Ice Sheet Sources of Sea Level Rise and Freshwater Discharge During the Last Deglaciation

Total Page:16

File Type:pdf, Size:1020Kb

Ice Sheet Sources of Sea Level Rise and Freshwater Discharge During the Last Deglaciation ICE SHEET SOURCES OF SEA LEVEL RISE AND FRESHWATER DISCHARGE DURING THE LAST DEGLACIATION Anders E. Carlson1,2 and Peter U. Clark3 Received 22 August 2011; revised 22 September 2012; accepted 25 September 2012; published 22 December 2012. [1] We review and synthesize the geologic record that of which 2–7 m represents an excess contribution above that constrains the sources of sea level rise and freshwater dis- derived from ongoing ice sheet retreat. Widespread retreat of charge to the global oceans associated with retreat of ice Antarctic ice sheets began at 14.0–15.0 ka, which, together sheets during the last deglaciation. The Last Glacial Maxi- with geophysical modeling of far-field sea level records, sug- mum (26–19 ka) was terminated by a rapid 5–10 m sea gests an Antarctic contribution to this meltwater pulse as level rise at 19.0–19.5 ka, sourced largely from Northern well. The cause of the subsequent Younger Dryas cold event Hemisphere ice sheet retreat in response to high northern lat- can be attributed to eastward freshwater runoff from the Lake itude insolation forcing. Sea level rise of 8–20 m from 19 to Agassiz basin to the St. Lawrence estuary that agrees with 14.5 ka can be attributed to continued retreat of the Lauren- existing Lake Agassiz outlet radiocarbon dates. Much of the tide and Eurasian Ice Sheets, with an additional freshwater early Holocene sea level rise can be explained by Laurentide forcing of uncertain amount delivered by Heinrich event 1. and Scandinavian Ice Sheet retreat, with collapse of Lauren- The source of the abrupt acceleration in sea level rise at tide ice over Hudson Bay and drainage of Lake Agassiz basin 14.6 ka (meltwater pulse 1A, 14–15 m) includes contri- runoff at 8.4–8.2 ka to the Labrador Sea causing the 8.2 ka butions of 6.5–10 m from Northern Hemisphere ice sheets, event. Citation: Carlson, A. E., and P. U. Clark (2012), Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation, Rev. Geophys., 50, RG4007, doi:10.1029/2011RG000371. 1. INTRODUCTION with periods of reduced Atlantic meridional overturning circulation (AMOC) and a colder climate in the North [2] Ever since the landmark study of Fairbanks [1989] on the last deglacial relative sea level (RSL) history from Bar- Atlantic region such as the Younger Dryas cold period from bados, paleoclimatologists have debated the timing, rates, 12.9 to 11.7 ka [Boyle and Keigwin, 1987; Broecker, and ice sheet sources of sea level rise (Figure 1). In partic- 1990; McManus et al., 2004], which, if these events origi- ular, Fairbanks [1989] identified two intervals during the nated from Northern Hemisphere ice sheets, questioned the last deglaciation where sea level rise accelerated, which he commonly held hypothesis that increased meltwater dis- termed meltwater pulses (MWPs) 1A and 1B, that occurred charge to the North Atlantic reduced the AMOC [Birchfield at 14.6 and 11.3 ka, respectively [Bard et al., 1990]. What and Broecker, 1990; Manabe and Stouffer, 1995; Stocker became readily apparent, however, was that these two and Wright, 1991]. Alternatively, retreat of the Antarctic intervals of more rapid ice sheet melting did not correspond Ice Sheet (AIS) may have contributed a significant compo- nent of one or more of these MWPs [Clark et al., 1996; Peltier, 1994], or the relationship between meltwater dis- charge and AMOC may not be as sensitive as climate models 1Department of Geoscience and Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin, USA. suggest [Stanford et al., 2006; Tarasov and Peltier, 2005]. 2Now at College of Earth, Ocean, and Atmospheric Sciences, Oregon [3] A different mechanism that could explain reductions State University, Corvallis, Oregon, USA. in AMOC and North Atlantic cold events involves the 3College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA. location of continental runoff discharge relative to regions of deep water formation. In another landmark study building Corresponding author: A. E. Carlson, College of Earth, Ocean, and on previous considerations [Johnson and McClure, 1976; Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA. ([email protected]) Rooth, 1982], Broecker et al. [1989] suggested that routing ©2012. American Geophysical Union. All Rights Reserved. Reviews of Geophysics, 50, RG4007 / 2012 1of72 8755-1209/12/2011RG000371 Paper number 2011RG000371 RG4007 RG4007 CARLSON AND CLARK: SEA LEVEL RISE AND FRESHWATER DISCHARGE RG4007 [4] In the 23 years since the Fairbanks [1989] and Broecker et al. [1989] studies, a large amount of new data have become available that better constrain the timing and magnitude of sea level rise as well as ice sheet margin and runoff