Occurrence of Tick-Borne Diseases in Wild Rodent Species and Their Risks for Public Health

Total Page:16

File Type:pdf, Size:1020Kb

Occurrence of Tick-Borne Diseases in Wild Rodent Species and Their Risks for Public Health OCCURRENCE OF TICK-BORNE HAEMOPARASITES IN SELECTED SOUTH AFRICAN WILD RODENT SPECIES IN THE MNISI COMMUNAL AREA Submitted in partial fulfilment of the requirements for the degree Master of Science (Animal/Human/Ecosystem Health) Faculty of Veterinary Science (Onderstepoort) University of Pretoria Liesl De Boni DECEMBER 2017 DECLARATION I, Liesl De Boni, declare that this mini dissertation is my own original work. Where other people’s work has been used (either from a printed source, internet or any other source), this has been acknowledged and referenced in accordance with University of Pretoria requirements. I have not used work previously produced by another student or any other person to hand in as my own. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work. 1 ACKNOWLEGEMENTS I would like to give a huge thanks to Prof. Marinda Oosthuizen. You were an enormous help to me during this degree and while writing this mini dissertation. Not only did you help me to choose the project, but you also provided all the support I needed in writing it up. I am very grateful for your guidance, assistance and support throughout the process. I am also very grateful to my co-supervisor, Prof. Kelly Brayton, whose valuable input helped to keep my work accurate and to the point. I would not have been able to complete the laboratory work so successfully and effectively without the help of Ms. Ilse Vorster, Mrs. Milana Troskie and Dr. Agatha Kolo. You all provided so much support for me when it came to the molecular techniques involved and were very generous with the information you shared when I came to write the dissertation. Agatha collected the rodent samples that I used all the way from Mnisi and she performed all the DNA extraction from the samples for me which saved a large amount of time and I am very grateful for that. Thank-you very much to the following people who were involved in the sample collection in the field in Bushbuckridge East, Mpumalanga Province: Prof. Sonja Matthee (Stellenbosch University), Prof. Luis Neves, Prof. Marinda Oosthuizen, Ms. Jeanette Wentzel and Dr. Agatha Kolo (all from Department of Veterinary Tropical Diseases, University of Pretoria). It was very kind of them to allow me to use their samples. The support and love that my husband, Angelo De Boni, always gives to me is what has made this possible. Studying while working full time was a major challenge for me and I believe it also became a challenge for you. Your understanding means the world to me. I am very lucky to have you. I must also thank you for helping me with the design of my RLB image. I would not have been able to do that alone. Thank-you to Mrs. Rina Serfontein for being a massive support when it came to all aspects of this MSc degree. Your prompt and friendly responses made everything a little easier. This work is based on the research supported by the Belgian Directorate General for Development Co-operation Framework (ITM/DGCD), the South African Agricultural Sector 2 Education and Training Authority (AgriSETA), the National Research Foundation (grant 92739 to Marinda Oosthuizen), and University of Pretoria Institutional Research Theme (Animal and Zoonotic Diseases) (to Marinda Oosthuizen). The funding provided made it all possible. Thank-you very much. Being involved with the Department of Veterinary Tropical Diseases while completing this MSc was a pleasure and a privilege for me and for that I thank all the staff members and students there. This dissertation emanates from project V119-15 approved by the Research Committee of the Faculty of Veterinary Science and the Animal Ethics Committee of the University of the University of Pretoria 3 OCCURRENCE OF TICK-BORNE HAEMOPARASITES IN SELECTED SOUTH AFRICAN WILD RODENT SPECIES IN THE MNISI COMMUNAL AREA Candidate: Dr Liesl De Boni Supervisor: Professor Marinda C. Oosthuizen Co-supervisor: Professor Kelly A. Brayton Co-worker: Dr Agatha O. Kolo Department: Veterinary Tropical Diseases Degree: MSc (Animal/Human/Ecosystem Health) SUMMARY In 2013, a disease survey of people in the Mnisi community, Bushbuckridge, Mpumalanga, South Africa revealed a surprisingly high level of exposure to tick bite fever, Bartonella, Q fever and leptospirosis. This indicated the need to educate the community about ecto- parasites, exposure to rodents and general hygiene. In addition, the potential contribution of rodent pathogen transmission to human febrile illnesses is considered a public health concern and warrants further investigation. Most human tick-borne diseases are considered emerging diseases because the number of reported cases annually is increasing. This is probably due to ecological changes, increased awareness and an increased number of susceptible individuals in the global