. Keywords: sediment transport; cohesive sediments; non cohesive sediments; sand; mud; coastal erosion; sedimentation; morphodynamics; suspended particulate matter; bedload 1.
    [Show full text]
  • A National Roadmap for Vadose Zone Science & Technology
    DOE/ID-10871 A National Roadmap for Vadose Zone Science & Technology Understanding, Monitoring, and Predicting Contaminant Fate and Transport in the Unsaturated Zone Revision 0.0 August 2001 A National Roadmap for Vadose Zone Science and Technology PREFACE The project management and logistical aspects of initiating a first national roadmap for vadose zone science and technology are daunting. The initial challenge was to select and assemble a team of experts who could identify the research and development needed over the next quarter century to adequately assess and predict the fate and transport of contaminants in the vadose zone. The second challenge was to ensure that the group was well-versed in U.S. Department of Energy (DOE) needs, the vadose zone cleanup efforts of other federal agencies, and the research underway in universities, the private sector, and government facilities (including the DOE national laboratories). Third, the interests and requirements of federal, state and local governments had to be considered. After a lengthy search, 10 internationally recognized individuals were selected and accepted positions on the Vadose Zone Roadmap Executive Committee. Four of these individuals also accepted the challenge to serve as workgroup chairs and to assemble the remainder of the participants for the workgroups. The full team consisted of 62 individuals, many of whom are internationally recognized vadose zone experts. These individuals (a complete list is provided in Appendix A) also provided representation from across DOE, other federal agencies, industry, academia, and the international community. In March 2000, the Executive Committee met to begin its task. Over the next year, this committee and four (ultimately condensed to three) roadmap workgroups formed the multi- disciplinary team that has outlined in these pages a set of vadose zone research and infrastructure priorities for the next quarter-century.
    [Show full text]
  • Role of Vadose-Zone Flow Processes in Regional-Scale Hydrology: Review, Opportunities and Challenges
    6 Role of vadose-zone flow processes in regional-scale hydrology: review, opportunities and challenges Thomas Harter and Jan W. Hopmans Abstract At the regional scale, vadose-zone processes are recognized for controlling both short-term dynamics in watershed hydrology and long-term water balances of hydrologic basins. In this paper we explore the various conceptual and mathematical models that have been proposed or could be considered to represent water fluxes in the vadose zone at the catchment, watershed or regional scale. Such models have been in existence in two largely disconnected disciplines: on the one hand, watershed hydrologists and, more recently, climate modelers frequently conceptualize the vadose zone as a zero-dimensional black box represented by lumped parameter models. On the other hand, soil physicists, equipped with tools to measure system and system- state properties directly in the vadose zone at scales of 10-2 – 100 m, have relied on Richards’ equation, a physically based, fully parameterized four-dimensional space– time model to represent unsaturated flow at the laboratory or field-plot scale. Over the past thirty years, the modeling efforts of the two disciplines have increasingly converged: hydrologists downscale their models by employing distributed (rather than lumped) models of varying complexity, while soil physicists have employed stochastic methods to upscale from their local-scale measurements and their local- scale physical understanding of flow processes to the field and regional scale. The lead question in this work is how the typical small-scale vadose-zone measurements relate to the large-scale representative or ‘effective’ parameter values of variously complex regional vadose-zone models.
    [Show full text]
  • Vadose Zone Lag Time Effect on Groundwater Drought in A
    water Article Vadose Zone Lag Time Effect on Groundwater Drought in a Temperate Climate Buruk Kitachew Wossenyeleh 1,* , Boud Verbeiren 2 , Jan Diels 1 and Marijke Huysmans 1,2 1 Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, BE-3001 Leuven, Belgium; [email protected] (J.D.); [email protected] or [email protected] (M.H.) 2 Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Pleinlaan 2, BE-1050 Brussels, Belgium; [email protected] * Correspondence: [email protected] or [email protected] Received: 6 June 2020; Accepted: 23 July 2020; Published: 26 July 2020 Abstract: An essential factor in the propagation of drought, from meteorological drought to groundwater drought, is the delay between a precipitation event and the groundwater recharge reaching the groundwater table. This delay, which mainly occurs in the vadose zone of the hydrological cycle, is often poorly studied. Therefore, this paper proposes a method for estimating the spatially distributed delay in the vadose zone using the kinematic wave approximation of Richards’ equation combined with the van Genuchten–Burdine and Brooks–Corey parametric model. The modeling was approached (1) using a detailed parametrization of soil and geological layers and (2) using lumped hydraulic and physical properties of geological layers. The results of both approaches were compared against the physically based flow model Hydrus-1D. This analysis shows that using a detailed parametrization of soil and geological layers results in good comparison, with a Nash–Sutcliffe efficiency of 0.89 for Brooks–Corey and 0.80 for van Genuchten–Burdine. The delay result of the Brooks–Corey model was incorporated into the groundwater recharge time series from 1980 to 2013 to analyze the effect of this delay on groundwater drought.
    [Show full text]
  • Vadose Zone Characterization and Monitoring Current Technologies, Applications, and Future Developments
    3 Vadose Zone Characterization and Monitoring Current Technologies, Applications, and Future Developments Boris Faybishenko Contributors: M. Bandurraga, M. Conrad, P. Cook, C. Eddy-Dilek, L. Everett, FRx Inc. of Cincinnati, T. Hazen, S. Hubbard, A.R. Hutter, P. Jordan, C. Keller, F.J. Leij, N. Loaiciga, E.L. Majer, L. Murdoch, S. Renehan, B. Riha, J. Rossabi, Y. Rubin, A. Simmons, S. Weeks, C.V. Williams INTRODUCTION NEEDS FOR VADOSE ZONE CHARACTERIZATION AND MONITORING Vadose zone characterization and monitoring are essential for: • Development of a complete and accurate assessment of the inven- tory, distribution, and movement of contaminants in unsaturated- saturated soils and rocks. • Development of improved predictive methods for liquid flow and contaminant transport. • Design of remediation systems (barrier systems, stabilization of buried wastes in situ, cover systems for waste isolation, in situ treat- ment barriers of dispersed contaminant plumes, bioreactive treat- ment methods of organic solvents in sediments and groundwater). • Design of chemical treatment technologies to destroy or immobilize highly concentrated contaminant sources (metals, radionuclides, explosive residues, and solvents) accumulated in the subsurface. 133 134 VADOSE ZONE SCIENCE AND TECHNOLOGY SOLUTIONS Development of appropriate conceptual models of water flow and chemical transport in the vadose zone soil-rock formation is critical for developing adequate predictive modeling methods and designing cost- effective remediation techniques. These conceptual models of unsatu- rated heterogeneous soils must take into account the processes of preferential and fast water seepage and contaminant transport toward the underlying aquifer. Such processes are enhanced under episodic natural precipitation, snowmelt, and extreme chemistry of waste leaks from tanks, cribs, and other surface sources.
    [Show full text]