histories. Similarly, significant advances in climate and ice sheet modeling allow for further testing of hypoth- eses on the relationship between MWPs, runoff routing, AMOC strength, and abrupt climate change. Here we review the RSL records for the last deglaciation and the geologic data constraining potential ice sheet sources of sea level rise, focusing on periods of rapid sea level rise at 19 ka and during MWP-1A, MWP-1B, and the early Holocene.We also examine the history of meltwater discharge and fresh- water routing for Northern Hemisphere and Antarctic ice sheets and their relationship to periods of abrupt climate change such as the Oldest and Younger Dryas cold events, the Bølling and Allerød warm periods, and the 8.2 ka event. [5] The term “eustatic” sea level has conventionally been used to refer to a uniform global sea level change either due to changes in the volume of water in the world oceans or net changes in the volume of the ocean basins. Because these are two separate controls on sea level (albeit a change in the volume of water affects the volume of the ocean basin through isostasy), however, referring to sea level change without distinguishing between the controls is ambiguous. Moreover, several factors cause regional sea level to differ from the global mean on a range of time scales [Milne et al., 2009], so the concept of a uniform rise of sea level is invalid. “ ” Figure 1. Ice sheet extent at the LGM [Clark and Mix, In the Birch Lecture titled Eulogy for eustasy presented at 2002; Denton et al., 2010] with ice sheets discussed in text the 2009 AGU meeting, Jerry Mitrovica recommended that labeled by their first initial. Ice also covers Greenland and the term “eustatic” no longer be used. We follow this rec- British Isles, but these are not labeled nor discussed as they ommendation, and we use instead the term global mean sea only contributed a small fraction of the sea level change level (GMSL) to refer to spatially averaged sea level that across the last deglaciation [Clark and Mix, 2002]. Also reflects the combined signals of (largely) mass and basin shown are the LIS runoff outlets (arrows), portions of the volume. To specifically identify the ice sheet volume con- LIS discussed (numbered as follows: 1, James and Des tribution to GMSL, we refer to ice-equivalent sea level Moines lobes; 2, Green Bay, Lake Michigan, and Lake [Yokoyama et al., 2000]. Huron lobes; 3, New England; and 4, Canadian Arctic Archi- [6] Of the various factors that contribute to regional sea pelago), and locations of relative sea level records (numbered level variability on glacial-interglacial time scales, the glacial as follows: 5, Barbados; 6, Bonaparte Gulf; 7, Sunda Shelf; isostatic adjustment (GIA) process had the largest influence 8, New Guinea; 9, Tahiti; and 10, Ireland Coast). and caused sea level at nearly any location in the world’s oceans to differ from the global mean during the last deglaci- of North American runoff from the Mississippi River to the ation [Clark et al., 1978; Lambeck and Chappell,2001;Milne St. Lawrence River (Figure 1) from retreat of the southern and Mitrovica, 2008] (Figure 2). RSL records thus cannot be Laurentide Ice Sheet (LIS) north of the Great Lakes reduced compared directly to each other without accounting for GIA AMOC and caused the Younger Dryas cold event. Such effects. We further illustrate this by comparing RSL at far- routing events do not necessarily cause changes in sea level field sites to ice-equivalent sea level derived from a model and may have caused other deglacial AMOC reductions (Figure 3a) [Bassett et al., 2005], which shows that RSL at [Clark et al., 2001; Obbink et al., 2010; Thornalley et al., any particular site differs relative to each other as well as to 2010]. This routing hypothesis with respect to the Youn- the global mean, particularly in the earlier half of the dela- ger Dryas (and other cold events as well) has been ques- ciation. We then adjust the RSL data for GIA (Figure 3c) tioned based on interpretations of St. Lawrence salinity using a model prediction of RSL for each site (Figure 3b) proxies [de Vernal et al., 1996; Keigwin and Jones, 1995], [Bassett et al., 2005], which now shows good agreement the southern LIS margin chronology [Fisher et al., 2009; between the adjusted sea level data and ice-equivalent sea Lowell et al., 2009], and ice sheet model simulations level. [Tarasov and Peltier, 2005], posing a fundamental problem [7] This review discusses the major intervals or episodes of what caused deglacial AMOC reductions if not MWPs or of sea level rise and freshwater discharge through the last routing events [Broecker, 2006; Steig, 2006]. deglaciation, with a broad summary of geological data 2of72 RG4007 CARLSON AND CLARK: SEA LEVEL RISE AND FRESHWATER DISCHARGE RG4007 Younger Dryas cold interval, most of which involve an increase in freshwater flux either from routing or a flood.