population. Conservation efforts have increased numbers and ranges of host animals which maintain the infected tick population and humans are increasingly encroaching into tick dense areas. Thus, humans are more exposed to tick-borne infectious diseases. Increased awareness by doctors and the public has also contributed to the increased reporting of human tick-borne disease. With major medical advancements, there is an increased proportion of the population that is more susceptible to these infectious diseases. Vector-borne parasitic zoonoses are an important aspect of a constantly changing world because they are also constantly adapting to their new circumstances. Infectious organisms can change virulence, hosts and vectors. These diseases are, therefore, very much a part of 4 the future. With new advances in molecular biology, detection of infectious diseases is constantly improving. The economic impact and losses due to vector-borne diseases are wide and felt at both the human health and animal health levels. Losses occur due to the cost of human illness, deaths, reduced animal production and costs to control or prevent disease. In developing countries where animals are relied on for work, transportation and nutrition, the losses are more profound. The order Rodentia is the most abundant and diversified order. Rodents are distributed all over the world except for Antarctica. They often live in close contact with humans, their farm animals and their pets. Rodents pose a threat to humans in several ways. Not only do they act as reservoirs for infectious diseases and serve as hosts for vectors, they also compete globally with us for food, causing serious pre-harvest damage to cereals every year. Examples of rodent-borne human illnesses include rickettsiosis, babesiosis, human granulocytic anaplasmosis, leptospirosis, bartonellosis, tick-borne relapsing fever, Lyme disease and Q fever. More information about these diseases and their impact on public health in an African context is needed. This mini dissertation is divided into two parts. The first is a narrative literature review on what is known about the common rodent-borne bacterial and parasitic pathogens which have an important impact on public health and their relevance in Africa. The current knowledge is described and recommendations for further research are given. The second part is a laboratory project which focused on determining the incidence of selected tick- borne pathogens found in wild rodent species in the Mnisi community, a livestock-wildlife- human interface area in South Africa. Forty wild rodent blood samples underwent a broad- based screening approach using reverse line blot (RLB) hybridization and a more specific approach using quantitative real-time PCR (qPCR) techniques. The RLB results revealed that 7.5% (n=3) of the samples tested were positive for the presence of A. bovis DNA, while 2.5% (n=1) were positive for A. phagocytophilum DNA; none of the samples tested positive for B. microti (n=0). PCR products from 17.5% (n=7) of the samples hybridized with Theileria/Babesia group-specific probes, 17.5% (n=7) with the Anaplasma/Ehrlichia group-specific probes, 17.5% (n = 7) with both the Babesia 1 and 2 5 genus-specific probes and 7.5% (n = 3) with the Babesia 1 genus-specific probe. A total of 57.5% (n=23) of samples were negative (or below the detection limit of the test) for any species for which we tested. Results of the B. microti SYBR green real-time PCR (qPCR) proved difficult to interpret due to the wide melting temperature range observed; nine of the rodent samples (22.5%) produced melting temperatures within 4°C of that of the positive control (i.e. 79.16 - 86.17°C). Going forward we propose to sequence the parasite 18S rDNA gene of these nine rodent samples to determine whether they are indeed South African variants of B. microti and/or a novel species. The qPCR for A. phagocytophilum revealed 14 positive samples. This is an incidence of 35% (14/40) in a very small sample size which is relevant and warrants further surveillance for A. phagocytophilum in South Africa. Five of the 14 A. phagocytophilum PCR positive rodent samples were confirmed by gene sequence analysis. From the 12 partial msp2 gene sequences obtained, two Msp2 sequence types were identified (designated Ap1 and Ap2); Ap1 differed by one amino acid from Ap2. Ap1 was identical to A. phagocytophilum human strain Webster and A. phagocytophilum strain Dog2, while Ap2 was identical to A. phagocytophilum human strain HZ as well as A. phagocytophilum strains previously described from various hosts (including deer, ticks and mite). It should, however, be noted that we could only obtain partial msp2 gene sequences (334 bp) spanning the conserved area of the gene. Although valuable data, as we could confirm the presence of A. phagocytophilum DNA in our samples, full-length gene sequences will have to be obtained if we want to draw any clear conclusions on the genetic variability of the A.
