Detecting Earth-Like Exoplanets Using High-Dispersion Nulling Interferometry

Total Page:16

File Type:pdf, Size:1020Kb

Detecting Earth-Like Exoplanets Using High-Dispersion Nulling Interferometry Master Thesis Detecting Earth-like exoplanets using high-dispersion nulling interferometry Supervisors : Author : Jean-Philippe BERGER Germain Garreau Guillermo MARTIN Xavier BONFILS Confidentiality : no Year 2020/2021 Detecting Earth-like exoplanets using high-dispersion nulling interferometry Garreau Germain Acknowledgment : I truly believe that in research and for many other fields, no results can be allocated to only one person but are instead the outcome of a team work, a collaboration of individuals and a lot of discussions. That is why I would like to take this opportunity to acknowledge all the persons who participated in this project and spent time helping me or sharing their knowledge with me. Firstly I want to thank everyone from the IPAG for their hospitality even during these times of pandemic implying a lower activity. I want to thank the PhD/master students who worked with me and shared tea breaks with me. I specifically thank Guillaume for using his precious time to help me resolve some of my problems when my supervisors were not available. Moreover I want to thank my supervisors Guillermo and Xavier for all the support they offered me to make sure that I could always progress in my project. And finally I want to thank my supervisor Jean-Philippe for his unlimited support and all the time he spent helping me despite his own health. This master thesis was a wonderful opportunity to work in a field I never expected to reach as an engineering student and that I wish to pursue as far as possible. i Detecting Earth-like exoplanets using high-dispersion nulling interferometry Garreau Germain The Grenoble Institute of Planetology and Astrophysics (IPAG) is the result of the merging between the Grenoble Laboratory of Astrophysics (LAOG) and the Grenoble Laboratory of Planetology (LAP) in 2011. It is part of the French National Centre for Scientific Research (CNRS) and the Grenoble-Alpes University. The institute gather an average of 170 workers: researchers, engineers, PhD students, etc... The laboratory is famous for its contribution in many instruments on the ground such as GRAV- ITY, PIONIER or SPHERE. The institute is divided into 7 teams of research studying various fields such as stellar formation, plasmas or astrochemistry. My master thesis was part of the CHARM (Contrast High Angular Resolution spectro-iMaging) and EXOPLANETES teams. ii Detecting Earth-like exoplanets using high-dispersion nulling interferometry Garreau Germain Contents Glossary v List of Figures vi 1 Introduction 1 1.1 Context . .1 1.2 Nulling interferometry: Bracewell’s principle . .1 1.3 The high-dispersion spectroscopy . .3 1.4 Goals of this study . .4 2 Simulation of the detected signal 5 2.1 Objectives . .5 2.2 The emitted signal . .5 2.3 The shot noise . .6 2.4 Implementation of a noise . .6 2.5 The background signal . .6 2.5.1 Definition . .6 2.5.2 The thermal emission . .7 2.5.3 The local zodiacal emission . .8 2.5.4 The Exozodiacal Emission . .9 2.5.5 Support for the results . .9 2.6 The interferometer limitations . .9 2.6.1 Limitations for the star light attenuation . .9 2.6.2 The stellar leakage . 10 2.7 The detector noise . 10 2.7.1 Definition . 10 2.7.2 The readout noise . 11 2.7.3 The dark current . 11 2.7.4 Example of detector noise . 11 2.7.5 Quantum efficiency . 11 3 Extracting the exoplanet signal 12 3.1 The cross-correlation function . 12 3.2 The Doppler shift of the spectra . 12 3.3 Correction of the correlation peak . 13 3.4 The high-pass filter . 15 3.5 Signal-to-noise ratio of the correlation peak . 15 4 Performance simulation 16 4.1 Design of the instrument . 16 4.2 Conditions of the simulation . 17 4.2.1 Object . 17 4.2.2 Instrument . 17 4.2.3 Software . 19 4.3 Results of the simulation . 20 iii Detecting Earth-like exoplanets using high-dispersion nulling interferometry Garreau Germain 4.3.1 Without stellar leakage . 20 4.3.2 Comments . 23 4.3.3 With stellar leakage . 23 4.4 Conclusion . 