Authigenic Carbonates As Natural Analogues of Mineralisation Trapping In

Total Page:16

File Type:pdf, Size:1020Kb

Authigenic Carbonates As Natural Analogues of Mineralisation Trapping In Authigenic carbonates as natural analogues of mineralisation trapping in CO2 sequestration Progress Report and Preliminary Results ANLEC Project 7-1011-0189 G. K. W. Dawson, S.D. Golding, C.J. Boreham and T. Mernagh October 2013 | CO2CRC Report No: RPT13-4602 REPORT CO2CRC PARTICIPANTS Core Research Industry & Government Supporting Participants Participants Participants CSIRO ANLEC R&D CanSyd Australia Curtin University BG Group Charles Darwin University Geoscience Australia BHP Billiton Government of South Australia GNS Science BP Developments Australia Lawrence Berkeley National Laboratory Monash University Brown Coal Innovation Australia Process Group Simon Fraser University Chevron The Global CCS Institute University of Adelaide Dept. of Primary Industries - Victoria University of Queensland University of Melbourne Ministry of Business, Innovation & Employment University of New South Wales INPEX University of Western Australia KIGAM NSW Government Dept. Trade & Investment Rio Tinto SASOL Shell Total Western Australia Dept. of Mines and Petroleum Glencore Xstrata Authigenic carbonates as natural analogues of mineralisation trapping in CO2 sequestration Progress Report and Preliminary Results Project 7-1011-0189 G. K. W. Dawson, S.D. Golding, C.J. Boreham and T. Mernagh Date of submission October 2013 CO2CRC Report No: RPT13-4602 1 Acknowledgements The authors wish to acknowledge financial assistance provided to the CO2CRC by the Australian Government through its CRC program and through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative. Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) GPO Box 463 Ground Floor NFF House, 14-16 Brisbane Avenue, Barton ACT 2600 CANBERRA ACT 2601 Phone: +61 2 6120 1600 Fax: +61 2 6273 7181 Email: [email protected] Web: www.co2crc.com.au Reference: G. K. W. Dawson, S.D. Golding, C.J. Boreham and T. Mernagh, 2013. Authigenic carbonates as natural analogues of mineralisation trapping in CO2 sequestration. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, Australia, CO2CRC Publication Number RPT13-4602. 75pp. © CO2CRC 2012 Unless otherwise specified, the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) retains copyright over this publication through its incorporated entity, CO2CRC Ltd. You must not reproduce, distribute, publish, copy, transfer or commercially exploit any information contained in this publication that would be an infringement of any copyright, patent, trademark, design or other intellectual property right. Requests and inquiries concerning copyright should be addressed to the Communications and Media Adviser, CO2CRC, GPO Box 463, CANBERRA, ACT, 2601. Telephone: +61 2 6120 1600. 2 Table of Contents Index of Figures ................................................................................................................................................. 4 Index of Tables ................................................................................................................................................... 5 Executive Summary ........................................................................................................................................... 6 1. Introduction ............................................................................................................................................... 9 2. Sampling strategy and descriptions......................................................................................................... 10 3. Initial geochemistry ................................................................................................................................. 29 3.1. Calcite stable isotopes ..................................................................................................................... 29 3.2. Calcite elemental abundances ......................................................................................................... 40 3.2.1. Major, minor, and trace element overview ............................................................................ 40 3.2.2. Rare earth elements plus yttrium (REY) and other related elements ..................................... 46 4. Fluid inclusion studies ............................................................................................................................. 60 4.1. Summary observations of fluid inclusion occurrence in Chinchilla 4 samples ................................ 61 4.2. Construction of an on-line fluid inclusion crusher .......................................................................... 64 5. Ongoing and future work for project ...................................................................................................... 67 6. References ............................................................................................................................................... 68 3 Index of Figures Figure 1: Map of the Surat Basin showing sites being assessed for evidence of significant carbonate cementation. ................................................................................................................................................... 12 Figure 2: Map of the Eromanga Basin showing sites being assessed for evidence of significant carbonate cementation. ................................................................................................................................................... 