Recommended publications
  • PLAGUE STUDIES * 6. Hosts of the Infection R
    Bull. Org. mond. Sante 1 Bull. World Hlth Org. 1952, 6, 381-465 PLAGUE STUDIES * 6. Hosts of the Infection R. POLLITZER, M.D. Division of Epidemiology, World Health Organization Manuscript received in April 1952 RODENTS AND LAGOMORPHA Reviewing in 1928 the then rather limited knowledge available concerning the occurrence and importance of plague in rodents other than the common rats and mice, Jorge 129 felt justified in drawing a clear-cut distinction between the pandemic type of plague introduced into human settlements and houses all over the world by the " domestic " rats and mice, and " peste selvatique ", which is dangerous for man only when he invades the remote endemic foci populated by wild rodents. Although Jorge's concept was accepted, some discussion arose regarding the appropriateness of the term " peste selvatique" or, as Stallybrass 282 and Wu Lien-teh 318 translated it, " selvatic plague ". It was pointed out by Meyer 194 that, on etymological grounds, the name " sylvatic plague " would be preferable, and this term was widely used until POzzO 238 and Hoekenga 105 doubted, and Girard 82 denied, its adequacy on the grounds that the word " sylvatic" implied that the rodents concerned lived in forests, whereas that was rarely the case. Girard therefore advocated the reversion to the expression "wild-rodent plague" which was used before the publication of Jorge's study-a proposal it has seemed advisable to accept for the present studies. Much more important than the difficulty of adopting an adequate nomenclature is that of distinguishing between rat and wild-rodent plague- a distinction which is no longer as clear-cut as Jorge was entitled to assume.
    [Show full text]
  • Bartonella Apis Sp. Nov., a Honey Bee Gut Symbiont of the Class Alphaproteobacteria
    Serveur Academique´ Lausannois SERVAL serval.unil.ch Author Manuscript Faculty of Biology and Medicine Publication This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Published in final edited form as: Title: Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Authors: Keˇsnerov´aL, Moritz R, Engel P Journal: International journal of systematic and evolutionary microbiology Year: 2016 Jan Issue: 66 Volume: 1 Pages: 414-21 DOI: 10.1099/ijsem.0.000736 In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. 1 Bartonella apis sp. nov., a honey bee gut symbiont of the 2 class Alphaproteobacteria 3 4 Lucie Kešnerová, Roxane Moritz, Philipp Engel* 5 6 Department of Fundamental Microbiology, University of Lausanne, CH-1015 7 Lausanne, Switzerland 8 9 Running title: Description of a bee gut symbiont 10 11 *Correspondence: 12 Prof. Philipp Engel 13 Department of Fundamental Microbiology 14 University of Lausanne, CH-1015 Lausanne, Switzerland 15 Tel.: +41 (0)21 692 56 12 16 e-mail: [email protected] 17 18 Category: New Taxa – Proteobacteria 19 Keywords: Apis mellifera; insect; Bartonella; gut microbiota; Alpha-1 20 21 Sequence deposition: The 16S rRNA gene sequences and protein-coding gene 22 sequences of the bacterial strains PEB0122T, PEB0149, PEB0150, BBC0104, and 23 BBC0108 from Apis mellifera, and the uncultured Rhizobiales bacterium from 24 Herpagnathos saltator are deposited in GenBank with accession numbers KP987849 25 – KP987886 and KT315729 – KT315734.
