Climate Change Since the Last Interglacial in Northern New Zealand Inferred from Pollen and Chironomid Records of the Auckland Maars

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change Since the Last Interglacial in Northern New Zealand Inferred from Pollen and Chironomid Records of the Auckland Maars Climate change since the Last Interglacial in northern New Zealand inferred from pollen and chironomid records of the Auckland Maars by Valerie van den Bos A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2019 Abstract In light of contemporary climate change it is more important than ever to understand past shifts in climate, especially past warm phases, and their effects on ecosystems and societies. From compilations of global climate reconstructions, several periods have been identified that might have been warmer than today, the two most recent of which are the Holocene Thermal Maximum (~11 – 5 kyr BP) and the Last Interglacial (~129 – 116 kyr BP). However, spatio-temporal complexities are typically smoothed out in global climate reconstructions and we do not have a good understanding of the regional differences in past climate. The southern mid-latitudes especially are underrepresented in palaeoclimate research. For this thesis I analyse the sediments from two maars within the Auckland Volcanic Field: Orakei Basin, which erupted ~126.0 kyr BP and accumulated sediments until ~9 – 8.5 kyr BP; and Lake Pupuke, which still contains a lake today and therefore covers the Holocene. Quantitative climate reconstructions are necessary to put the Orakei Basin and Lake Pupuke records in a broad context and to enable comparisons of past and future climates. For this study I focus on biological proxies preserved by lake sediments, namely pollen, which primarily responds to mean annual air temperatures (MAAT), and chironomids, a surrogate for summer air temperatures (SmT). Together, MAAT and SmT reconstructions from the same site can provide insight into changing seasonality over time, an underexplored dimension of proxy-based reconstructions. The chironomid record covers just the last ~14 cal kyr BP however, because of low head capsule abundances in older sediment sections. The Orakei Basin pollen record and associated MAAT reconstruction cover ~85 to 9 cal kyr BP and show five distinct phases comparable to Marine Isotope Stages (MIS) 5 to 1. This association is confirmed by the preliminary tephrochronology of the core. The broad similarity of the Orakei MAAT trend to the MIS and other records from New Zealand implies all were driven by northern high-latitude summer insolation, consistent with the Milankovitch orbital forcing hypothesis. Several patterns superimposed on the general trend stand out: first, MIS 4 is a brief cool period, which is inconsistent with the observation that glacier advances equivalent to those of the late last glacial maximum occurred ~65 kyr BP in the Southern Alps, possibly due to the seasonal distribution of energy from solar insolation. Second, MIS 3 displays an earlier warm phase followed by a progressive cooling trend which i might be correlated to decreasing local summer insolation intensity. Third, glacial conditions of MIS 2 appear consistent with the early onset of the last glacial maximum in the southern mid latitudes, which was likely driven by regional insolation intensity. The Lake Pupuke pollen and chironomid records, covering the last ~14 cal kyr BP, show no evidence of a past warm period equivalent to the Holocene Thermal Maximum. MAAT is stable throughout the Holocene, whereas SmT increases between 10 and 3 cal kyr BP. The latter shows a strong relationship with integrated local summer insolation. The temperature reconstructions lead to the conclusion, first, that seasonality was low during the Early Holocene (12 to 9.3 cal kyr BP), and second, that during mid-to-late Holocene (after ~7 cal kyr BP) summers were hot and dry, allowing the tall conifer kauri to expand throughout northern New Zealand. The Lake Pupuke chironomid-SmT reconstruction highlighted an issue with the transfer function model, namely, that it was not able to reconstruct values close to modern day (18.9°C). Therefore, I explore an extended training set which encompasses a longer temperature gradient. New models are fitted using both traditional techniques and modern machine learning methods. The new model improves the SmT reconstruction from Lake Pupuke, in the sense that reconstructed temperatures now reach modern day values. However, the SmT trend is the same as the original trend, substantiating the previously drawn conclusions. During the course of this research, I discovered that density separation during pollen preparation can lead to varying relative abundances, depending on the specific gravity used. After some experimentation I found that using a low specific gravity (2.0; recommended value in the literature) can result in the overrepresentation of buoyant pollen grains, leading to erroneous interpretations. Together, these results point out the importance of considering regional-to-local drivers of climate changes superimposed on global reconstructions. Multi-proxy records can help disentangle the different aspects of the climate system, where especially chironomids can be helpful to elucidate the role of SmT and local summer insolation. Finally, this thesis shows the importance of questioning the appropriateness of conventional methodologies and where possible, addressing their limitations. ii Acknowledgements First, I would like to thank my supervisors, Rewi Newnham and Andrew Rees for their unlimited support over these last three years. You were a great team: Rewi with his vast research experience teaching me the New Zealand palynoflora, and Andrew instructing me in the