Olfactory System Anatomy: Overview, Olfactory Epithelium, Olfactory Nerve and the Cribriform Plate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Born Granule Cells During Implicit Versus Explicit Olfactory Learning
RESEARCH ARTICLE Opposite regulation of inhibition by adult- born granule cells during implicit versus explicit olfactory learning Nathalie Mandairon1*, Nicola Kuczewski1, Florence Kermen1, Je´ re´ my Forest1, Maellie Midroit1, Marion Richard1, Marc Thevenet1, Joelle Sacquet1, Christiane Linster2,3, Anne Didier1 1Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, CNRS UMR 5292, INSERM U1028, Universite´ de Lyon, Lyon, France; 2Computational Physiology Lab, Cornell University, Ithaca, United States; 3Department of Neurobiology and Behavior, Cornell University, Ithaca, United States Abstract Both passive exposure and active learning through reinforcement enhance fine sensory discrimination abilities. In the olfactory system, this enhancement is thought to occur partially through the integration of adult-born inhibitory interneurons resulting in a refinement of the representation of overlapping odorants. Here, we identify in mice a novel and unexpected dissociation between passive and active learning at the level of adult-born granule cells. Specifically, while both passive and active learning processes augment neurogenesis, adult-born cells differ in their morphology, functional coupling and thus their impact on olfactory bulb output. Morphological analysis, optogenetic stimulation of adult-born neurons and mitral cell recordings revealed that passive learning induces increased inhibitory action by adult-born neurons, probably resulting in more sparse and thus less overlapping odor representations. Conversely, after active learning inhibitory action is found to be diminished due to reduced connectivity. In this case, strengthened odor response might underlie enhanced discriminability. *For correspondence: DOI: https://doi.org/10.7554/eLife.34976.001 [email protected] Competing interests: The authors declare that no Introduction competing interests exist. Brain representations of the environment constantly evolve through learning mediated by different Funding: See page 13 plasticity mechanisms. -
Cranial Nerves
Cranial Nerves (1,5,7,8,9,10,11 and 12) Slides not included 9th and 10th Cranial 11th and 12th Cranial 8th Cranial Nerve 5th and 7th Cranial 1st Cranial Nerve Nerves Nerves Nerves (3,7,11,12,13,21,23,24) - (10,16) (12,23) Slides included: (14 to 17) *Slides that are not included mostly are slides of summaries or pictures. Nouf Alabdulkarim. Med 435 Olfactory Nerve [The 1st Cranial Nerve] Special Sensory Olfactory pathway 1st order neuron Receptors Axons of 1st order Neurons Olfactory receptors are specialized, ciliated nerve cells The axons of these bipolar cells 12 -20 fibers form the that lie in the olfactory epithelium. true olfactory nerve fibers. Which passes through the cribriform plate of ethmoid → They join the olfactory bulb Preliminary processing of olfactory information It is within the olfactory bulb, which contains interneurones and large Mitral cells; axons from the latter leave the bulb to form the olfactory tract. nd 2 order neuron • It is formed by the Mitral cells of olfactory bulb. • The axons of these cells form the olfactory tract. • Each tract divides into 2 roots at the anterior perforated substance: Lateral root Medial root Carries olfactory fibers to end in cortex of the Uncus & • crosses midline through anterior commissure adjacent part of Hippocampal gyrus (center of smell). and joins the uncrossed lateral root of opposite side. • It connects olfactory centers of 2 cerebral hemispheres. • So each olfactory center receives smell sensation from both halves of nasal cavity. NB. Olfactory pathway is the only sensory pathway which reaches the cerebral cortex without passing through the Thalamus . -
Distinct Representations of Olfactory Information in Different Cortical Centres
