Comparative Protein Structure Modeling Using Modeller
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MODELLER 10.1 Manual
MODELLER A Program for Protein Structure Modeling Release 10.1, r12156 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/03/12 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel -
A Community Proposal to Integrate Structural
F1000Research 2020, 9(ELIXIR):278 Last updated: 11 JUN 2020 OPINION ARTICLE A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo Community) [version 1; peer review: 1 approved, 3 approved with reservations] Christine Orengo1, Sameer Velankar2, Shoshana Wodak3, Vincent Zoete4, Alexandre M.J.J. Bonvin 5, Arne Elofsson 6, K. Anton Feenstra 7, Dietland L. Gerloff8, Thomas Hamelryck9, John M. Hancock 10, Manuela Helmer-Citterich11, Adam Hospital12, Modesto Orozco12, Anastassis Perrakis 13, Matthias Rarey14, Claudio Soares15, Joel L. Sussman16, Janet M. Thornton17, Pierre Tuffery 18, Gabor Tusnady19, Rikkert Wierenga20, Tiina Salminen21, Bohdan Schneider 22 1Structural and Molecular Biology Department, University College, London, UK 2Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, CB10 1SD, UK 3VIB-VUB Center for Structural Biology, Brussels, Belgium 4Department of Oncology, Lausanne University, Swiss Institute of Bioinformatics, Lausanne, Switzerland 5Bijvoet Center, Faculty of Science – Chemistry, Utrecht University, Utrecht, 3584CH, The Netherlands 6Science for Life Laboratory, Stockholm University, Solna, S-17121, Sweden 7Dept. Computer Science, Center for Integrative Bioinformatics VU (IBIVU), Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands 8Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg 9Bioinformatics center, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, -
MODELLER 10.0 Manual
MODELLER A Program for Protein Structure Modeling Release 10.0, r12005 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/01/25 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel -
Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2019 doi:10.20944/preprints201906.0091.v1 Peer-reviewed version available at Biomolecules 2019, 9; doi:10.3390/biom9040123 Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood Abheepsa Mishra1, 2,* and Satyahari Dey1 1Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India; [email protected] (A.M.); [email protected] (S.D.) 2Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA *Correspondence: [email protected]; Tel.:+1(518) 881-9196 Abstract Natural products from plants such as, chemopreventive agents attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide based therapeutics have been developed to combat several health disorders including cancers, metabolic disorders, heart-related, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, until date the activities of cyclic peptides towards molecular targets such as protein kinases, proteases, and apoptosis related proteins have never been explored. In this study we explore the in silico kinase and protease inhibitor potentials of cyclosaplin as well as study the interactions of cyclosaplin with other cancer-related proteins. -
Characterization of TSET, an Ancient and Widespread Membrane
RESEARCH ARTICLE elifesciences.org Characterization of TSET, an ancient and widespread membrane trafficking complex Jennifer Hirst1*†, Alexander Schlacht2†, John P Norcott3‡, David Traynor4‡, Gareth Bloomfield4, Robin Antrobus1, Robert R Kay4, Joel B Dacks2*, Margaret S Robinson1* 1Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom; 2Department of Cell Biology, University of Alberta, Edmonton, Canada; 3Department of Engineering, University of Cambridge, Cambridge, United Kingdom; 4Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract The heterotetrameric AP and F-COPI complexes help to define the cellular map of modern eukaryotes. To search for related machinery, we developed a structure-based bioinformatics tool, and identified the core subunits of TSET, a 'missing link' between the APs and COPI. Studies in Dictyostelium indicate that TSET is a heterohexamer, with two associated scaffolding proteins. TSET is non-essential in Dictyostelium, but may act in plasma membrane turnover, and is essentially identical to the recently described TPLATE complex, TPC. However, whereas TPC was reported to be plant-specific, we can identify a full or partial complex in every *For correspondence: jh228@ eukaryotic supergroup. An evolutionary path can be deduced from the earliest origins of the cam.ac.uk (JH); [email protected] (JBD); [email protected] (MSR) heterotetramer/scaffold coat to its multiple manifestations in modern organisms, including the mammalian muniscins, descendants of the TSET medium subunits. Thus, we have uncovered † These authors contributed the machinery for an ancient and widespread pathway, which provides new insights into early equally to this work eukaryotic evolution. ‡These authors also contributed DOI: 10.7554/eLife.02866.001 equally to this work Competing interests: The authors declare that no competing interests exist. -
Structure Prediction, Fold Recognition and Homology Modelling