    [Show full text]
  • Multiple Pruritic Papules from Lone Star Tick Larvae Bites
    OBSERVATION Multiple Pruritic Papules From Lone Star Tick Larvae Bites Emily J. Fisher, MD; Jun Mo, MD; Anne W. Lucky, MD Background: Ticks are the second most common vec- was treated with permethrin cream and the lesions re- tors of human infectious diseases in the world. In addi- solved over the following 3 weeks without sequelae. The tion to their role as vectors, ticks and their larvae can also organism was later identified as the larva of Amblyomma produce primary skin manifestations. Infestation by the species, the lone star tick. larvae of ticks is not commonly recognized, with only 3 cases reported in the literature. The presence of mul- Conclusions: Multiple pruritic papules can pose a di- tiple lesions and partially burrowed 6-legged tick larvae agnostic challenge. The patient described herein had an can present a diagnostic challenge for clinicians. unusually large number of pruritic papules as well as tick larvae present on her skin. Recognition of lone star tick Observation: We describe a 51-year-old healthy woman larvae as a cause of multiple bites may be helpful in simi- who presented to our clinic with multiple erythematous lar cases. papules and partially burrowed organisms 5 days after exposure to a wooded area in southern Kentucky. She Arch Dermatol. 2006;142:491-494 ATIENTS WITH MULTIPLE PRU- acteristic clinical and diagnostic features of ritic papules that appear to be infestation by larvae of Amblyomma species bitespresentachallengetothe and may help clinicians make similar di- clinician. We present a case of agnoses in the future. a healthy 51-year-old woman whowasbittenbymultiplelarvaeofthetick, P REPORT OF A CASE Amblyomma species, most likely A ameri- canum or the lone star tick.
    [Show full text]
  • Communicable Disease Control
    LECTURE NOTES For Nursing Students Communicable Disease Control Mulugeta Alemayehu Hawassa University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2004 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2004 by Mulugeta Alemayehu All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Communicable Disease Control Preface This lecture note was written because there is currently no uniformity in the syllabus and, for this course additionally, available textbooks and reference materials for health students are scarce at this level and the depth of coverage in the area of communicable diseases and control in the higher learning health institutions in Ethiopia.
    [Show full text]
  • View Tickborne Diseases Sample Report
    1360 Bayport Ave, Ste B. San Carlos, CA 94070 1(866) 364-0963 | [email protected] | www. vibrant-wellness.com PATIENT PROVIDER NAME: DEMO REPORT GENDER: Male PRACTICE NAME: Vibrant IT4 Practice DATE OF BIRTH: 04/14/1998 AGE: 22 PROVIDER NAME: Demo Client, DDD (999994) ADDRESS: TEST STREET, TEST CITY, KY- 42437. ACCESSION ID: 2009220006 PHLEBOTOMIST: 607 SPECIMEN COLLECTION TIME: 09-21-2020 11:14 SPECIMEN RECEIVED TIME: 09-22-2020 05:14 FINAL REPORT TIME: 09-25-2020 15:56 FASTING: FASTING Your Vibrant Wellness TickBorne 2.0 panel results are enclosed. These results are intended to aid in the diagnosis of tickborne diseases by your healthcare provider. The Vibrant Tickborne Diseases panel tests for IgG and IgM antibodies for Borreliosis/Lyme disease as well as co-infection(s) and opportunistic infections with other tick-borne illnesses along with detection of DNA of the species causing these infections. The Vibrant Immunochip test is a semiquantitative assay that detects IgG and IgM antibodies in human serum. The PCR Test is a real-time PCR Assay designed for qualitative detection of infectious group- specific DNA in clinical samples. Interpretation of Report: The test results of antibody levels to the individual antigens are calculated by comparing the average intensity of the individual antibody to that of a reference population and cut-off chosen for each protein. Reference ranges have been established using a well characterized set of more than 300 serum samples and antibodies to specific bacteria tested. The results are displayed as In Control, Moderate, or High Risk.for each antigen tested.