Recommended publications
  • Minutes of Meeting at British Antarctic Survey Held on Wednesday 15Th November 2006 at 11.00 Am
    APC(06)2nd Meeting ANTARCTIC PLACE-NAMES COMMITTEE MINUTES OF MEETING AT BRITISH ANTARCTIC SURVEY HELD ON WEDNESDAY 15TH NOVEMBER 2006 AT 11.00 AM. Present Mr P.J. Woodman Chairman Mrs C. Burgess Permanent Committee on Geographical Names Dr K. Crosbie Ad hoc member Prof J.A. Dowdeswell Director, Scott Polar Research Institute, University of Cambridge Mr A.J. Fox British Antarctic Survey Mr P. Geelan Ad hoc member: former Chairman, APC Lt Cdr J.E.J. Marshall Hydrographic Office Mr S. Ross Polar Regions Unit, Overseas Territories Department, Foreign and Commonwealth Office Ms J. Rumble Polar Regions Unit, Overseas Territories Department, Foreign and Commonwealth Office Dr J.R. Shears British Antarctic Survey Dr M.R.A. Thomson Ad hoc member Ms A. Martin Secretary 1. Apologies for absence and new members Apologies for absence were received from Dr Hattersley-Smith, Royal Geographical Society. The Chairman welcomed Dr Crosbie who had joined the committee as a result of the recruitment initiative following the last meeting. The Chairman also welcomed Mr Ross, the new BAT Desk Officer at the Polar Regions Unit, Foreign and Commonwealth Office. 2. Minutes of the last meeting, held on 10th May 2006 The minutes were approved by all present. It was pointed out that the letters of reappointment for Mr Geelan, Dr Thomson and Mr Woodman had not been received. The Secretary was asked to look into this and to ensure that the letters were sent. 3. Matters arising from the minutes of the last meeting Secretary’s review of development work being carried out on the BAT Gazetteer and APC website.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • Direct Evidence for Significant Deglaciation Across the Weddell
    Geophysical Research Abstracts Vol. 17, EGU2015-2572-1, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. Direct evidence for significant deglaciation across the Weddell Sea embayment during Melt Water Pulse-1B Christopher Fogwill (1), Christian Turney (1), Nicholas Golledge (2), David Etheridge (3), Mario Rubino (3), John Woodward (4), Kate Reid (4), Tas van Ommen (5), Andrew Moy (5), Mark Curran (5), David Thornton (3), Camilla Rootes (6), and Andrés Rivera (7) (1) University of New South Wales, Climate Change Research Centre, BEES, Sydney, Australia ([email protected]), (2) Antarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand, (3) Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC, Australia, (4) Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom, (5) Antarctic Climate & Ecosystems Cooperative Research Centre, IMAS, Hobart, Tasmania, Australia, (6) Department of Geography, University of Sheffield, Winter Street, Sheffield, S10 2TN, UK., (7) Glaciology and Climate Change Laboratory, Centro de Estudios Cientıficos, Valdivia, and Departamento de Geografıa, Universidad de Chile, Santiago, Chile During the last deglaciation (21,000 to 7,000 years ago) global sea level rise was punctuated by several abrupt meltwater spikes triggered by the retreat of ice sheets and glaciers world-wide. However, questions regarding the relative timing, geographical source and the physical mechanisms driving these rapid increases in sea level have catalysed significant debate that is critical to predicting future sea level rise. Here we present a unique record of ice sheet elevation change derived from the Patriot Hills blue ice area (BIA), located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment (WSE).