24 5 Study of a photonic device for the nulling 25 5.1 Introduction . 25 5.2 Component description . 25 5.3 Experimental setup . 26 5.4 Interferogram in the monochromatic case . 27 5.5 The contrast . 28 5.5.1 The chromatism . 29 5.5.2 The photometric equilibrium . 31 5.5.3 The relative phase instability . 31 5.6 Comments . 32 6 Conclusion 33 Appendices 36 Abstract 39 iv Detecting Earth-like exoplanets using high-dispersion nulling interferometry Garreau Germain Glossary • Astronomical Unit (A.U) : 1A.U ' 1,5.1011m • Electromagnetic wavelength: λ • ELT: Extremely Large Telescope • ESA: European Space Agency • ESO: European Southern Observatory • Jansky (Jy) : 1Jy = 10−26 W/m2/Hz • JWST: James Webb Space Telescope • LIFE: Large Interferometer For Exoplanets • Light speed: c=3.108m/s • NASA: National Aeronautics and Space Administration • NIR/MIR: Near-Infrared/Mid-Infrared • Parsec (pc) : 1pc ' 3.1016m • SNR: Signal-to-Noise Ratio • Spectral bands: – J-band: λ ∈[1.143-1.375]µm – H-band: λ ∈[1.413-1.808]µm – K-band: λ ∈[1.996-2.382]µm – L-band: λ ∈[3.42-4.12]µm – M-band: λ ∈[4.6-5.0]µm – N-band: λ ∈[7.5-14.5]µm λ • Spectral resolution: R = ∆λ • SPHERE: Spectro-Polarimetric High-contrast Exoplanet REsearch 8 • Sun radius: R ' 7.10 m • TPF-I: Terrestrial Planet Finder-Interferometer • VLT: Very Large Telescope v Detecting Earth-like exoplanets using high-dispersion nulling interferometry Garreau Germain List of Figures 1 Coronagraphic image of AB Pictoris showing a companion (bottom left). The data was obtained using a 1.4 arcsec occulting mask on top of AB Pictoris. Source: ESO......................................1 2 A schematic cartoon showing the key functional elements of a simple 2-element interferometer. Light from the two collectors travels along the optical paths d1 and d2 and is interfered and detected at the “beam combiner” in the centre of the figure. Source: [1]. .2 3 Schematic example of an interferometer output without π-phase shift for a star and an off-centered exoplanet. .3 4 Same as Fig.3 but with a π-phase shift in one of the interferometer arms. .............................................3 5 Example of light diffraction with a grating. The diffracted signal is sent to the detector in order to obtain the photon spectral distribution of the signal. .3 6 Example of differences between the star spectrum and the addition of the star and exoplanet spectrum. .4 7 Schema of the simulated situation without detailing the software part. .5 8 Emitted spectra of the star and the exoplanet with a spectral resolution of R=103 from the PSG. .5 9 Four examples of configurations from nano- to medium-size satellites. Source: [2].7 10 Example for a setup of two telescopes with diameter 0.5m, a resolution of R=103 and an optical train temperature of Toptical=60, 100 and 150K . .7 11 Example of JWST Backgrounds Tool output. Source: JWST Backgrounds Tool.8 12 Zodiacal emission spectrum according to the results of the JWST Backgrounds Tool...........................................8 13 Simulation for an exoplanet orbiting Proxima Centauri with a set of two tele- scopes with diameter D=1m and Toptical=150K. Source: [2]. .9 14 Our simulation for an exoplanet orbiting Proxima Centauri with two telescopes of D=0.5m and Toptical=150K. .9 15 Schema of the stellar leakage phenomenon for an interferometer. Source: [3]. 10 16 Example of the instrumental noise impact on the exoplanet spectrum. 11 17 Schema of the detailed software we realized with its different parts. 12 18 Example of Doppler shift depending on the radial velocity of the host star. In our case we consider the difference of velocity between the exoplanet and the host star. Source: ESO................................ 13 19 Correlation peak with an exoplanet (blue) and without (orange). The case with- out exoplanet is a false positive. 14 20 Same as in Fig.19 but with a velocity difference ∆v=50km/s between the star and the exoplanet. 14 21 Normalized correlations in the case of Fig.20 (orange) and with the correction from (11) (blue). 14 22 Example of correlation function without high-pass filtering. The large spectral structures are overwhelming. 