    [Show full text]
  • Abstract Pultorak, Elizabeth Lauren
    ABSTRACT PULTORAK, ELIZABETH LAUREN. The Epidemiology of Lyme Disease and Bartonellosis in Humans and Animals. (Under the direction of Edward B. Breitschwerdt). The expansion of vector borne diseases in humans, a variety of mammalian hosts, and arthropod vectors draws attention to the need for enhanced diagnostic techniques for documenting infection in hosts, effective vector control, and treatment of individuals with associated diseases. Through improved diagnosis of vector-borne disease in both humans and animals, epidemiological studies to elucidate clinical associations or spatio-temporal relationships can be assessed. Veterinarians, through the use of the C6 peptide in the SNAP DX test kit, may be able to evaluate the changing epidemiology of borreliosis through their canine population. We developed a survey to evaluate the practices and perceptions of veterinarians in North Carolina regarding borreliosis in dogs across different geographic regions of the state. We found that veterinarians’ perception of the risk of borreliosis in North Carolina was consistent with recent scientific reports pertaining to geographic expansion of borreliosis in the state. Veterinarians should promote routine screening of dogs for Borrelia burgdorferi exposure as a simple, inexpensive form of surveillance in this transitional geographic region. We next conducted two separate studies to evaluate Bartonella spp. bacteremia or presence of antibodies against B. henselae, B. koehlerae, or B. vinsonii subsp. berkhoffii in 296 patients examined by a rheumatologist and 192 patients with animal exposure (100%) and recent animal bites and scratches (88.0%). Among 296 patients examined by a rheumatologist, prevalence of antibodies (185 [62%]) and Bartonella spp. bacteremia (122 [41.1%]) was high.
    [Show full text]
  • Beating Chronic LYME
    Section 1 Beating Chronic LYME Dr. Kevin Conners Fellowship in Integrative Cancer Therapy Fellowship in Anti-Aging, Regenerative, and Functional Medicine American Academy of Anti-Aging Medicine www.ConnersClinic.com From left to right: Larvae, Nymph, Female, Male Tick Tick in Nymph stage is the size of a poppy seed. Beating Chronic LYME Forward I used to live in the woods. My wife and four children at the time purchased 280 acres in Wisconsin and basically lived off the land. We grew most of our own food, were ‘off grid’ as we produced our own electricity through solar panels, and had to pump our water by hand. It was certainly a different way of life that prepared us for missionary work in Mexico. It was 1997 and at the time I had begun hearing about Lyme disease being a tick- born disorder. I had never seen a deer tick before moving to our ‘little house in the big woods’ but one thing was for certain – we had plenty of deer. They were as populous as the mosquitoes. To make a long story short, both my oldest daughter and I had contracted Lyme during our three year stay. I experienced the violent sickness of acute Lyme as well as a beautiful bulls-eye rash that made the diagnosis easy. I took just 3 days of antibiotics and since that was just the second time that I had ever taken a prescription medication in my life, they eradicated the disease effectively. My daughter on the other hand wasn’t so fortunate. She never had an acute illness and we never saw any rash therefore we didn’t catch the disease until it had advanced to Chronic Lyme Disease (CLD).
    [Show full text]
  • HIV (Human Immunodeficiency Virus)
    TABLE OF CONTENTS AFRICAN TICK BITE FEVER .........................................................................................3 AMEBIASIS .....................................................................................................................4 ANTHRAX .......................................................................................................................5 ASEPTIC MENINGITIS ...................................................................................................6 BACTERIAL MENINGITIS, OTHER ................................................................................7 BOTULISM, FOODBORNE .............................................................................................8 BOTULISM, INFANT .......................................................................................................9 BOTULISM, WOUND .................................................................................................... 10 BOTULISM, OTHER ...................................................................................................... 11 BRUCELLOSIS ............................................................................................................. 12 CAMPYLOBACTERIOSIS ............................................................................................. 13 CHANCROID ................................................................................................................. 14 CHLAMYDIA TRACHOMATIS INFECTION .................................................................