LETTER doi:10.1038/nature09868 Distinct representations of olfactory information in different cortical centres Dara L. Sosulski1, Maria Lissitsyna Bloom1{, Tyler Cutforth1{, Richard Axel1 & Sandeep Robert Datta1{ Sensory information is transmitted to the brain where it must be behaviours, but is unlikely to specify innate behaviours. Rather, innate processed to translate stimulus features into appropriate beha- olfactory behaviours are likely to result from the activation of genetically vioural output. In the olfactory system, distributed neural activity determined, stereotyped neural circuits. We have therefore developed a in the nose is converted into a segregated map in the olfactory strategy to trace the projections from identified glomeruli in the olfactory bulb1–3. Here we investigate how this ordered representation is bulb to higher olfactory cortical centres. transformed in higher olfactory centres in mice. We have Mitral and tufted cells that innervate a single glomerulus were developed a tracing strategy to define the neural circuits that labelled by electroporation of tetramethylrhodamine (TMR)-dextran convey information from individual glomeruli in the olfactory under the guidance of a two-photon microscope. This technique labels bulb to the piriform cortex and the cortical amygdala. The spatial mitral and tufted cells that innervate a single glomerulus and is suffi- order in the bulb is discarded in the piriform cortex; axons from ciently robust to allow the identification of axon termini within mul- individual glomeruli project diffusely to the piriform without tiple higher order olfactory centres (Figs 1a–c, 2 and Supplementary apparent spatial preference. In the cortical amygdala, we observe Figs 1–4). Labelling of glomeruli in the olfactory bulbs of mice that broad patches of projections that are spatially stereotyped for indi- express GFP under the control of specific odorant receptor promoters vidual glomeruli. -
Early Aging Effect on the Function of the Human Central Olfactory System
Journals of Gerontology: Biological Sciences cite as: J Gerontol A Biol Sci Med Sci, 2017, Vol. 72, No. 8, 1007–1014 doi:10.1093/gerona/glw104 Advance Access publication June 11, 2016 Original Article Early Aging Effect on the Function of the Human Central Downloaded from https://academic.oup.com/biomedgerontology/article/72/8/1007/2629931 by guest on 27 September 2021 Olfactory System Choice Editor’s Jianli Wang,1 Xiaoyu Sun,1 and Qing X. Yang2 1Department of Radiology, Pennsylvania State University College of Medicine, Hershey. 2Departments of Radiology and Neurosurgery, Pennsylvania State University College of Medicine, Hershey. Address correspondence to Jianli Wang, MD, PhD, Department of Radiology, Pennsylvania State University College of Medicine, Hershey, PA 17033. E-mail: [email protected] Received November 23, 2015; Accepted April 27, 2016 Decision Editor: Rafael de Cabo, PhD Abstract During normal aging process, the smell function declines significantly, starting from the sixth decade of age. While it has been shown that activity in the central olfactory system of seniors responding to odor stimulation is significantly less than that of young people, no information of the aging effect on the functions of this system during normal adulthood and early aging has been gathered. In this study, we used functional magnetic resonance imaging to investigate the olfaction-related brain activity in the central olfactory structures of 43 healthy adult volunteers aged from 22 to 64 years. The participants’ smell identification function was negatively correlated with age (r = −.32, p = .037). Significant negative correlation was observed between age and the olfaction-related activities in the bilateral dorsolateral prefrontal cortex, left insular cortex, and left orbitofrontal cortex (p < .001, corrected with cluster size ≥28 voxels). -
Quantitative Analysis of Axon Collaterals of Single Pyramidal Cells
Yang et al. BMC Neurosci (2017) 18:25 DOI 10.1186/s12868-017-0342-7 BMC Neuroscience RESEARCH ARTICLE Open Access Quantitative analysis of axon collaterals of single pyramidal cells of the anterior piriform cortex of the guinea pig Junli Yang1,2*, Gerhard Litscher1,3* , Zhongren Sun1*, Qiang Tang1, Kiyoshi Kishi2, Satoko Oda2, Masaaki Takayanagi2, Zemin Sheng1,4, Yang Liu1, Wenhai Guo1, Ting Zhang1, Lu Wang1,3, Ingrid Gaischek3, Daniela Litscher3, Irmgard Th. Lippe5 and Masaru Kuroda2 Abstract Background: The role of the piriform cortex (PC) in olfactory information processing remains largely unknown. The anterior part of the piriform cortex (APC) has been the focus of cortical-level studies of olfactory coding, and asso- ciative processes have attracted considerable attention as an important part in odor discrimination and olfactory information processing. Associational connections of pyramidal cells in the guinea pig APC were