15 −1 23 Example of correlation function with high-pass filtering with νc=50µm . The correlation peak appears. 15 vi Detecting Earth-like exoplanets using high-dispersion nulling interferometry Garreau Germain 24 Schema of the SNR calculation protocol. 16 25 Four examples of configurations from nano- to medium-size satellites. Source: [2]. 18 26 NIRSpec NRS1 and NRS2 detector performance summaries. Source: NIRSpec Detector Performance................................. 18 27 Evolution of the SNR with the cutoff resolution (1/fc) for spectral resolution R=103 (top,left), 104 (top,right), 105 (bottom,left) and 106 (bottom,right). The study is made in the K-band with t=24hrs, 1/ρ=10−6 and the shot noise as the only source of noise. 19 28 Example of a full correlation function. 20 29 Evolution of the SNR with the spectral resolution for three sources of photo- electronic noise. We consider the star light attenuation C=1/ρ=10−6 (no stellar leakage). 21 30 Evolution of the quadratic difference between the ideal case and with one source of noise. The ideal case is added as a reference but has no meaning here. 21 31 Evolution of the SNR with the spectral resolution for different background sources. We consider the star light attenuation C=1/ρ=10−6 (no stellar leakage).
Recommended publications
  • POPULATION PROPERTIES of BROWN DWARF ANALOGS to EXOPLANETS∗ Jacqueline K
    Draft version May 26, 2016 Preprint typeset using LATEX style emulateapj v. 01/23/15 POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS∗ Jacqueline K. Faherty1,2,9, Adric R. Riedel2,3, Kelle L. Cruz2,3,11, Jonathan Gagne1, 10, Joseph C. Filippazzo2,4,11, Erini Lambrides2, Haley Fica2, Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5, Emily Lemonier2,6, Emily L. Rice2,4,11 Draft version May 26, 2016 ABSTRACT We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low- surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color-magnitude, luminosity and effective temperature. We find that gravity classification and photometric color clearly separate 5-130 Myr sources from > 3 Gyr field objects, but they do not correlate one-to-one with the narrower 5 -130 Myr age range. Sources with the same spectral subtype in the same group have systematically redder colors, but they are distributed between 1-4σ from the field sequences and the most extreme outlier switches between intermediate and low-gravity sources either confirmed in a group or not.
    [Show full text]
  • Exoplanet Meteorology: Characterizing the Atmospheres Of
    Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system.
    [Show full text]
  • Csillagászati Évkönyv
    meteor csillagászati évkönyv meteor csillagászati évkönyv 2006 szerkesztette: Mizser Attila Taracsák Gábor Magyar Csillagászati Egyesület Budapest, 2005 A z évkönyv összeállításában közreműködött: Horvai Ferenc Jean Meeus (Belgium) Sárneczky Krisztián Szakmailag ellenőrizte: Szabados László (cikkek, beszámolók) Szabadi Péter (táblázatok) Műszaki szerkesztés és illusztrációk: Taracsák Gábor A szerkesztés és a kiadás támogatói: MLog Műszereket Gyártó és Forgalmazó Kft. MTA Csillagászati Kutatóintézete ISSN 0866-2851 Felelős kiadó: Mizser Attila Készült a G-PRINT BT. nyomdájában Felelős vezető: Wilpert Gábor Terjedelem: 18.75 ív + 8 oldal melléklet Példányszám: 4000 2005. október Csillagászati évkönyv 2006 5 Tartalom Tartalom B evezető.......................................................................................................................... 7 Használati útmutató ...................................................... .......................................... 8 Jelek és rövidítések .................................................................................................. 13 A csillagképek latin és magyar n e v e ........................................................................14 Táblázatok Jelenségnaptár............................................................................................................ 16 A bolygók kelése és nyugvása (ábra) ................................................................. 64 A bolygók a d a ta i....................................................................................................