Structure prediction, fold recognition and homology modelling Marjolein Thunnissen Lund September 2009 Steps in protein modelling Similarity search (BLAST) Multiple alignment 3-D structure known No Structure known Comparative Modelling Secondary structure prediction Fold recognition Ab initio (Rosetta) Structure Prediction 1) Prediction of secondary structure. a) Method of Chou and Fasman b) Neural networks c) hydrophobicity plots 2) Prediction of tertiary structure. a) Ab initio structure prediction b) Threading - 1D-3D profiles - Knowledge based potentials c) Homology modelling How does sequence identity correlate with structural similarity Analysis by Chotia and Lesk (89) • 100% sequence identity: rmsd = experimental error • <25% (twilight zone), structures might be similar but can also be different • Rigid body movements make rmsd bigger Secondary structure prediction: Take the sequence and, using rules derived from known structures, predict the secondary structure that is most likely to be adopted by each residue Why secondary structure prediction ? • A major part of the general folding prediction problem. • The first method of obtaining some structural information from a newly determined sequence. Rules governing !-helix and "-sheet structures provide guidelines for selecting specific mutations. • Assignment of sec. str. can help to confirm structural and functional relationship between proteins when sequences homology is weak (used in threading experiments). • Important in establishing alignments during model building by homology; the first step in attempts to generate 3D models Some interesting facts 2nd structure predictions • based on primary sequence only • accuracy 64% -75% • higher accuracy for !-helices than "! strands • accuracy is dependent on protein family • predictions of engineered proteins are less accurate Methods: •Statistical methods based on studies of databases of known protein structures from which structural propensities for all amino acids are calculated. -
New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme
Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு. -
University of Huddersfield Repository
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Huddersfield Repository University of Huddersfield Repository Liang, Shuo, Holmes, Violeta and Kureshi, Ibad Hybrid Computer Cluster with High Flexibility Original Citation Liang, Shuo, Holmes, Violeta and Kureshi, Ibad (2012) Hybrid Computer Cluster with High Flexibility. In: IEEE Cluster 2012, 24-28 September 2012, Beijing, China. This version is available at http://eprints.hud.ac.uk/15840/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Hybrid Computer Cluster with High Flexibility Shuo Liang Dr Violeta Holmes Ibad Kureshi School of Computing and Engineering School of Computing and Engineering School of Computing and Engineering University of Huddersfield University of Huddersfield University of Huddersfield Huddersfield, United Kingdom Huddersfield, United Kingdom Huddersfield, United Kingdom Email: [email protected] Email: [email protected] Email: [email protected] Abstract—In this paper we present a cluster middleware, the others support multi-platform, supplying different user designed to implement a Linux-Windows Hybrid HPC Cluster, interfaces and document support. -
Graduate Brochure 2014 Draft.Pub
THETHE UNIVERSITYUNIVERSITY OFOF MISSOURIMISSOURI——ST.ST. LOUISLOUIS 315 Benton Hall (MC 27) One University Blvd. St. Louis, MO 63121-4400 http://www.umsl.edu/chemistry/ DepartmentDepartment ofof ChemistryChemistry && BiochemistryBiochemistry Phone: (314) 516-5311 Fax: (314) 516-5342 ST.LOUIS The St. Louis metropolitan region, located around the ence Center has many educational interactive exhibits confluence of the Missouri and Mississippi Rivers, has including an Omnimax theatre. And finally the St. Louis evolved through the centuries from the homes of ancient Zoo, home to more than 18,000 exotic animals, many of Native American civilizations to major fur trading cen- them rare and endangered, and set in the rolling hills, ter to the "Gateway to the West," marked by lasting lakes and glades of Forest Park, is a great place to visit. French, Spanish and African influences. Today the area is a town with hospitable people rooted in a myriad of Activities and attractions are many, and St. Louis has regional, ethnic, and cultural traditions reflective of our a great variety of night life choices. Blues clubs and complex world, well supported by easy access to parks, restaurants are tucked away in the red brick buildings of educational centers, sports venues, museums, and histor- the historic Soulard neighborhood, while Dixieland and ic sites. blues dinner cruises are available through the port of St. Louis. Clubs and restaurants are alive until early morn- Great ethnic and classic neighborhoods characterize ing hours in the converted warehouses of the Landing, the region. A cross-section of the area can provide ex- north of the Arch, and along the newly-developed "loft" amples of wonderful Victorian architecture, museum, neighborhood of Washington Avenue. -
Biodynamo: a New Platform for Large-Scale Biological Simulation
