51st Lunar and Planetary Science Conference (2020) 1318.pdf AN IMPACT ORIGIN OF THE LUNAR PROCELLARUM KREEP TERRANE. Matt J. Jones1 (mat-
[email protected]), Alexander J. Evans1, Brandon C. Johnson2, Matthew B. Weller1, James T. Keane3, and Sonia M. Tikoo4, 1Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02906, 2Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 3Division of Geological and Planetary Sciences, California Institute of Technology, 4School of Earth, Energy and Environmental Sciences, Stan- ford University. Introduction: The lunar South Pole–Aitken (SPA) shock-induced temperatures by the mantle solidus, as basin is the largest and oldest recognized impact basin the timescale of impact melt crystallization is short on the Moon [1]. Located on the farside hemisphere compared to the timescale of thermochemical convec- (Fig. 1), SPA is nearly antipodal to the nearside geo- tion [7, 13]. chemical province referred to as the Procellarum Initial Conditions. The silicate portion of the Moon KREEP Terrane (PKT) [2, 3]. (KREEP is a geochemical is hypothesized to have fractionally crystallized from a component named for its enrichment in incompatible el- lunar magma ocean (LMO); we initialized our simula- ements including Potassium (K), Rare Earth Elements tions with temperature and composition structures con- (REE), and Phosphorous (P) [4]). The PKT represents sistent with this hypothesis. Toward the end of solidifi- an as-of-yet unexplained compositional asymmetry on cation, a global layer of dense, low-viscosity, KREEP- the lunar surface, but the relative position of the two re- rich material is expected beneath the crust and above a gions may be indicative of the SPA impact playing a cumulate mantle [4, 14, 15].