studied by direct visualization of axons stained and quantitatively analyzed by intracellular biocytin injection in vivo. Results: The observations illustrated that axon collaterals of the individual cells were widely and spatially distrib- uted within the PC, and sometimes also showed a long associational projection to the olfactory bulb (OB). The data showed that long associational axons were both rostrally and caudally directed throughout the PC, and the intrinsic associational fibers of pyramidal cells in the APC are omnidirectional connections in the PC. Within the PC, associa- tional axons typically followed rather linear trajectories and irregular bouton distributions. Quantitative data of the axon collaterals of two pyramidal cells in the APC showed that the average length of axonal collaterals was 101 mm, out of which 79 mm (78% of total length) were distributed in the PC. -
Smell & Taste.Pdf
Smell and Taste 428 Special senses 1. SMELL (OLFACTION) 1.1 Overview Smell is the least Understood sense. It is mainly subjective. In dogs and other animals, it is more developed than humans. - There are dfferent stimuli that can be smelled such as: camphoraceous, musky, flora (flower), pepperminty, ethereal, pungent, putrid 1.2 Structure of Olfactory epithelium and bulb See the figure on the next page! 1.2.1 Olfactory mucous membrane It is the upper lining of the nasal cavity (near the septum), containing olfactory (odorant) receptors that are responsible for smelling. o Olfactory receptors are bipolar neurons which receive stimuli in the nasal cavity (through cilia) and transmits them through axons, leave the olfactory epithelium and travel into CNS (olfactory bulb). o Although they are nerve cells, olfactory receptor cells are replaced every 60 days or so, and they grow their axon into the correct place in CNS. Olfactory epithelium contains three types of cells (the olfactory receptors cells discussed) as well as two other types of cells: o Olfactory (Bowman’s) glands: produce mucus that dissolves odorants o Supporting cell o Basal cells: regenerate olfactory receptor cells. 1 Smell and Taste 428 1.2.2 Olfactory bulb The olfactory bulb is made up of nerves that receive olfactory signals from axons of olfactory receptor cells. These nerves are of two cell types: o Mitral cells (most important) (M) o Tufted cells (smaller than mitral cells) (T) Mitral and tufted cells release glutamate The synapse between the axons of olfactory receptor cells and dendrites of mitral cells occur in clusters called olphactory glomeruli (OG) In a glomerulus, about 1000 olfactory receptor axons converge onto 1 mitral cell. -
Arc-Expressing Neuronal Ensembles
14070 • The Journal of Neuroscience, October 14, 2015 • 35(41):14070–14075 Brief Communications Arc-Expressing Neuronal Ensembles Supporting Pattern Separation Require Adrenergic Activity in Anterior Piriform Cortex: An Exploration of Neural Constraints on Learning X Amin MD. Shakhawat,1 XAli Gheidi,1 X Iain T. MacIntyre,1 Melissa L. Walsh,1 XCarolyn W. Harley,2 and XQi Yuan1 1Division of Biomedical Sciences, Faculty of Medicine, and 2Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada Arc ensembles in adult rat olfactory bulb (OB) and anterior piriform cortex (PC) were assessed after discrimination training on highly similar odor pairs. Nonselective ␣- and -adrenergic antagonists or saline were infused in the OB or anterior PC during training. OB adrenergic blockade slowed, but did not prevent, odor discrimination learning. After criterion performance, Arc ensembles in anterior piriform showed enhanced stability for the rewarded odor and pattern separation for the discriminated odors as described previously. Anterior piriform adrenergic blockade prevented acquisition of similar odor discrimination and of OB ensemble changes, even with extended overtraining. Mitral and granule cell Arc ensembles in OB showed enhanced stability for rewarded odor only in the saline group. Pattern separation was not seen in the OB. Similar odor discrimination co-occurs with increased stability in rewarded odor representa- tions and pattern separation to reduce encoding overlap. The difficulty of similar discriminations may relate to the necessity to both strengthen rewarded representations and weaken overlap across similar representations. Key words: Arc; norepinephrine; odor discrimination; olfactory bulb; pattern separation; piriform cortex Significance Statement We show for the first time that adrenoceptors in anterior piriform cortex (aPC) must be engaged for adult rats to learn to discriminate highly similar odors. -