13 Figure 3: Surat Basin Kogan Creek mine massive carbonate mineralisation examples. Given that the average local coal is borderline brown coal to sub-bituminous low rank, the carbonate precipitation is expected to have occurred under relatively low temperature conditions generally and so is applicable to this study. a) and b) are samples of two up to 15 cm wide “chimneys” of massive calcite collected from within faults, c) very hard and apparently iron rich fault breccia containing large calcite veins, from clastic unit between coal seams, d) large calcite sheets with bornite and pyrite discs, from within coal master cleats (large systematic joints), e) calcite from shear surface containing brown probable syntectonic linear accessory phase, f) 4 mm thick calcite sheet from within fault, with probable syntectonic bornite and pyrite. .................................... 16 Figure 4: Carbon and oxygen isotope compositions of Surat and Eromanga calcite cements and veins. ...... 35 Figure 5: Carbon and oxygen isotope composition of calcite cements and fault veins in clastic units of the Surat and Eromanga basins. ............................................................................................................................ 35 Figure 6: Carbon and oxygen isotope compositions of calcite veins and chimneys in the Walloon Coal Measures at Kogan Creek coal mine, Surat Basin. .......................................................................................... 36 Figure 7: Major to moderate elemental abundances measured within fracture calcite samples via ICP-MS. 40 Figure 8: Moderate to minor elemental abundances measured within fracture calcite samples via ICP-MS. 41 Figure 9: Moderate to minor elemental abundances measured within fracture calcite samples via ICP-MS. 42 Figure 10: Scandium and uranium levels track each other for most samples excluding the Eromanga faults. ......................................................................................................................................................................... 42 Figure 11: Non-REY trace elemental abundances measured within fracture calcite samples via ICP-MS...... 43 Figure 12: Fracture calcite REY concentrations compared with marine carbonate (Webb and Kamber, 2000). ......................................................................................................................................................................... 46 Figure 13: Plot of sample La/Th ratios relative to the expected upper crustal ratio of 2.8 (centre line). ...... 47 Figure 14: Plot of sample La/Sc ratios relative to the expected upper crustal ratio of 1 (centre line). .......... 48 Figure 15: Plot of sample Th/U ratios relative to the expected upper crustal ratio of 3.8 (line). ................... 48 Figure 16: Variation diagram first proposed by Möller (1983); field positions plotted are based upon numerous analyses of samples from across the world. Samples that plot below the carbonatite- hydrothermal-metamorphic series are classed as “sedimentary process related”, with the rough positions of marine carbonate types between the dashed lines, and sea water composition plotted for reference. .. 49 Figure 17: PAAS-normalised REE data for fracture calcite samples. The majority of samples are enriched in HREE’s relative to LREE’s. ................................................................................................................................ 56 Figure 18: Calcite cemented Hutton Sandstone sample #256 (Chinchilla 4– 799m) contained rare two-phase, aqueous inclusions with 5 – 10 vol.% vapour that were sufficiently large for microthermometry. ............... 63 Figure 19: The heated fluid inclusion crusher and transfer line interfaced with Geoscience Australia’s Agilent 5893 GC-MS: ...................................................................................................................................................
Recommended publications
  • 6. Groundwater Resources
    6. Groundwater Resources Contents 6 Groundwater Resources 6-1 6.1 Regulatory Framework 6-1 6.1.1 Queensland Legislation 6-1 6.2 Existing Environment 6-4 6.2.1 Project Location 6-4 6.2.2 Hydrology and Landforms 6-4 6.2.3 Geology 6-4 6.2.4 Hydrogeology 6-11 6.2.5 Groundwater Use 6-16 6.2.6 Existing Mine Groundwater Monitoring 6-25 6.2.7 Revised Project Baseline Groundwater Monitoring 6-27 6.2.8 Groundwater Levels 6-31 6.2.9 Groundwater Movement 6-35 6.2.10 Inter-aquifer Connectivity 6-38 6.2.11 Surface Water and Groundwater Interaction 6-39 6.2.12 Groundwater Quality 6-39 6.2.13 Environmental Values in the EPP Water 6-47 6.2.14 Conceptual Hydrogeological Model 6-49 6.3 Impact Assessment 6-53 6.3.1 Effects on Groundwater Levels 6-55 6.3.2 Effects on Groundwater Quality 6-72 6.3.3 Effects on Groundwater Users 6-75 6.3.4 Effects on Groundwater Dependent Ecosystems 6-77 6.4 Mitigation Measures 6-77 6.4.1 Groundwater Monitoring Program 6-77 6.4.2 Landholder Bores 6-83 6.4.3 Groundwater Impact Prediction, Validation and Review 6-83 6.4.4 Mitigation Measures for affected Groundwater Users 6-84 6.5 Conclusions 6-84 New Acland Coal Mine Stage 3 Project – Environmental Impact Statement PAGE i 6 Groundwater Resources This Chapter describes the groundwater resources that may be affected by the revised Project, how they might be affected, and the measures required for the mitigation of potential negative effects.