arts of chironomid analysis and transfer function development. I am especially grateful for the extra effort you both put in over the last few months and dragging me over the finish line. Second, I want to acknowledge all the people that contributed to this thesis and the Auckland Maars Marsden project: Leonie Peti for providing the preliminary lithology of Orakei Basin and for sharing her insights and ideas; Jenni Hopkins for analysing the tephra layers in the Orakei core and her patience in explaining the results to me; Janet Wilmshurst for reconstructing mean annual air temperatures from the Pupuke pollen data; Marcus Vandergoes and Lizette Reyes for providing much of the chironomid training set data; Paul Augustinus for leading the greater project; Jenni, Elaine Smid and Natasha Piatrunia for their help drilling Orakei Basin. I also want to thank the staff at SGEES for their support and assistance, including, but not limited to: Kosta Tashkoff, Dez Tessler, Miranda Voke, Monika Hanson and Emma Fisher. A special thanks to Jane Chewings for her help in the lab and calm responses to my chemical spills… I am thankful for the funding provided by the Royal Society of New Zealand that made this research possible, for the financial support of the Victoria Doctoral Submission Scholarship, and for the Faculty Strategic Research Grant that allowed me to attend the European Geosciences Association general assembly in 2017 and Australasian Quaternary Society’s biennial meeting in 2018. I also want to thank the friends I made over the last three years at Vic that made this experience enjoyable: Aidan, Ben, Ben, Ignacio, Jürgen, Lisa, Lou, Luisa, Lynda, Marcel, Matt, Sandra, Shaun, Tom; Aline and Margaret for their companionship in the microscope lab; Wokje for sharing her home with me when I’d just arrived. Thanks to my office mates, old and new, for a great working environment and always making time for a chat: Chris Conway, Sam Webber, Céline Mandon, Leo Pure, Willy Henriquez Gonzalez, Kate Mauriohooho, Hannah Elms, Katie Jones and Elliot Swallow. Elliot, I was so grateful the first iii time you invited me to the tea room for a coffee break and introduced me to everyone important. You were truly a good friend throughout this experience. I am eternally grateful to my family, who have supported me always, even when I said I was moving to the other side of the world. Last, but definitely not least, Joshua. Thank you for your patience, your support. Thank you for dealing with my moods. Thank you for picking me up from the city at all hours. Thank you for feeding me. Thank you for introducing me to the Jurys, my family away from family. iv Table of Contents Abstract.................................................................................................................... i Acknowledgements.................................................................................................. iii Table of Contents..................................................................................................... v List of Figures.......................................................................................................... x List of Tables ........................................................................................................... xii Chapter 1: Introduction to thesis............................................................................. 1 1.1 Background..................................................................................................... 3 1.2 The Auckland Maars Marsden project............................................................. 5 1.3 Thesis objectives............................................................................................. 6 1.4 Thesis structure............................................................................................... 7 1.4.1 Description of chapters....................................................................... 7 1.4.2 Explanation
Recommended publications
  • Letter Template
    ATTACHMENT 5 Geological Assessment (Tonkin & Taylor) Job No: 1007709 10 January 2019 McConnell Property PO Box 614 Auckland 1140 Attention: Matt Anderson Dear Matt Orakei ONF Assessment 1- 3 Purewa Rd, Meadowbank Introduction McConnell Property is proposing to undertake the development of a multi-story apartment building at 1 - 3 Purewa Road, Meadowbank. The property is located within an area covered by the Outstanding Natural Feature (ONF) overlay of the Auckland Unitary Plan. The overlay relates to the Orakei Basin volcano located to the west of the property. The ONF overlay requires consent for the earthworks and the proposed built form associated with the development of the site. McConnell Property has commissioned Tonkin & Taylor Ltd (T+T) to provide a geological assessment of the property with respect to both the ONF overlay and the geological characteristics of the property. The purpose of the assessment is to place the property in context of the significant geological features identified by the ONF overlay, and to assess the geological effects of the proposed development. Proposed Development The proposal (as shown in the architectural drawings appended to the application) is to remove the existing houses and much of the vegetation from the site, and to develop the site with a new four- storey residential apartment building with a single-level basement for parking. The development will involve excavation of the site, which will require cuts of up to approximately 6m below existing ground level (bgl). The cut depths vary across the site, resulting in the average cut depth being less than 6m bgl. Site Description The site is located at the end of the eastern arm of the ridgeline that encloses the Orakei Basin (Figure 1).