    [Show full text]
  • A Survey of Young, Nearby, and Dusty Stars to Understand the Formation of Wide-Orbit Giant Planets
    Astronomy & Astrophysics manuscript no. paper c ESO 2021 June 14, 2021 A survey of young, nearby, and dusty stars to understand the formation of wide-orbit giant planets VLT/NaCo adaptive optics thermal and angular differential imaging⋆ J. Rameau1, G. Chauvin1, A.-M. Lagrange1, H. Klahr2, M. Bonnefoy2, C. Mordasini2, M. Bonavita3, S. Desidera4, C. Dumas5, and J. H. Girard5 1 UJF-Grenoble 1 / CNRS-INSU, Institut de Plan´etologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France e-mail: [email protected] 2 Max Planck Institute f¨ur Astronomy, K¨onigsthul 17, D-69117 Heidelberg, Germany 3 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, Canada M5S 3H4 4 INAF - Osservatorio Astronomico di Padova, Vicolo dell’ Osservatorio 5, 35122, Padova, Italy 5 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile Received December 21st, 2012; accepted February, 21st, 2013. ABSTRACT Context. Over the past decade, direct imaging has confirmed the existence of substellar companions on wide orbits from their parent stars. To understand the formation and evolution mechanisms of these companions, their individual, as well as the full population properties, must be characterized. Aims. We aim at detecting giant planet and/or brown dwarf companions around young, nearby, and dusty stars. Our goal is also to provide statistics on the population of giant planets at wide-orbits and discuss planet formation models. Methods. We report the results of a deep survey of 59 stars, members of young stellar associations. The observations were conducted with the ground-based adaptive optics system VLT/NaCo at L ′-band (3.8µm).
    [Show full text]
  • SIRTF</Italic>
    From Molecular Cores to Planet‐forming Disks: An SIRTF Legacy Program Author(s): Neal J. Evans II, Lori E. Allen, Geoffrey A. Blake, A. C. A. Boogert, Tyler Bourke, Paul M. Harvey, J. E. Kessler, David W. Koerner, Chang Won Lee, Lee G. Mundy, Philip C. Myers, Deborah L. Padgett, K. Pontoppidan, Anneila I. Sargent, Karl R. Stapelfeldt, Ewine F. van Dishoeck, Chadwick H. Young, and Kaisa E. Young Reviewed work(s): Source: Publications of the Astronomical Society of the Pacific, Vol. 115, No. 810 (August 2003), pp. 965-980 Published by: The University of Chicago Press on behalf of the Astronomical Society of the Pacific Stable URL: http://www.jstor.org/stable/10.1086/376697 . Accessed: 17/09/2012 17:23 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Astronomical Society of the Pacific are collaborating with JSTOR to digitize, preserve and extend access to Publications of the Astronomical Society of the Pacific. http://www.jstor.org Publications of the Astronomical Society of the Pacific, 115:965–980, 2003 August ᭧ 2003. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.