    [Show full text]
  • The Mesozoic Megafossil Genus Linguifolium Arber 1917
    Acta Palaeobotanica 55(2): 123–147, 2015 DOI: 10.1515/acpa-2015-0009 The Mesozoic megafossil genus Linguifolium Arber 1917 GARY A. PATTEMORE1, JOHN F. RIGBY 2 and GEOFFREY PLAYFORD 3 1 School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; e-mail: [email protected] 2 School of Earth, Environmental and Biological Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia; e-mail: [email protected] 3 School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; e-mail: [email protected] Received 24 April 2015; accepted for publication 3 September 2015 ABSTRACT. The plant megafossil genus Linguifolium Arber 1917 is chiefly known from the Middle and Upper Triassic of Gondwana. The range of Linguifolium extended beyond Gondwana by the Late Triassic, persisting there through the earliest Jurassic (Hettangian). The parent plants probably grew in a well-watered, canopied environment. Diagnoses of the genus and four of its species – Linguifolium tenison-woodsii (Shirley 1898) Retallack 1980, L. waitakiense Bell in Bell et al. 1956, L. parvum Holmes & Anderson in Holmes et al. 2010, and L. steinmannii (Solms-Laubach 1899) Arber 1917 – are emended with particular reference to venation and leaf morphology; consequently, the stratigraphic ranges of the species have been more precisely defined. Coalescent venation has previously been reported in some species of Linguifolium and is identified in new material described herein. Although the vast majority of specimens assigned to the genus are from the Upper Triassic, none shows coalescent venation. This character is entirely restricted to the Middle Triassic, in particu- lar to two species: L.
    [Show full text]
  • Surat Underground Water Impact Report
    Underground Water Impact Report for the Surat Cumulative Management Area 18 July 2012 Prepared by: Coal Seam Gas Water Queensland Water Commission © State of Queensland (Queensland Water Commission) 2012 Surat Underground Water Impact Report Contents Tables......................................................................................................................................... iv Figures........................................................................................................................................ iv Appendices..................................................................................................................................v Abbreviations.............................................................................................................................. vi Overview ................................................................................................................................ ix 1. Introduction ........................................................................................................................1 1.1 Water Rights.........................................................................................................................................1 1.2 Cumulative Management......................................................................................................................1 1.3 Surat Underground Water Impact Report .............................................................................................1 1.4 Implementation
    [Show full text]
  • Early Cretaceous Macrofloras of Western Australia
    Records of the Westem Australian Museum 18: 19-65 (1996), Early Cretaceous macrofloras of Western Australia Stephen McLoughlin School of Botany, The University of Melbourne, Parkville, Victoria 3052, Australia Abstract - Western Australian, Lower Cretaceous, macrofloras from the Broome Sandstone and Callawa Formation (Canning Basin), Nanutarra Formation and Birdrong Sandstone (Carnarvon Basin), Cronin Sandstone (Officer Basin), and Leederville and Bullsbrook Formations (Perth Basin) incorporate a range of lycophytes, ferns, pteridosperms, bennettitaleans, and conifers, The new monotypic genus Roebuckia is established for spatulate fern fronds (R, spatulata) of possible vittariacean alliance. Other newly established species include Phyllopteroides westralensis, Elatocladus ginginensis, and Carpolithes bullsbrookensis, Although the Western Australian fossil suites reveal some specific differences from other Australian late Mesozoic assemblages, several shared index taxa and the high proportion of bennettitaleans support correlation with the Victorian Neocomian Ptilophyllum-Pachypteris austropapillosa Zone (Zone B). Some Western Australian taxa are shared with Indian assemblages but fewer similarities exist with other Gondwanan Early Cretaceous floras, The representation of several hydrophilous fern, lycophyte, and pteridosperm groups together with growth indices from fossil woods implies a seasonal humid mesothermal climate for the Western Australian eratonic margin during the Neocomian-Barremian. Minor differences between the Western Australian
    [Show full text]
  • Appendix D Surat Basin Geological Model Surat Basin Stratigraphic Framework April 2012
    Appendix D Surat Basin geological model Surat Basin Stratigraphic Framework April 2012 Surat Basin Stratigraphic Framework April 2012 – Surat Basin Stratigraphic Framework April 2012 Table of Contents 1. Introduction .................................................................................................................................... 4 2. Methodology ................................................................................................................................... 8 2.1. Area of Interest ....................................................................................................................... 8 2.2. Datasets .................................................................................................................................. 8 2.3. Geological Modelling ............................................................................................................ 10 3. Regional Structure ........................................................................................................................ 12 4. Geological Descriptions ................................................................................................................. 17 4.1. Base Jurassic Unconformity .................................................................................................. 17 4.2. Precipice Sandstone .............................................................................................................. 17 4.3. Evergreen Formation ...........................................................................................................