    [Show full text]
  • Appendix 4 Mana Whenua
    The Proposed Auckland Unitary Plan (notified 30 September 2013) Proposed track changes for council’s closing statement 22 July 2015 Sites highlighted green are recommended to be amendend to reflect accurate location on schedule and maps Sites highlighted orange are recommended to be deleted because location is not confirmed Sites highlighted grey are recommended to be deleted because Mana Whenua have not assigned values Sites highlighted red are recommended to be deleted because they are non-Māori or duplicates Sites highlighted blue are recommended to be deleted because unknown whether natural feature or archaeological PART 5 • APPENDICES» Appendix 4 Mana Whenua Appendix 4.2 Schedule of Ssites and places of value to Mana Whenua [all provisions in this appendix are: rcp/dp] NZAA Site Values ID CHI Number Location Te Haruhi Bay | Shakespear Regional Park | abcef ID 1 87 R10_699 Whangaparaoa Peninsula | Hauraki Gulf. Whangaparapara | Aotea Island | Great Barrier ID 2 502 S09_116 Island. | Hauraki Gulf | Auckland City Bluebell Point | Tawharanui Regional Park | bc ID 3 829 R09_235 Hauraki Gulf | Rodney | Auckland ID 4 1066 Q11_412 abcdef Parawai | Te Henga | Bethells Beach Rangiriri Creek | Capes Road | Pollok | Awhitu abcdef ID 5 1752 R12_799 Peninsula | Manukau Harbour ID 6 3832 R11_581 bc Papahinu | Pukaki Creek | Papatoetoe ID 7 3835 R11_591 bc Waokauri Creek | Pukaki Creek | Papatoetoe ID 8 3843 R11_599 abc Waokauri Creek | Papatoetoe ID 9 3845 R11_601 bc Waokauri Creek | Papatoetoe ID 10 3846 R11_603 bc Waokauri Creek | Papatoetoe
    [Show full text]
  • Schedule 6 Outstanding Natural Features Overlay Schedule
    Schedule 6 Outstanding Natural Features Overlay Schedule Schedule 6 Outstanding Natural Features Overlay Schedule [rcp/dp] Introduction The factors in B4.2.2(4) have been used to determine the features included in Schedule 6 Outstanding Natural Features Overlay Schedule, and will be used to assess proposed future additions to the schedule. ID Name Location Site type Description Unitary Plan criteria 2 Algies Beach Algies Bay E This site is one of the a, b, g melange best examples of an exposure of the contact between Northland Allocthon and Miocene Waitemata Group rocks. 3 Ambury Road Mangere F A complex 140m long a, b, c, lava cave Bridge lava cave with two d, g, i branches and many well- preserved flow features. Part of the cave contains unusual lava stalagmites with corresponding stalactites above. 4 Anawhata Waitākere A This locality includes a a, c, e, gorge and combination of g, i, l beach unmodified landforms, produced by the dynamic geomorphic processes of the Waitakere coast. Anawhata Beach is an exposed sandy beach, accumulated between dramatic rocky headlands. Inland from the beach, the Anawhata Stream has incised a deep gorge into the surrounding conglomerate rock. 5 Anawhata Waitākere E A well-exposed, and a, b, g, l intrusion unusual mushroom-shaped andesite intrusion in sea cliffs in a small embayment around rocks at the north side of Anawhata Beach. 6 Arataki Titirangi E The best and most easily a, c, l volcanic accessible exposure in breccia and the eastern Waitākere sandstone Ranges illustrating the interfingering nature of Auckland Unitary Plan Operative in part 1 Schedule 6 Outstanding Natural Features Overlay Schedule the coarse volcanic breccias from the Waitākere Volcano with the volcanic-poor Waitematā Basin sandstone and siltstones.