    [Show full text]
  • Population Properties of Brown Dwarf Analogs to Exoplanets Jacqueline K
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Faculty Open Access Articles 7-2016 Population Properties of Brown Dwarf Analogs to Exoplanets Jacqueline K. FahertY American Museum of Natural History Adric R. Riedel American Museum of Natural History Kelle L. Cruz American Museum of Natural History Jonathan Gagne Carnegie Institution of Washington Joseph C. Filippazzo American Museum of Natural History See next page for additional authors Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation FahertY, Jacqueline K.; Riedel, Adric R.; Cruz, Kelle L.; Gagne, Jonathan; Filippazzo, Joseph C.; Lambrides, Erini; Fica, Haley; Weinberger, Alycia; and Thorstensen, John R., "Population Properties of Brown Dwarf Analogs to Exoplanets" (2016). Open Dartmouth: Faculty Open Access Articles. 2297. https://digitalcommons.dartmouth.edu/facoa/2297 This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Jacqueline K. FahertY, Adric R. Riedel, Kelle L. Cruz, Jonathan Gagne, Joseph C. Filippazzo, Erini Lambrides, Haley Fica, Alycia Weinberger, and John R. Thorstensen This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/2297 The Astrophysical Journal Supplement Series, 225:10 (57pp), 2016 July doi:10.3847/0067-0049/225/1/10 © 2016. The American Astronomical Society. All rights reserved. POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS* Jacqueline K. Faherty1,2,11, Adric R. Riedel2,3, Kelle L.
    [Show full text]
  • Theoretical Studies on Brown Dwarfs and Extrasolar Planets
    Theoretical Studies on Brown Dwarfs and Extrasolar Planets Dissertation zur Erlangung des Doktorgrades des Department Physik der Universität Hamburg verfasst von René Heller aus Hoyerswerda Hamburg, den 09. Juli 2010 Gutachter der Dissertation: Prof. Dr. Günter Wiedemann Prof. Dr. Stefan Dreizler Prof. Dr. Wilhelm Kley Gutachter der Disputation: Prof. Dr. Jürgen H. M. M. Schmitt Prof. Dr. Peter H. Hauschildt Datum der Disputation: 24. August 2010 Vorsitzender des Prüfungsausschusses: Dr. Robert Baade Vorsitzender des Promotionsausschusses: Prof. Dr. Jochen Bartels Dekan der Fakultät für Mathematik, Informatik und Naturwissenschaften : Prof. Dr. Heinrich Graener iii Contents I Opening thoughts 1 1 Abstract 3 2 Celestial mechanics 7 2.1 Historical context ......................................... 7 2.2 Classical celestial mechanics .................................. 9 2.2.1 Visual binaries ....................................... 10 2.2.2 Double-lined spectroscopic binaries ........................... 10 2.3 Tidal distortion .......................................... 11 2.4 Orbital evolution ......................................... 11 2.5 Feedback between structural and orbital evolution ...................... 12 3 Brown dwarfs and extrasolar planets 15 3.1 Formation of sub-stellar objects ................................. 15 3.2 The brown dwarf desert ..................................... 16 3.3 Evolution of sub-stellar objects ................................. 17 4 The observational bonanza of transits 19 4.1 Photometry ............................................