    [Show full text]
  • Ida-Maria Jansson an Early Jurassic Conifer
    An Early Jurassic conifer- dominated assemblage of the Clarence-Moreton Basin, eastern Australia Ida-Maria Jansson Examensarbeten i Geologi vid Lunds universitet - Berggrundsgeologi, nr. 203 Geologiska institutionen Centrum för GeoBiosfärsvetenskap Lunds universitet 2006 An Early Jurassic conifer-dominated assemblage of the Clarence-Moreton Basin, eastern Australia Master Thesis Ida-Maria Jansson Department of Geology Lund University 2006 Contents 1. Introduction....................................................................................................................................................... 5 2. Geological Setting and Stratigraphy................................................................................................................ 7 3. Physiology .......................................................................................................................................................... 8 3.1. Conifers 9 3.2. Ferns 10 3.3. Lycopsids 10 3.4. Mesofossils 10 4. Material and Methods..................................................................................................................................... 11 4.1. Macrofossils 11 4.1.1. Cuticle preparation 11 4.2. Mesofossils 12 4.2.1. Megaspores 12 5. Results .............................................................................................................................................................. 12 5.1. Systematic palaeontology 12 6. Discussion........................................................................................................................................................
    [Show full text]
  • Occurrence and Fate of Natural Hydrocarbons and Other Organic Compounds in Groundwater from Coal- Bearing Basins in Queensland, Australia
    ENERGY BUSINESS UNIT Occurrence and fate of natural hydrocarbons and other organic compounds in groundwater from coal- bearing basins in Queensland, Australia Richard Schinteie1, Kaydy L. Pinetown1, Jim R. Underschultz2, Sue Vink2, Carl A. Peters1, David J. 1 Midgley 1) CSIRO Energy, North Ryde, NSW, Australia 2) Centre for Coal Seam Gas, University of Queensland, Qld, Australia Report Number: EP186357 July 2018 A report to: GISERA – Gas Industry Social & Environmental Research Alliance ISBN (print): 978-1-4863-1121-7 ISBN (online): 978-1-4863-1122-4 Citation Schinteie R., Pinetown K.L., Underschultz J.R., Vink S., Peters C.A., and Midgley D (2018) Occurrence and fate of natural total petroleum hydrocarbons and other organic compounds in groundwater from coal-bearing basins in Queensland, Australia. CSIRO, Australia. Copyright © Commonwealth Scientific and Industrial Research Organisation 2018. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. Important disclaimer CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.
    [Show full text]
  • Surat Underground Water Impact Report
    Underground Water Impact Report for the Surat Cumulative Management Area 18 July 2012 Prepared by: Coal Seam Gas Water Queensland Water Commission © State of Queensland (Queensland Water Commission) 2012 Surat Underground Water Impact Report Contents Tables......................................................................................................................................... iv Figures........................................................................................................................................ iv Appendices..................................................................................................................................v Abbreviations.............................................................................................................................. vi Overview ................................................................................................................................ ix 1. Introduction ........................................................................................................................1 1.1 Water Rights.........................................................................................................................................1 1.2 Cumulative Management......................................................................................................................1 1.3 Surat Underground Water Impact Report .............................................................................................1 1.4 Implementation
    [Show full text]
  • G1831 001 Cameby Downs GIA V01.01 Draft
    Cameby Downs Continued Operations Project EnvironmentalEnvironmental Values Assessment Assessment APPENDIX C Groundwater Assessment Report on Cameby Downs Continued Operations Project Groundwater Impact Assessment Prepared for Syntech Resources Pty Ltd Project No. G1831 September 2018 www.ageconsultants.com.au ABN 64 080 238 642 Document details and history Document details Project number G1831 Document title Cameby Downs Continued Operations Project – Groundwater Impact Assessment Site address Cameby Downs Mine, Warrego Highway, Miles File name G1831_001_Cameby Downs GIA_v05.03a.docx Document status and review Authorised Edition Comments Author Date by v05.03a Final report with minor updates addressing DES comments DWI/AMD/JB JST 07/09/2018 This document is and remains the property of AGE, and may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited. Australasian Groundwater and Environmental Consultants Pty Ltd AGE Head Office AGE Newcastle Office AGE Townsville Office Level 2 / 15 Mallon Street, 4 Hudson Street Unit 3, Building A, 10 Cummins Street Bowen Hills, QLD 4006, Australia Hamilton, NSW 2303, Australia Hyde Park, QLD 4812, Australia T. +61 7 3257 2055 T. +61 2 4962 2091 T. +61 7 4413 2020 F. +61 7 3257 2088 F. +61 2 4962 2096 F. +61 7 3257 2088 [email protected] [email protected] [email protected] Table of contents Page No. 1 Introduction ........................................................................................................................................................................