    [Show full text]
  • The Generation of Mega Glacial Meltwater Floods and Their Geologic
    urren : C t R gy e o s l e o r a r LaViolette, Hydrol Current Res 2017, 8:1 d c y h H Hydrology DOI: 10.4172/2157-7587.1000269 Current Research ISSN: 2157-7587 Research Article Open Access The Generation of Mega Glacial Meltwater Floods and Their Geologic Impact Paul A LaViolette* The Starburst Foundation, 1176 Hedgewood Lane, Niskayuna, New York 12309, United States Abstract A mechanism is presented explaining how mega meltwater avalanches could be generated on the surface of a continental ice sheet. It is shown that during periods of excessive climatic warmth when the continental ice sheet surface was melting at an accelerated rate, self-amplifying, translating waves of glacial meltwater emerge as a distinct mechanism of meltwater transport. It is shown that such glacier waves would have been capable of attaining kinetic energies per kilometer of wave front equivalent to 12 million tons of TNT, to have achieved heights of 100 to 300 meters, and forward velocities as great as 900 km/hr. Glacier waves would not have been restricted to a particular locale, but could have been produced wherever continental ice sheets were present. Catastrophic floods produced by waves of such size and kinetic energy would be able to account for the character of the permafrost deposits found in Alaska and Siberia, flood features and numerous drumlin field formations seen in North America, and many of the lignite deposits found in Europe, Siberia, and North America. They also could account for how continental debris was transported thousands of kilometers into the mid North Atlantic to form Heinrich layers.
    [Show full text]
  • Nature Trails Outdoor Study Program
    DD121 North Dakota 4-H Nature Trails Unit 1 Member’s Manual Revised April, 2004 Joe Courneya 4-H Youth Development Specialist Welcome to the Nature Trails Outdoor Study Program. This program is designed for boys and girls who live in towns or on farms. This is the first in a series of programs which will help you experience your environment. Mankind is learning that in order to survive we have to live in harmony with nature. We are a part of the environment and whatever affects the environment will also affect us. In order to understand and appreciate the environment we must study it. This program will be your opportunity. There are a wide range of activities from which to choose. Select those that fit your interests and resources. Original Manual Credits Terry Messmer Extension Wildlife Specialist Kathy Gardner Special Project Assistant North Dakota State University, Fargo ND 58105 Wayne Hankel Program Leader 4-H Youth Development Contents AUTUMN CHANGE NEW GROWTH Change in Plant Color Introduction Change in Animal Color Types of Buds Changes in Diet and Other Changes What Kinds of Plants Have Buds Plant Flowers WATERFOWL IDENTIFICATION Introduction BIRDS AND BIRD NESTS Swans and Geese Introduction Ducks Where Do Birds Live? Some Common Species Bird Nest Characteristics Bird Nest Identification FIREARM SAFETY Introduction FISH AND FISHING Ten Commandments of Firearm Safety Fish Safety at Home Fish Identification Safety in the Field Spin Fishing Transporting Firearms Fishing Equipment Gun Cleaning and Storage Spin-casting Methods WINTER
    [Show full text]
  • Hnjtflrcilild
    HNjTflRCililD A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) Drillers on the Ross Ice Shelf last season used a new hot water system to penetrate fc. 416m of ice and gain access to the waters of the Ross Sea. Here the rig is at work on an access hole for a Norwegian science rproject. ' U . S . N a v y p h o t o Registered ol Post Office Headquarters, Vol. 8, No. 9. Wellington. New Zealand, as a magazine. SOUTH GEORGIA. •.. SOUTH SANDWICH Is' ,,r circle / SOUTH ORKNEY Is' \ $&?-""" "~~~^ / "^x AFAtKtANOis /^SiJS?UK*"0.V" ^Tl~ N^olazarevskayauss« SOUTH AMERICA / /\ ,f Borg°a ~7^1£^ ^.T, \60'E, /? cnirru „ / \ if sa / anT^^^Mo odezhnaya V/ x> SOUTH 9 .» /WEDDELL \ .'