    [Show full text]
  • United States Patent [191 [11] Patent Number: 5,403,718 Durward Et Al
    . US005403718A United States Patent [191 [11] Patent Number: 5,403,718 Durward et al. [451 Date of Patent: * Apr. 4, 1995 [54] METHODS AND ANTIBODIES FOR THE I OTHER PUBLICATIONS IMMUNE CAPTURE AND DETECHON 0F Nowinski et al, Science, 219:637-644 (11 Feb. 1983), BQRRELI-A BURGDORFERI - “Monoclonal Antibodies for Diagnosis of Infectious [76] Inventors: David W. Dorward, 401 N. 7th St; Diseases in Humans”. Tom G. Schwan, 601 S. 5th St.; . E . _ 1 E . Claude F. Garon, 904 Ponderosa Dr., Primary xammer Caro ' Bldwen all of Hamilton, Mont. 59840 [57] ABSTRACT [ * ] Notice; The portion of the term of this patent The invention relates to novel antigens associated with subsequent to Jun, 8, 2010 has been Borrelia burgdorferi which are exported (or shed) in disclaimed. vivo and whose detection is a means of diagnosing _ Lyme disease. The antigens are extracellular membrane [211 App 1' No" 929’172 vesicles and other bioproducts including the major ex [22] Filed: Aug. 11,1992 tracellular protein. The invention further provides anti bodies, monoclonal and/or polyclonal, labeled and/or Related US. Application Data unlabeled, that react with the antigens. The invention [63] Continuation-impart ofSer. No. 485 551 Feb. 27 1990 . relates to a math“ for immune capture of Speci?c mi‘ Pat No_ 5,217,871 ’ ’ ’ ’ , croorganisms for their subsequent cultivation. The in vention is also directed to a method of diagnosing Lyme clci? ------------------ -- GolN 332940 disease by detecting the antigens in a biological sample . ................................ .. , . , taken from a host using the antibodies in conventional 530/3871; 530/388.4; 530/3895 immunoassay formats.
    [Show full text]
  • Detection and Partial Molecular Characterization of Rickettsia and Bartonella from Southern African Bat Species
    Detection and partial molecular characterization of Rickettsia and Bartonella from southern African bat species by Tjale Mabotse Augustine (29685690) Submitted in partial fulfillment of the requirements for the degree MAGISTER SCIENTIAE (MICROBIOLOGY) in the Department of Microbiology and Plant Pathology Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria, South Africa Supervisor: Dr Wanda Markotter Co-supervisors: Prof Louis H. Nel Dr Jacqueline Weyer May, 2012 I declare that the thesis, which I hereby submit for the degree MSc (Microbiology) at the University of Pretoria, South Africa, is my own work and has not been submitted by me for a degree at another university ________________________________ Tjale Mabotse Augustine i Acknowledgements I would like send my sincere gratitude to the following people: Dr Wanda Markotter (University of Pretoria), Dr Jacqueline Weyer (National Institute for Communicable Diseases-National Health Laboratory Service) and Prof Louis H Nel (University of Pretoria) for their supervision and guidance during the project. Dr Jacqueline Weyer (Centre for Zoonotic and Emerging diseases (Previously Special Pathogens Unit), National Institute for Communicable Diseases (National Heath Laboratory Service), for providing the positive control DNA for Rickettsia and Dr Jenny Rossouw (Special Bacterial Pathogens Reference Unit, National Institute for Communicable Diseases-National Health Laboratory Service), for providing the positive control DNA for Bartonella. Dr Teresa Kearney (Ditsong Museum of Natural Science), Gauteng and Northern Region Bat Interest Group, Kwa-Zulu Natal Bat Interest Group, Prof Ara Monadjem (University of Swaziland), Werner Marias (University of Johannesburg), Dr Francois du Rand (University of Johannesburg) and Prof David Jacobs (University of Cape Town) for collection of blood samples.