Lukas Johannes Breitwieser, BSc BioDynaMo: A New Platform for Large-Scale Biological Simulation MASTER’S THESIS to achieve the university degree of Diplom-Ingenieur Master’s degree programme Software Engineering and Management submitted to Graz University of Technology Supervisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Institute for Technical Informatics Advisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Dr. Fons Rademakers (CERN) November 23, 2016 AFFIDAVIT I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all ma- terial which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master‘s thesis. Date Signature This thesis is dedicated to my parents Monika and Fritz Breitwieser Without their endless love, support and encouragement I would not be where I am today. iii Acknowledgment This thesis would not have been possible without the support of a number of people. I want to thank my supervisor Christian Steger for his guidance, support, and input throughout the creation of this document. Furthermore, I would like to express my deep gratitude towards the entire CERN openlab team, Alberto Di Meglio, Marco Manca and Fons Rademakers for giving me the opportunity to work on this intriguing project. Furthermore, I would like to thank them for vivid discussions, their valuable feedback, scientific freedom and possibility to grow. My gratitude is extended to Roman Bauer from Newcastle University (UK) for his helpful insights about computational biology detailed explanations and valuable feedback. -
CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations
molecules Article CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations 1,2,3, 2,3, 1, 1 Alessandro Marchetto y , Zeineb Si Chaib y , Carlo Alberto Rossi y, Rui Ribeiro , Sergio Pantano 4, Giulia Rossetti 2,5,6,* and Alejandro Giorgetti 1,2,* 1 Department of Biotechnology, University of Verona, 37134 Verona, Italy; [email protected] (A.M.); [email protected] (C.A.R.); [email protected] (R.R.) 2 Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; [email protected] 3 Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University,52062 Aachen, Germany 4 Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay; [email protected] 5 Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52428 Jülich, Germany 6 Department of Hematology,Oncology,Hemostaseology,and Stem Cell Transplantation, RWTH Aachen University, 52062 Aachen, Germany * Correspondence: [email protected] (G.R.); [email protected] (A.G.) These authors contributed equally to this work. y Academic Editors: Carmen Domene and Mercedes Alfonso-Prieto Received: 30 October 2020; Accepted: 28 November 2020; Published: 15 December 2020 Abstract: Advances in coarse-grained molecular dynamics (CGMD) simulations have extended the use of computational studies on biological macromolecules and their complexes, as well as the interactions of membrane protein and lipid complexes at a reduced level of representation, allowing longer and larger molecular dynamics simulations. Here, we present a computational platform dedicated to the preparation, running, and analysis of CGMD simulations. -
Elucidating Binding Sites and Affinities of Erα Agonist and Antagonist to Human Alpha-Fetoprotein by in Silico Modeling and Point Mutagenesis Nurbubu T
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2019 doi:10.20944/preprints201912.0374.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2020, 21, 893; doi:10.3390/ijms21030893 Elucidating Binding Sites and Affinities of ERα Agonist and Antagonist to Human Alpha-Fetoprotein by in silico Modeling and Point Mutagenesis Nurbubu T. Moldogazieva1*, Daria S. Ostroverkhova1,2, Nikolai N. Kuzmich1,3, Vladimir V. Kadochnikov4, Alexander A. Terentiev5, Yuri B. Porozov1,4 1 Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University); Moscow, Russia; 2Department of Bioengineering, M.V. Lomonosov Moscow State University; Moscow, Russia; 3Department of Drug Safety, I.M. Smorodintsev Research Institute of Influenza, WHO National Influenza Centre of Russia; Saint Petersburg, Russia 4Department of Information and Communication Technologies, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics; Saint Petersburg, Russia 5Deparment of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University; Moscow Russia *Corresponding author: Nurbubu T. Moldogazieva, e-mail: [email protected] (NM) ¶ These authors contributed equally to this work Short title: Binding of ERα ligands to human alpha-fetoprotein Key words: alpha-fetoprotein, estrogens, selective estrogen receptor modulators, homology-based modeling, molecular docking, protein-ligand interaction, amino acid substitutions. Abbreviations: HAFP, human alpha-fetoprotein; HSA, human serum albumin; E2, 17β-estradiol; DES, diethylstilbestrol. Author contribution: Conceptualization, Nurbubu T. Moldogazieva, Alexander A. Terentiev and Yuri B. Porozov; Data curation, Nurbubu T. Moldogazieva; Formal analysis, Nurbubu T. Moldogazieva and Nikolai N. Kuzmich; Investigation, Daria S. Ostroverkhova and Vladimir V. Kadochnikov; Methodology, Nikolai N. Kuzmich; Supervision, Alexander A.