    [Show full text]
  • Megaflora of the Australian Triassic–Jurassic: a Taxonomic Revision
    Acta Palaeobotanica 56(2): 121–182, 2016 DOI: 10.1515/acpa-2016-0008 Megaflora of the Australian Triassic–Jurassic: a taxonomic revision GARY A. PATTEMORE School of Earth Sciences, The University of Queensland, St. Lucia Campus, Brisbane, Queensland 4072, Australia; email: [email protected] Received 27 May 2016, accepted for publication 27 September 2016 ABSTRACT. Umkomasiaceans are the most commonly recorded components of Gondwanan Triassic floras but they are not represented subsequently in that region. Their diversity appears to have substantially declined prior to the Rhaetian. Lower and Middle Jurassic floras in Australia and elsewhere in Gondwana are strikingly different from those of the Triassic, comprising ferns, lycopods, conifers, cycads, and bennettitaleans. The fern Cladophlebis Brongniart 1849 emend. Seward 1894 dominated coal-forming paludal environments during the Middle Jurassic in Queensland and it is one of the most commonly preserved plants in the Eastern Gondwanan Jurassic. Ginkgoaleans were present in Eastern Gondwana until near the end-Triassic but were absent below ca 60°S palaeolatitude during the Early and Middle Jurassic. The type specimen of Dicroidium superbum (Shirley 1898) Townrow 1957 emend. nov. has been inaccurately represented in the published record. Consequently, many specimens belonging to the species have been incor- rectly assigned to other umkomasiacean species. Misidentifications and considerably enlarged circumscriptions of some species have resulted in an erroneous and simplistic morpho-continuum concept supposedly linking umkomasiacean fronds. Several commonly occurring umkomasiacean species are re-assessed with particular attention to their type specimens, two of which are accurately figured here for the first time. This re-assessment, together with evidence from allied fructifications and wood, supports the view that umkomasiacean fronds belong to several genera.
    [Show full text]
  • Linking Three-Dimensional Geological Modelling and Multivariate Statistical Analysis to Define Groundwater Chemistry Baseline and Identify Inter-Aquifer Connectivity Within the Clarence
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Raiber, Matthias& Cox, Malcolm (2012) Linking three-dimensional geological modelling and multivariate statis- tical analysis to define groundwater chemistry baseline and identify inter-aquifer connectivity within the Clarence-Moreton Basin, Southeast Queensland, Australia. In Mares, T (Ed.) Proceedings of the 4th Eastern Australasian Basins Symposium and Exhibition. Petroleum Exploration Society of Australia, Australia, pp. 1-6. This file was downloaded from: https://eprints.qut.edu.au/56598/ c Copyright 2012 [please consult the author] This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source.
    [Show full text]
  • Published on DES Disclosure Log RTI Act 2009
    s. 376 (1) (da) s. 376 (1) (db) (i) s. 376 (1) (db) (ii) Description impacts on EVs that have / likely to occur, because of Assessment of likely impacts on EVs that will / likely occur, Assessment of likely impacts on EVs that will / likely occur, Environmental Value previous exercise of water rights. because of the exercise of water rights for the next 3-year because of the exercise of water rights for theLog over the projected period. life of the resource tenure. GAB, Precipice Sndst: Around the Moonie oil field, the maximum GAB, Precipice Sndst: >5 metres within three years (to end of GAB, Precipice: Long term affects (past 2021) (>5 m decline) are pressure decline at the wellfield is about 120 metres, and 2021). predicted around the Moonie oil field, resulting from historical groundwater extraction has been steadily declining at a current groundwater extraction from conventional oil / gas production. level of about 1,000 ML/year. Appendix G shows areas with up to 100m of predicted drawdown, at 5th / 50th / 95th percentiles. -------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------- GAB, Hutton Sndst: NO INFO GAB, Hutton Sndst: >5 metres within three years (to end of GAB, Hutton Sndst: Long term affects (past 2021) (>5 m decline) 2021). are predicted. Maximum impacts at most locations in the Hutton Sandstone are minor and predicted to
    [Show full text]