Clusters of Secretagogin-Expressing Neurons in the Aged Human Olfactory Tract Lack Terminal Differentiation
Clusters of secretagogin-expressing neurons in the aged human olfactory tract lack terminal differentiation Johannes Attemsa,1, Alan Alparb,c,1, Lauren Spenceb, Shane McParlanda, Mathias Heikenwalderd, Mathias Uhléne, Heikki Tanilaf, Tomas G. M. Hökfeltg,2, and Tibor Harkanyb,c,2 aInstitute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom; bEuropean Neuroscience Institute at Aberdeen, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; cDivision of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, and gDepartment of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; dInstitute of Virology, Technische Universität/Helmholtz Zentrum München, D-81675 Munich, Germany; eScience for Life Laboratory, Royal Institute of Technology, SE-17121 Stockholm, Sweden; and fDepartment of Neurology, Kuopio University Hospital and A. I. Virtanen Institute, University of Eastern Finland, FI-70211, Kuopio, Finland Contributed by Tomas G. M. Hökfelt, March 6, 2012 (sent for review November 10, 2011) Expanding the repertoire of molecularly diverse neurons in the olfactory system, we found secretagogin-positive (secretagogin+) human nervous system is paramount to characterizing the neuro- neurons in the RMS and olfactory bulb (16). Therefore, we hy- nal networks that underpin sensory processing. Defining neuronal pothesized that secretagogin may reveal previously undescribed identities is particularly timely in the human olfactory system, cellular identities and cytoarchitectural -
Cranial Nerves 1, 5, 7-12
Cranial Nerve I Olfactory Nerve Nerve fiber modality: Special sensory afferent Cranial Nerves 1, 5, 7-12 Function: Olfaction Remarkable features: – Peripheral processes act as sensory receptors (the other special sensory nerves have separate Warren L Felton III, MD receptors) Professor and Associate Chair of Clinical – Primary afferent neurons undergo continuous Activities, Department of Neurology replacement throughout life Associate Professor of Ophthalmology – Primary afferent neurons synapse with secondary neurons in the olfactory bulb without synapsing Chair, Division of Neuro-Ophthalmology first in the thalamus (as do all other sensory VCU School of Medicine neurons) – Pathways to cortical areas are entirely ipsilateral 1 2 Crania Nerve I Cranial Nerve I Clinical Testing Pathology Anosmia, hyposmia: loss of or impaired Frequently overlooked in neurologic olfaction examination – 1% of population, 50% of population >60 years Aromatic stimulus placed under each – Note: patients with bilateral anosmia often report nostril with the other nostril occluded, eg impaired taste (ageusia, hypogeusia), though coffee, cloves, or soap taste is normal when tested Note that noxious stimuli such as Dysosmia: disordered olfaction ammonia are not used due to concomitant – Parosmia: distorted olfaction stimulation of CN V – Olfactory hallucination: presence of perceived odor in the absence of odor Quantitative clinical tests are available: • Aura preceding complex partial seizures of eg, University of Pennsylvania Smell temporal lobe origin -
On the Scent of Human Olfactory Orbitofrontal Cortex: Meta-Analysis and Comparison to Non-Human Primates
Brain Research Reviews 50 (2005) 287 – 304 www.elsevier.com/locate/brainresrev Review On the scent of human olfactory orbitofrontal cortex: Meta-analysis and comparison to non-human primates Jay A. Gottfrieda,*, David H. Zaldb aDepartment of Neurology and the Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 11-453, Chicago, IL 60611, USA bDepartment of Psychology, Vanderbilt University, Nashville, TN 37240, USA Accepted 25 August 2005 Available online 6 October 2005 Abstract It is widely accepted that the orbitofrontal cortex (OFC) represents the main neocortical target of primary olfactory cortex. In non-human primates, the olfactory neocortex is situated along the basal surface of the caudal frontal lobes, encompassing agranular and dysgranular OFC medially and agranular insula laterally, where this latter structure wraps onto the posterior orbital surface. Direct afferent inputs arrive from most primary olfactory areas, including piriform cortex, amygdala, and entorhinal