    [Show full text]
  • A Absorptivity, 642, 682 Abundance(S), 339, 388, 389, 408
    Index A momentum, 354, 383–385, 443–445, 475, Absorptivity, 642, 682 479, 510, 589, 607, 681, 701, 778 Abundance(s), 339, 388, 389, 408, 410, 484, resolution, 686 485, 491, 509, 541, 560, 561, 616, velocity/velocities, 349, 350, 354, 570, 605 619, 621, 648, 654, 658–661, 665, Apollonius of Myndus, 598 667, 668, 670, 673, 676, 780 Aquinas, T., 598 Acetonitrile (CH3CN), 561, 619 Archaeomagnetic data, 423 Acetylene (C2H2), 559, 560, 562 Ariel (satellite, Uranus I), 523, 527, 532, Adams, J.C., 492, 493, 582 533, 564 Adams-Williamson equation, 494 albedo, 564 Adiabatic Aristotle, 598, 599 convection, 344, 345 Artemis, 648 lapse rate, 348, 368, 369, 375, 385 Asteroid(s) (general) pressure-density relation, 344 albedo(s), 683, 686–688, 696, 700 processes, 345 densities, 639, 689–690 Adoration of Magi, 610, 612 dimension(s), 686–690 Adrastea (satellite, Jupiter XV), 524, 529, 572 double, 689 Airy, G.B., 492 inner solar system plot, 678, 681, 690 Albedo masses, 686–690 bolometric, 338, 477, 636, 642, 687, 780 nomenclature, 648–649, 677–681 bond, 477, 516, 627, 747, 772, 780 orbital properties geometric (visual), 477, 564, 581 families, 681–685 Alfve´n waves, 460 Kirkwood gaps, 582, 678, 695, 697 Aluminum isotopes, 694 outer solar system plot, 588–590, 603 Alvarez, L., 668 radii, 688 Amalthea (satellite, Jupiter V), 355, 529, rotations, 688, 700 537, 572 thermal emissions, 697 Ambipolar diffusion, 402, 703 Asteroid mill, 639, 676, 769 American Meteor Society, 637, 638 Asteroids (individual) Amidogen radical (NH2), (2101) Adonis, 683 Ammonia (NH3), 348, 391, 480, 481, 483, (1221) Amor, 681, 690 485, 512, 558, 560, 619, 625, (3554) Amun, 683 627, 756 (1943) Anteros, 681 Ammonium hydrosulfide (NH4SH), 481, 483 (2061) Anza, 681 Anaxagoras of Clazomenae, 598 (1862) Apollo, 683, 684, 698 Angular (197) Ariete, 689 diameter(s), 493, 686 (2062) Aten, 683 E.F.
    [Show full text]
  • Oca Club Meeting Star Parties
    June 2005 Free to members, subscriptions $12 for 12 issues Volume 32, Number 6 This image of the Andromeda Galaxy (M31) with companions M110 (near upper left) and M32 (right of center) was taken on December 28, 2002 by Bill Patterson through a Takahashi FSQ106 from Sunglow Ranch, Arizona. Visible in almost any instrument, M31 rises around 12:30 AM at the beginning of this month and is a great object to view all summer long! OCA CLUB MEETING STAR PARTIES COMING UP The free and open club The Black Star Canyon site will be open The next session of the meeting will be held Friday, again on July 2nd. The Anza site will be open Beginners Class will be held on June 10th at 7:30 PM in the June 4th. Members are encouraged to check Friday, June 3rd (and next Irvine Lecture Hall of the the website calendar, for the latest updates month on July 1st) at the Hashinger Science Center on star parties and other events. Centennial Heritage Museum at at Chapman University in 3101 West Harvard Street in Orange. The featured Please check the website calendar for the Santa Ana. speaker this month is still outreach events this month! Volunteers GOTO SIG: June 6th to be arranged as of press are always welcome! Astro-Imagers SIG: June 21st, time. Be sure to check the You are also reminded to check the web July 19th Calendar on our website site frequently for updates to the calendar EOA SIG: June 27th, July 25th (www.ocastronomers.org) of events and other club news.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Precyzyjna Astrometria Układów Podwójnych Za Pomocą Optyki Adaptywnej