/ ' 0,X vr\uss.aT/>\ & SHETtAND-iSfV, / / Halley Bay*! DRONNING MAUD LAND ^im ^ >^ \ - / l s * S Y 2 < 'SEA/ S Euk A J COATSu k V ' tdC O A T S t d / L A N D ! > / \ Dfu^naya^^eneral Belgrano^RG y\ \ Mawson ANTARCTIC SrV MAC ROBERTSON LAND\ \ aust /PENINSULA'^ (see map below) Sobral arg / t Davis aust K- Siple ■■ [ U S A Amundsen-Scott / queen MARY LAND <JMirny AJELLSWORTH Vets') LAND °Vostok ussr MARIE BYRDNs? vice ShelA^ WIIKES tAND , ? O S S ^ . X V a n d a N z / SEA I JpY/VICTORIA .TERRE ,? ^ P o V t A N D V ^ / A D H J E j / V G E O R G E V L d , , _ / £ ^ . / ,^5s=:»iv-'s«,,y\ ^--Dumont d Urville france Leningradskaya \' / USSB_,^'' \ / -""*BALLENYIs\ / ANTARCTIC PENINSULA 1 Teniente Matienzo arg 2 Esperanza arg 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg.
    [Show full text]
  • 2010-2011 Science Planning Summaries
    Find information about current Link to project web sites and USAP projects using the find information about the principal investigator, event research and people involved. number station, and other indexes. Science Program Indexes: 2010-2011 Find information about current USAP projects using the Project Web Sites principal investigator, event number station, and other Principal Investigator Index indexes. USAP Program Indexes Aeronomy and Astrophysics Dr. Vladimir Papitashvili, program manager Organisms and Ecosystems Find more information about USAP projects by viewing Dr. Roberta Marinelli, program manager individual project web sites. Earth Sciences Dr. Alexandra Isern, program manager Glaciology 2010-2011 Field Season Dr. Julie Palais, program manager Other Information: Ocean and Atmospheric Sciences Dr. Peter Milne, program manager Home Page Artists and Writers Peter West, program manager Station Schedules International Polar Year (IPY) Education and Outreach Air Operations Renee D. Crain, program manager Valentine Kass, program manager Staffed Field Camps Sandra Welch, program manager Event Numbering System Integrated System Science Dr. Lisa Clough, program manager Institution Index USAP Station and Ship Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects ODEN Icebreaker Event Number Index Technical Event Index Deploying Team Members Index Project Web Sites: 2010-2011 Find information about current USAP projects using the Principal Investigator Event No. Project Title principal investigator, event number station, and other indexes. Ainley, David B-031-M Adelie Penguin response to climate change at the individual, colony and metapopulation levels Amsler, Charles B-022-P Collaborative Research: The Find more information about chemical ecology of shallow- USAP projects by viewing individual project web sites.
    [Show full text]
  • 1 Compiled by Mike Wing New Zealand Antarctic Society (Inc
    ANTARCTIC 1 Compiled by Mike Wing US bulldozer, 1: 202, 340, 12: 54, New Zealand Antarctic Society (Inc) ACECRC, see Antarctic Climate & Ecosystems Cooperation Research Centre Volume 1-26: June 2009 Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Vessel names are shown viz: “Aconcagua” Ackroyd, Lieut. F: 1: 307, All book reviews are shown under ‘Book Reviews’ Ackroyd-Kelly, J. W., 10: 279, All Universities are shown under ‘Universities’ “Aconcagua”, 1: 261 Aircraft types appear under Aircraft. Acta Palaeontolegica Polonica, 25: 64, Obituaries & Tributes are shown under 'Obituaries', ACZP, see Antarctic Convergence Zone Project see also individual names. Adam, Dieter, 13: 6, 287, Adam, Dr James, 1: 227, 241, 280, Vol 20 page numbers 27-36 are shared by both Adams, Chris, 11: 198, 274, 12: 331, 396, double issues 1&2 and 3&4. Those in double issue Adams, Dieter, 12: 294, 3&4 are marked accordingly. Adams, Ian, 1: 71, 99, 167, 229, 263, 330, 2: 23, Adams, J.B., 26: 22, Adams, Lt. R.D., 2: 127, 159, 208, Adams, Sir Jameson Obituary, 3: 76, A Adams Cape, 1: 248, Adams Glacier, 2: 425, Adams Island, 4: 201, 302, “101 In Sung”, f/v, 21: 36, Adamson, R.G. 3: 474-45, 4: 6, 62, 116, 166, 224, ‘A’ Hut restorations, 12: 175, 220, 25: 16, 277, Aaron, Edwin, 11: 55, Adare, Cape - see Hallett Station Abbiss, Jane, 20: 8, Addison, Vicki, 24: 33, Aboa Station, (Finland) 12: 227, 13: 114, Adelaide Island (Base T), see Bases F.I.D.S. Abbott, Dr N.D.