    [Show full text]
  • March 2013 1 Appendix 3.1: Schedule Of
    Draft Auckland Unitary Plan – March 2013 Appendix 3.1: Schedule of Outstanding Natural Features Introduction The following criteria are used to determine the contents of this schedule, and will be used to consider any proposed additions to it. a. the extent to which the landform feature or geological site contributes to the understanding of the geology or evolution of the biota in the region, New Zealand or the earth (includes type localities of rock formations, minerals and fossils) b. the rarity or unusual nature of the site or feature; c. the extent to which the feature or site is an outstanding representative example of the diversity of natural landforms and geological features in Auckland; d. the extent to which the landform or geological feature or site is a component of a recognisable group of geologically associated features; e. the extent to which the landform or geological feature or site contributes to the aesthetic value or visual legibility of the wider natural landscape; f. the community association with, or public appreciation of the values of the feature or site g. the potential value of the feature or site for public education; h. the potential value of the feature or site to provide additional understanding of the geological or biotic history of the region; i. the state of preservation of the feature or site; j. the extent to which a feature or site is associated with an historically important natural event, geologically related industry, or individual involved in earth science research k. the importance of the feature or site to Mana Whenua; l.
    [Show full text]
  • Auckland Volcanic Field Magmatism, Volcanism, and Hazard: a Review
    1 This is an Accepted Manuscript of an article published by Taylor & Francis in New Zealand 2 Journal of Geology and Geophysics on 18 March 2020, available online: 3 http://www.tandfonline.com/10.1080/00288306.2020.1736102 4 5 6 Auckland Volcanic Field magmatism, volcanism, and hazard: a review 7 8 9 Jenni L Hopkins*1, Elaine R Smid*2, Jennifer D Eccles2, Josh L Hayes3, Bruce W Hayward4, Lucy E McGee5, 10 Kasper van Wijk2, Thomas M Wilson3, Shane J Cronin2, Graham S Leonard6, Jan M Lindsay2, Karoly 11 Németh7, Ian E M Smith2 12 13 *Corresponding Author(s): [email protected] / [email protected] 14 15 1Victoria University of Wellington, PO Box 600, Wellington, New Zealand 16 2 University of Auckland, Private Bag 92019, Auckland, New Zealand 17 3 University of Canterbury, Private Bag 4800, Christchurch, New Zealand 18 4 Geomarine Research, 19 Debron Ave, Remuera, Auckland, New Zealand 19 5 University of Adelaide, Adelaide, Australia 20 6 GNS Science, PO Box 30-368, Lower Hutt, New Zealand 21 7 Massey University, Private Bag 11 222, Palmerston North, New Zealand 22 23 24 25 26 27 Manuscript prepared for submission to the IAVCEI special issue of New Zealand Journal of Geology and 28 Geophysics 29 30 31 1 32 33 Keywords 34 intraplate, monogenetic volcanism, chronology, tephrochronology, volcanic hazard assessment, faulting, 35 magma ascent rates, geochemistry, eruption scenarios, New Zealand 2 36 Abstract 37 Auckland Volcanic Field (AVF) is a basaltic intraplate volcanic field in North Island, New Zealand, 38 upon which >1.6 million people live.
    [Show full text]
  • Age of the Auckland Volcanic Field Jan Lindsay and Graham Leonard
    Age of the Auckland Volcanic Field Jan Lindsay and Graham Leonard IESE Report 1-2009.02 | June 2009 ISBN: [print] 978-0-473-15316-8 [PDF] 978-0-473-15416-5 Age of the Auckland Volcanic Field Jan Lindsay1 and Graham Leonard2 1School of Environment & Institute of Earth Science and Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand; [email protected] 2GNS Science, PO Box 30368, Lower Hutt 5040 New Zealand; [email protected] IESE Report 1-2009.02 | June 2009 ISBN: [print] 978-0-473-15316-8 [PDF] 978-0-473-15416-5 This report was prepared by IESE as part of the DEVORA Project. Disclaimer: While the information contained in this report is believed to be correct at the time of publication, the Institute of Earth Science and Engineering and its working parties and agents involved in preparation and publication, do not accept any liability for its contents or for any consequences arising from its use. Copyright: This work is copyright of the Institute of Earth Science and Engineering. The content may be used with acknowledgement to the Institute of Earth Science and Engineering and the appropriate citation. TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 2 Project objectives ..................................................................................................................... 2 Methodology ............................................................................................................................
    [Show full text]
  • Ōrākei Local Board Open Space Network Plan
    Ōrākei Local Board Open Space Network Plan September 2019 1 Cover image – view over a section of the Pourewa Creek (source, Flickr). 2 Table of Contents EXECUTIVE SUMMARY SECTION 1 - THE ŌRĀKEI OPEN SPACE NETWORK ................................................................................... Section 1 introduces the Ōrākei local board area and investigates the current state of the open space network plan. 1.1 Purpose of the network plan ............................................................................................. 5 1.2 Ōrākei Local Board area ................................................................................................... 5 1.3 Strategic context ............................................................................................................... 7 1.4 Current state ..................................................................................................................... 8 Treasure .................................................................................................................. 8 Enjoy ..................................................................................................................... 16 Connect ................................................................................................................. 22 Utilise ..................................................................................................................... 23 SECTION 2 – KEY MOVES ...............................................................................................................................