    Uniwersytet Mikołaja Kopernika Wydział Fizyki, Astronomii i Informatyki Stosowanej Krzysztof Hełminiak Precyzyjna astrometria układów podwójnych za pomocą optyki adaptywnej. Praca magisterska wykonana w Katedrze Astronomii i Astrofizyki opiekun: dr hab. Maciej Konacki (CAMK PAN, Toruń) 2 Toruń 2006 Dziękuję dr hab. Maciejowi Konackiemu za opiekę nad pracą, cenne uwagi, dyskusję i pomoc merytoryczną; dr hab. Krzysztofowi Goździewskiemu za nieocenioną pomoc techniczną, merytoryczną i cierpliwość; dr Wojciechowi Lewandowskiemu za pomoc techniczną; Emilii Kołakowskiej, mgr Marcie Liberkowskiej, mgr Bartoszowi Wardzińskiemu i swojej Rodzinie za wsparcie; specjalne podziękowania dla dr Macieja Mikołajewskiego. 3 UMK zastrzega sobie prawo własności niniejszej pracy magisterskiej w celu udostępniania dla potrzeb działalności naukowo-badawczej lub dydaktycznej 4 Spis treści 1 Wstęp 9 1.1 Oplanetachpozasłonecznych . ... 9 1.2 Przegląd metod wykrywania planet . .... 11 1.2.1 Obserwacjebezpośrednie . 11 1.2.2 Chronemetrażpulsarów . .. .. 12 1.2.3 Prędkościradialne(RV) . 13 1.2.4 Mikrosoczewkowanie grawitacyjne . .... 14 1.2.5 Fotometriatranzytów. 15 1.2.6 Światłoodbite............................... 16 1.2.7 Astrometria ................................ 16 1.3 Powstawanie układów planetarnych . ..... 19 1.3.1 Zarys ogólnego modelu powstawania planet . ..... 19 1.3.2 Niedociągnięcia ogólnego modelu Safronova . ...... 20 1.4 Właściwości znanych egzoplanet . ..... 21 1.4.1 Masyplanet................................ 21 1.4.2 Ekscentryczności ............................. 22 1.4.3 Wielkiepółosie............................... 22 1.4.4 Metalicznośćgwiazd ........................... 23 1.5 Planety w układach wielokrotnych . ..... 23 1.5.1 Stabilność orbit planetarnych . ... 24 1.5.2 Powstawanie i ewolucja planet w układach podwójnych . ....... 25 1.5.3 Gwiazdy/planety ............................. 26 1.6 Celeniniejszejpracy ............................. .. 28 2 Astrometria CCD 29 2.1 Podstawy ..................................... 29 2.2 Dane astrometryczne i detekcja planety .
    [Show full text]
  • Dimensions De L'univers Observable
    Dimensions de l‘Univers Observable Nuits des Etoiles 2012 Chassiers (Ardèche) [email protected] http://www.astrosurf.com/alborak/ Un seul UNIVERS pour l‘astro physique : l‘univers OBSERVABLE ! Cela n‘empêche ni les théories ni les conceptions audacieuses… POURVU qu‘elles se confrontent à l‘OBSERVATION quelque soit l‘instrument à la MESURE de DIMENSIONS physiques quelque soit l‘expérience (outils, méthodes) 1 Dimensions interplanétaires le premier siècle de l‘astronautique 40 000 km 400 000 km = 1,3s de lumière = 3j voyage 150 000 000 km = 8m de lumière = 1 UA 40 UA = 5h 20m de lumière = 10ans voyage 10/08/2012 Nuit des étoiles - Chassiers page 2 Où le mètre n‘est plus l‘unité de mesure la plus commode Dimensions humaines/terrestres • mètre, km - déplacements horizontaux ou verticaux • le tour de la Terre 40 000 km, 90mn pour la Station Spatiale (8km/s) • de la Terre à la Lune 400 000 km, plus de 3jours pour Apollo (10km/s), un peu plus d‘une seconde pour la lumière ou la radio (300 000 km/s) Dimensions interplanétaires • le plan de l‘écliptique • l‘UA (150 000 000 km) • distances au soleil 0.3 0.7 1 1.5 5 10 20 30 UA Dimensions de l‘astronautique • vitesse en dizaines de km/s • voyages en mois, années • télécommunications en minutes, heures Terre-Lune 1,3 seconde Soleil-Terre 8 minutes Terre-Saturne et Titan 88 minutes Soleil-Neptune 4,2 heures 2 APOD 28/03/2012 Earthshine and Venus Over Sierra de Guadarrama page 3 Proches? Lointains? En km, en temps lumière, en temps de voyage Earthshine and Venus Over Sierra de Guadarrama Image Credit: Daniel Fernández (DANIKXT) What just above that ridge? The Moon .
    [Show full text]