cortex, in the absence of an obligatory thalamic relay. While such findings are almost exclusively derived from animal data, recent cytoarchitectonic studies indicate a close anatomical correspondence between non-human primate and human OFC. Given this cross-species conservation of structure, it has generally been presumed that the olfactory projection area in human OFC occupies the same posterior portions of OFC as seen in non-human primates. This review questions this assumption by providing a critical survey of the localization of primate and human olfactory neocortex. Based on a meta-analysis of human functional neuroimaging studies, the region of human OFC showing the greatest olfactory responsivity appears substantially rostral and in a different cytoarchitectural area than the orbital olfactory regions as defined in the monkey. -
Cortical Feedback Control of Olfactory Bulb Circuits
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron Article Cortical Feedback Control of Olfactory Bulb Circuits Alison M. Boyd,1,2 James F. Sturgill,1,2 Cindy Poo,1 and Jeffry S. Isaacson1,* 1Center for Neural Circuits and Behavior, Department of Neuroscience, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA 2These authors contributed equally to this work *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2012.10.020 SUMMARY neuronal targets, effects on local circuits, and impact on OB odor processing in vivo are poorly understood. Olfactory cortex pyramidal cells integrate sensory In the OB, principal mitral and tufted (M/T) cells belonging to input from olfactory bulb mitral and tufted (M/T) cells unique glomeruli are activated by particular molecular features and project axons back to the bulb. However, the of individual odorants (Rubin and Katz, 1999; Soucy et al., impact of cortical feedback projections on olfactory 2009; Uchida et al., 2000). M/T cell output is strongly regulated bulb circuits is unclear. Here, we selectively express by local GABAergic interneurons (Shepherd et al., 2004). Indeed, channelrhodopsin-2 in olfactory cortex pyramidal odors can elicit purely inhibitory M/T cell responses reflecting a major role for circuits mediating lateral inhibition in the OB cells and show that cortical feedback projections (Cang and Isaacson, 2003; Davison and Katz, 2007; Yokoi excite diverse populations of bulb interneurons. Acti- et al., 1995). Reciprocal dendrodendritic synapses between vation of cortical fibers directly excites GABAergic M/T cell lateral dendrites and the distal dendritic spines of granule cells, which in turn inhibit M/T cells. -
AN EXPERIMENTAL INVESTIGATION of the CONNEXIONS of the OLFACTORY TRACTS in the MONKEY by MARGARET MEYER and A
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.12.4.274 on 1 November 1949. Downloaded from J. Neurol. Neurosurg. Psychiat., 1949, 12, 274. AN EXPERIMENTAL INVESTIGATION OF THE CONNEXIONS OF THE OLFACTORY TRACTS IN THE MONKEY BY MARGARET MEYER and A. C. ALLISON From the Department ofAnatomy, University of Oxford The great expansion of the-cerebral cortex which bilateral degeneration of olfactory terminals appar- has taken place in higher primates has brought ently passing through the anterior limb of the about a considerable displacement of structures on anterior commissure. The present study has been the base of the telencephalon, and the precise undertaken to map out the connexions of the comparison of certain areas in this part of the olfactory bulb in the monkey's brain as precisely brain with those in lower mammals has been a as possible with the same silver technique. matter of some difficulty. This is true particularly Material and Methods of the olfactory areas which lie on the orbital aspect guest. Protected by copyright. of the frontal lobe and the adjacent part of the Three macaque monkeys (Macaca mulatta) and two this immature Guinea baboons (Papio papio) were used. temporal lobe. Although part of the brain The operative technique was similar in all cases: under in primates has been subjected to detailed cyto- nembutal anesthesia and with the usual aseptic pre- architectural and myelo-architectural examinations cautions a large right frontal bone flap was reflected; (Rose, 1927b, 1928; Beck, 1934, and others), the the frontal lobe of the hemisphere was carefully retraced, areas directly related to olfaction have never been and the olfactory peduncle, lying on the ventral surface, clearly defined.