    [Show full text]
  • Waitangi Tribunal Manukau Report (1985)
    MANUKAU REPORT WAI 8 WAITANGI TRIBUNAL 1985 W AITANGI TRIBUNAL LIBRARY REPORT OF THE WAITANGI TRIBUNAL ON THE MANUKAU CLAIM (WAI-8) WAITANGI TRIBUNAL DEPARTMENT OF JUSTICE WELLINGTON NEW ZEALAND July 1985 Original cover design by Cliff Whiting, invoking the signing of the Treaty of Waitangi and the consequent development of Maori-Pakeha history interwoven in Aotearoa, in a pattern not yet completely known, still unfolding. National Library of New Zealand Cataloguing-in-Publication data New Zealand. Waitangi Tribunal. Report of the Waitangi Tribunal on the Manukau claim (Wai 8). 2nd ed. Wellington , N.Z.: The Tribunal, 1989. 1 v. (Waitangi Tribunal reports, 0113-4124) "July 1985." First ed. published in 1985 as: Finding of the Waitangi Tribunal on the Manukau claim. ISBN 0-908810-06-7 1. Manukau Harbour (N.Z.)--Water-rights. 2. Maoris--Land tenure. 3. Waitangi, Treaty of, 1840. I. Title. II. Series: Waitangi Tribunal reports; 333.91170993111 First published 1985 by the Government Printer Wellington, New Zealand Second edition published 1989 by the Waitangi Tribunal Department of Justice Wellington, New Zealand Crown copyright reserved Waitangi Tribunal Reports ISSN 0113-4124 Manukau Report (Wai-8) ISBN 0-908810-06-7 Typeset, printed and bound by the Government Printing Office Wellington, New Zealand ii NOT FOR PUBLIC RELEASE WAI-8 BEFORE 9.30 P.M. TUESDAY, 30 JULY 1985 IN THE MATTER of a Treaty of Waitangi Act 1975 IN THE MATTER of a claim by NGANEKO MINHINNICK and Te Puaha ki Manuka concerning Manukau Harbour and environs FINDING OF THE
    [Show full text]
  • Auckland's Urban Form
    A brief history of Auckland’s urban form April 2010 A brief history of Auckland’s urban form April 2010 Introduction 3 1840 – 1859: The inaugural years 5 1860 – 1879: Land wars and development of rail lines 7 1880 – 1899: Economic expansion 9 1900 – 1929: Turning into a city 11 1930 – 1949: Emergence of State housing provision 13 1950 – 1969: Major decisions 15 1970 – 1979: Continued outward growth 19 1980 – 1989: Intensifi cation through infi ll housing 21 1990 – 1999: Strategies for growth 22 2000 – 2009: The new millennium 25 Conclusion 26 References and further reading 27 Front cover, top image: North Shore, Auckland (circa 1860s) artist unknown, Auckland Art Gallery Toi o Tamaki, gift of Marshall Seifert, 1991 This report was prepared by the Social and Economic Research and Monitoring team, Auckland Regional Council, April 2010 ISBN 978-1-877540-57-8 2 History of Auckland’s Urban Form Auckland region Built up area 2009 History of Auckland’s Urban Form 3 Introduction This report he main feature of human settlement in the Auckland region has been the development This report outlines the of a substantial urban area (the largest in development of Auckland’s New Zealand) in which approximately 90% urban form, from early colonial Tof the regional population live. This metropolitan area settlement to the modern Auckland is located on and around the central isthmus and metropolis. It attempts to capture occupies around 10% of the regional land mass. Home the context and key relevant to over 1.4 million people, Auckland is a vibrant centre drivers behind the growth in for trade, commerce, culture and employment.