    [Show full text]
  • KEN MILLER Oklahoma State Treasurer It’S Your Money
    A Message From KEN MILLER Oklahoma State Treasurer It’s your money. Please come get it! Please take a few minutes to see if your name is included on this list of all new names to see if you have treasure waiting to be claimed. Oklahoma businesses bring unclaimed cash, rebates, paychecks, royalties, stock and bonds to my office and it’s my job to return the money to the owners and heirs. Our service is always free and there is no time limit on claiming your property! These are just the most recent names we have received. Our online database contains thousands of names dating back to Search and file a claim online for your 1967. If your name is not on this list, check our website at: unclaimed property. Go to: www.treasurer.ok.gov www.treasurer.ok.gov If you find your name, start your claim online or use the form on the back. to get started. For all other questions Thank you, about unclaimed property, call us at 405-521-4273 Ken Miller, Oklahoma State Treasurer NOTICE OF NAMES OF PERSONS APPEARING TO BE OWNERS OF ABANDONED PROPERTY JULY 2011 – Newspaper Advertising Supplement 2 ADAIR COUNTY — BUNCH JULY 2011 • UNCLAIMED PROPERTY BEAVER COUNTY — BEAVER SOAP HAZEL MITCHELL NEILA NOELS OIL ADAIR RT BOX 165 COUNRTY VILL MOBILE PO BOX 387 SWIMMER CHERRIE L HOME PRK B OWEN GEORGIA BUNCH PO BOX 1097 MURRAY ASHLEY 704 W 13TH ST TABLE OF CONTENTS RODNEY KIMBLE TEEHEE CHARLOTTEA RT 1 BOX 556 PLEASANT PARALEE D PO BOX 2 RR 4 BOX 320 PRIETO KAMISHA RR 2 BOX 1170 ADAIR COUNTY PAGE 2 LOVE COUNTY PAGE 28 PROCTOR THIRSTY ASHLEY ANN 209 W CHINCAPIN PREFERRED PHCY RT1 BOX 1529 SAWNEY EDWARD L PROVIDERS OF SE OK ALFALFA COUNTY PAGE 2 MAJOR COUNTY PAGE 28 BAILEY WAYNE MR P.O.
    [Show full text]
  • 2003-2004 Science Planning Summary
    2003-2004 USAP Field Season Table of Contents Project Indexes Project Websites Station Schedules Technical Events Environmental and Health & Safety Initiatives 2003-2004 USAP Field Season Table of Contents Project Indexes Project Websites Station Schedules Technical Events Environmental and Health & Safety Initiatives 2003-2004 USAP Field Season Project Indexes Project websites List of projects by principal investigator List of projects by USAP program List of projects by institution List of projects by station List of projects by event number digits List of deploying team members Teachers Experiencing Antarctica Scouting In Antarctica Technical Events Media Visitors 2003-2004 USAP Field Season USAP Station Schedules Click on the station name below to retrieve a list of projects supported by that station. Austral Summer Season Austral Estimated Population Openings Winter Season Station Operational Science Opening Summer Winter 20 August 01 September 890 (weekly 23 February 187 McMurdo 2003 2003 average) 2004 (winter total) (WinFly*) (mainbody) 2,900 (total) 232 (weekly South 24 October 30 October 15 February 72 average) Pole 2003 2003 2004 (winter total) 650 (total) 27- 34-44 (weekly 17 October 40 Palmer September- 8 April 2004 average) 2003 (winter total) 2003 75 (total) Year-round operations RV/IB NBP RV LMG Research 39 science & 32 science & staff Vessels Vessel schedules on the Internet: staff 25 crew http://www.polar.org/science/marine. 25 crew Field Camps Air Support * A limited number of science projects deploy at WinFly. 2003-2004 USAP Field Season Technical Events Every field season, the USAP sponsors a variety of technical events that are not scientific research projects but support one or more science projects.