    [Show full text]
  • Bush Meat Trade in Makurdi Metropolis; Implications for the Conservation of Wildlife in Nigeria
    Tee et al. J. Appl. Biosci. 2012 Bush meat trade in Makurdi; implications for conservation of wildlife in Nigeria Journal of Applied Biosciences 52: 3704 – 3715 ISSN 1997–5902 Bush meat trade in Makurdi Metropolis; implications for the conservation of wildlife in Nigeria Tee 1 T.N. *, Ikpa 2 T.F and Tortange 1 V. 1Department of Social and Environmental Forestry, University of Agriculture, P.M.B 2373 Makurdi, Nigeria. 2Department of wildlife and Range Management, University of Agriculture Makurdi, Nigeria *Corresponding author e-mail: [email protected] , Phone +2348053448726, +2348094948262. Originally Submitted on 30 th January 2012. Published online at www.m.elewa.org on April 30, 2012. ABSTRACT Objective: To examine how bush meat trading processes could be adapted as a conduit for tackling the threatening disappearance of wildlife resources from their habitat in Nigeria. Methodology and results: Bush meat trade species in Makurdi metropolis were identified, and their sources and channels of trade and profitability determined through participatory market survey techniques. Applying a multistage sampling technique, 179 bush meat traders were identified and their trading activities monitored between February and August, 2010. Data were analysed on Excel and SPSS 14.0 software version. Fourteen bush meat species obtained from protected areas in Bauchi, Cross-River and Taraba states; over 300km away from the metropolis, were identified and 6074 dry bush meat carcasses were traded over the study period. The bush meat trade, channelling from primary suppliers through middlemen to the ultimate consumers was profitable. Conclusions and application of findings: Bush meat is widely consumed in Makurdi metropolis, and the numerous bush meat carcasses traded depicts the existent exploitation pressure on wildlife; and threat to their sustainability.
    [Show full text]
  • Tick-Borne Pathogens in Removed Ticks Veneto, Northeastern Italy
    Tick-borne pathogens in removed ticks Veneto, northeastern Italy: A cross-sectional investigation Anna Beltrame, Maureen Laroche, Monica Degani, Francesca Perandin, Zeno Bisoffi, Didier Raoult, Philippe Parola To cite this version: Anna Beltrame, Maureen Laroche, Monica Degani, Francesca Perandin, Zeno Bisoffi, et al.. Tick- borne pathogens in removed ticks Veneto, northeastern Italy: A cross-sectional investigation. Travel Medicine and Infectious Disease, Elsevier, 2018, 26, pp.58-61. 10.1016/j.tmaid.2018.08.008. hal- 01970220 HAL Id: hal-01970220 https://hal.archives-ouvertes.fr/hal-01970220 Submitted on 10 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Travel Medicine and Infectious Disease 26 (2018) 58–61 Contents lists available at ScienceDirect Travel Medicine and Infectious Disease journal homepage: www.elsevier.com/locate/tmaid Tick-borne pathogens in removed ticks Veneto, northeastern Italy: A cross- sectional investigation T ∗ Anna Beltramea, , Maureen Larocheb, Monica Degania, Francesca Perandina, Zeno Bisoffia, Didier Raoultc, Philippe Parolab a Centre for Tropical Diseases, IRCCS Sacro Cuore Don Calabria Hospital, Via Sempreboni 5, 37024, Negrar, Italy b Aix Marseille Univ, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France c Aix Marseille Univ, AP-HM, MEPHI, IHU-Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France ARTICLE INFO ABSTRACT Keywords: Background: In Italy, the incidence of tick-borne diseases in humans is underestimated, as they are not ob- Tick-borne diseases ligatorily notifiable.
    [Show full text]