    [Show full text]
  • Annexure a to Procedural Minute 6
    Proposed Auckland Unitary Plan Appendix 3.1 Schedule for the Outstanding Natural Features Overlay Owner/ Approral/ Sub#/ Point Name Theme Topic Subtopic Summary Submission Type Support Evidence Comentary Investigate 81 Mt Royal Rd, Mt Albert, and all other lava cave Appendix 3.1 - Schedule for the entrances, for inclusion in the SEA schedule [Note - relates to Outstanding Natural Outstanding Natural Features ONFs. Refer to Albert-Eden Local Board Views, Volume 26, page 5716-3481 Auckland Council Features (ONF) Rules Overlay Add 30/103]. Local Government no iv Investigate the 'Spring', located under Crystal Motors at 11 Ruru Appendix 3.1 - Schedule for the St, Eden Terrace, for inclusion in the SEA schedule [Note - Outstanding Natural Outstanding Natural Features relates to ONFs. Refer to Albert-Eden Local Board Views, Volume 5716-3482 Auckland Council Features (ONF) Rules Overlay Add 26, page 30/103]. Local Government no iv Auckland Volcanic Appendix 3.1 - Schedule for the Include volcanic features in former outlying district such as Cones Society Outstanding Natural Outstanding Natural Features Franklin within the PAUP including Pukekohe Hill, Puni Mountain, 4485-11 Incorporated Features (ONF) Rules Overlay Add Pukekohe East crater. Key Stakeholder no iv Auckland Volcanic Appendix 3.1 - Schedule for the Cones Society Outstanding Natural Outstanding Natural Features Include Pukekohe Hill and Puni Mountain as outstanding natural 4485-13 Incorporated Features (ONF) Rules Overlay Add features. Key Stakeholder no iv Auckland Volcanic Appendix 3.1 - Schedule for the Cones Society Outstanding Natural Outstanding Natural Features Apply V1 and V2 overlays to volcanic reserves and surrounding 4485-21 Incorporated Features (ONF) Rules Overlay Add Includeareas.
    [Show full text]
  • Proposed Auckland Unitary Plan
    Volcanic Viewshafts and height sensitive areas rules - Appendix 3.3 - Volcanic view shafts survey coordinates Proposed Auckland Unitary Plan Summary of Decisions Requested Sub#/ Point Name Theme Topic Subtopic Summary Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-20 Geoscience Society of New Zealand sensitive areas rules survey coordinates Protect views between Maunga. Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-152 Geoscience Society of New Zealand sensitive areas rules survey coordinates Retain all the viewshafts listed Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-153 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add additional viewshafts which protect iconic explosion craters Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-154 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Panmure Basin from the top of Mt Wellington Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-155 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Orakei Basin from Kepa Road Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-156 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Orakei Basin from Upland Road crest. Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-157 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Rangitoto from Lucerne Road, Remuera Volcanic Viewshafts and height Appendix 3.3 - Volcanic view shafts 93-158 Geoscience Society of New Zealand sensitive areas rules survey coordinates Add viewshaft to protect views to Mt Wellington from Lunn Ave-Abbotts Way intersection.
    [Show full text]
  • Modern Analogues for Miocene to Pleistocene Alkali
    Cent. Eur. J. Geosci. • 2(3) • 2010 • 339-361 DOI: 10.2478/v10085-010-0013-8 Central European Journal of Geosciences Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article Károly Németh1∗, Shane J. Cronin1, Miguel J. Haller2, Marco Brenna1, Gábor Csillag3 1 Volcanic Risk Solutions CS-INR, Massey University, PO Box 11 222, Palmerston North, New Zealand, 2 Universidad Nacional de la Patagonia San Juan Bosco – Sede Puerto Madryn, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina, 3 Geological Institute of Hungary, Department of Geological Research, Stefánia út 14, Budapest H-1143, Hungary, Received 29 April 2010; accepted 4 June 2010 Abstract: The Pannonian Basin (Central Europe) hosts numerous alkali basaltic volcanic fields in an area similar to 200 000 km2. These volcanic fields were formed in an approximate time span of 8 million years producing small- volume volcanoes typically considered to be monogenetic. Polycyclic monogenetic volcanic complexes are also common in each field however. The original morphology of volcanic landforms, especially phreatomagmatic volcanoes, is commonly modified. by erosion, commonly aided by tectonic uplift. The phreatomagmatic volcanoes eroded to the level of their sub-surface architecture expose crater to conduit filling as well as diatreme facies of pyroclastic rock assemblages. Uncertainties due to the strong erosion influenced by tectonic uplifts, fast and broad climatic changes, vegetation cover variations, and rapidly changing fluvio-lacustrine events in the past 8 million years in the Pannonian Basin have created a need to reconstruct and visualise the paleoenvironment into which the monogenetic volcanoes erupted.
    [Show full text]