    [Show full text]
  • An Investigation of Changing Wind Energy on The
    AN INVESTIGATION OF CHANGING WIND ENERGY ON THE EVOLUTION OF COPANOBAY, TEXAS By BENJAMIN TAYLOR TROIANI Bachelor of Science in Geology Wichita State University Wichita, Kansas 2006 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2010 AN INVESTIGATION OF CHANGING WIND ENERGY ON THE EVOLUTION OF COPANO BAY, TEXAS Thesis Approved: Dr. Alexander Simms Thesis Adviser Dr. Estella Atekwana Dr. James Puckette Dr. A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEDGMENTS This thesis exists as a result of the support provided by Boone Pickens School of Geology, Oklahoma State University. Without their financial support and use of their facilities, this thesis would not be possible. My advisor Dr. Alexander R. Simms deserves special credit. I feel he went above and beyond his duties as an advisor and was always there for guidance, support, and encouragement. Without his service, I would have never finished. I would also I like to thank the other members of my committee, Dr. James Puckette and Dr. Estella Atekwana for providing valuable input into my research. I would like to thank Dr. Tim Dellapenna and Erin Weaver at Texas A&M at Galveston for providing the seismic data from Copano Bay and use of their facilities to help interpret the seismic data. I am very grateful for Yusuke Yokoyama from the University of Tokyo, Japan for providing radiocarbon ages. I would also like to thank Tyler Treece and Derk Federko for their help in the field and Lauren Miller for her help in the lab.
    [Show full text]
  • Sea Level Rise and Implications for Low Lying Islands, Coasts And
    SECOND ORDER DRAFT Chapter 4 IPCC SR Ocean and Cryosphere 1 2 Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities 3 4 Coordinating Lead Authors: Michael Oppenheimer (USA), Bruce Glavovic (New Zealand) 5 6 Lead Authors: Amro Abd-Elgawad (Egypt), Rongshuo Cai (China), Miguel Cifuentes-Jara (Costa Rica), 7 Rob Deconto (USA), Tuhin Ghosh (India), John Hay (Cook Islands), Jochen Hinkel (Germany), Federico 8 Isla (Argentina), Alexandre K. Magnan (France), Ben Marzeion (Germany), Benoit Meyssignac (France), 9 Zita Sebesvari (Hungary), AJ Smit (South Africa), Roderik van de Wal (Netherlands) 10 11 Contributing Authors: Maya Buchanan (USA), Gonéri Le Cozannet (France), Catia Domingues 12 (Australia), Petra Döll (Germany), Virginie K.E. Duvat (France), Tamsin Edwards (UK), Alexey Ekaykin 13 (Russian Federation), Miguel D. Fortes (Philippines), Thomas Frederikse (Netherlands), Jean-Pierre Gattuso 14 (France), Robert Kopp (USA), Erwin Lambert (Netherlands), Andrew Mackintosh (New Zealand), 15 Angélique Melet (France), Elizabeth McLeod (USA), Mark Merrifield (USA), Siddharth Narayan (US), 16 Robert J. Nicholls (UK), Fabrice Renaud (UK), Jonathan Simm (UK), Jon Woodruff (USA), Poh Poh Wong 17 (Singapore), Siyuan Xian (USA) 18 19 Review Editors: Ayako Abe-Ouchi (Japan), Kapil Gupta (India), Joy Pereira (Malaysia) 20 21 Chapter Scientist: Maya Buchanan (USA) 22 23 Date of Draft: 16 November 2018 24 25 Notes: TSU Compiled Version 26 27 28 Table of Contents 29 30 Executive Summary ......................................................................................................................................... 2 31 4.1 Purpose, Scope, and Structure of the Chapter ...................................................................................... 6 32 4.1.1 Themes of this Chapter ................................................................................................................... 6 33 4.1.2 Advances in this Chapter Beyond AR5 and SR1.5 ........................................................................
    [Show full text]