BANYAN. VI. Discovery of a Companion at the Brown Dwarf

Total Page:16

File Type:pdf, Size:1020Kb

BANYAN. VI. Discovery of a Companion at the Brown Dwarf BANYAN. VI. Discovery of a companion at the brown dwarf/planet-mass limit to a Tucana-Horologium M dwarf Etienne´ Artigau1, Jonathan Gagn´e 1, Jacqueline Faherty2, Lison Malo3 , Marie-Eve Naud1, Ren´eDoyon1, David Lafreni`ere1, Yuri Beletsky4 Send correspondence to [email protected] ABSTRACT We report the discovery of a substellar companion to 2MASS J02192210–3925225, a young M6 γ candidate member of the Tucana-Horologium association (30 − 40 Myr). This L4 γ com- panion has been discovered with seeing-limited direct imaging observations; at a 4′′ separation (160 AU) and a modest contrast ratio, it joins the very short list of young low-mass companions amenable to study without the aid of adaptive optics, enabling its characterization with a much wider suite of instruments than is possible for companions uncovered by high-contrast imaging surveys. With a model-dependent mass of 12–15MJup, it straddles the boundary between the planet and brown dwarf mass regimes. We present near-infrared spectroscopy of this companion and compare it to various similar objects uncovered in the last few years. The J0219–3925 system falls in a sparsely populated part of the host mass versus mass ratio diagram for binaries; the dearth of known similar companions may be due to observational biases in previous low-mass companion searches. Subject headings: 1. Introduction Psc b and Ross 458(AB)c, respectively 2000 and 1200 AU from their hosts (Goldman et al. 2010; The spectacular discoveries brought on by high- Burningham et al. 2011; Naud et al. 2014), and contrast imaging of exoplanets around nearby the presence of companions on such wide orbits stars (e.g., HR8799’s system, Marois et al. 2008, presents a significant challenge to planetary for- 2010; β Pictoris b, Lagrange et al. 2010; Foma- mation models. lhaut’s companion, Kalas et al. 2008 ) eclipse a These companions are on orbits too large fact that is often overlooked: most of the region for in situ formation by either core accretion around a star where a planet would be gravita- (Pollack et al. 1996; Alibert et al. 2005) or grav- arXiv:1505.01747v1 [astro-ph.SR] 7 May 2015 tionally bound for Gyrs is readily accessible to itational instability within protoplanetary disks seeing-limited observations for nearby stars. A (Cameron 1978; Boss 1997). Vorobyov (2013) es- handful of planetary-mass objects have indeed tablished that wide companions may form in wide been uncovered in wide-field surveys, such as GU orbits within gravitationally unstable protoplan- etary disks, but only around massive (> 0.7 M⊙) 1Institut de Recherche sur les Exoplan`etes (IREx), D´epartement de Physique, Universit´ede Montr´eal, C.P. hosts with massive (> 0.2 M⊙) protoplanetary 6128, Succ. Centre-Ville, Montr´eal, QC, H3C 3J7, Canada disks, and cannot account for the discovery of 2Department of Terrestrial Magnetism, Carnegie Insti- such companions around K stars or later-type tution of Washington, Washington, DC 20015, USA hosts. Turbulent fragmentation of a pre-stellar 3 Canada-France-Hawaii Telescope Corporation, 65-1238 core (Padoan & Nordlund 2002) is a viable alter- Mamalahoa Highway, Kamuela, HI 96743, USA native to explain the existence of such systems. 4Las Campanas Observatory, Carnegie Institution of Washington, Colina el Pino, Casilla 601, La Serena, Chile Outward migration through planet-planet inter- action is also plausible, but remains to be tested 1 as a credible mechanism at such separations and metric follow-ups of the companion and its host mass ratios (Veras et al. 2009). Statistical anal- are described in section 3. Results are described yses of the mass, age and separation of planets in section 4 and discussed in section 5. uncovered through high-contrast imaging cam- paigns suggest that these companions constitute 2. The survey a low-mass tail of the brown dwarf distribution and are therefore the results of disk or cloud frag- J0219–3925 has been observed as part of a sur- vey of 300 stars conducted at the CTIO-1.5m mentation. The dearth of low-mass (< 5 MJ ) companions found by direct imaging surveys with telescope with the SIMON. This survey was un- adaptive optics (AO) can be explained in that dertaken following the discovery of the planetary- context (Brandt et al. 2014). This analysis mostly mass companion around the M3 AB Doradus contrains the occurence of companions out to 100- member GU Psc (Naud et al. 2014), in an attempt 200 AU; whether this paucity of companions holds to identify additional comparable planetary-mass for more distant brown dwarfs and planetary-mass companions and assess their overall frequency. companions remains to be determined in a statis- The target sample consists of both confirmed and tical framework. Overall, much work needs to be strong members of young moving groups within done to understand the origin and demographics 70pc (< 120 Myr; β Pictoris, AB Doradus, THA, of these distant companions, both theoretically Columba, Carina and Argus), and it was as- and observationally. sembled from objects in Malo et al. (2013) and Gagn´eet al. (2015). For each star, the Bayesian These distant companions have distinct ad- Analysis for Nearby Young AssociatioNs II tool vantages compared to either isolated planetary- (BANYAN II; Gagn´eet al. 2014c) provided a sta- mass objects or planets detected through AO sur- tistical distance estimate, allowing us to derive a veys. The presence of a host star allows a cross- projected distance for putative companions. calibration of the properties of the planet (paral- lax, mass, age, metallicity, membership to a young By combining SIMON J-band imaging with group), and the projected separation to that host WISE photometry (Wright et al. 2010), we iden- is sufficient to allow direct study through means tified objects that had a similar position to brown not compatible with extreme-AO, such as accurate dwarfs or known very-low gravity L dwarfs in an − spectro-photometry, high-resolution spectroscopy, MW 1 vs J W 2 diagram, but that did not have optical imaging, etc. Indeed, the detailed analysis optical digitized sky survey (DSS) counterparts. performed with intermediate-resolution spectro- In a way similar to the survey that allowed photometry on GU Psc b and Ross 458(AB)c will the discovery of GU Psc b, candidates were then be impossible to obtain in the near future for ex- followed-up with Gemini-South using deep i and z oplanets uncovered by AO surveys. band imaging to confirm the very red i−z color ex- As distant companions of nearby young stars pected for an L or T dwarf. The selection methods provide important benchmarks to understand self- will be detailed in a future paper (Artigau et al. luminous gas giants, we undertook various seeing- in preparation), as refinement of selection methods limited observations using the SIMON near- and follow-up of candidates are still ongoing. infrared spectro-imager (Doyon et al. 2000) at As the SIMON observations have significantly the CTIO-1.5m telescope and GMOS-S at Gem- better resolution than 2MASS (∼1′′ versus ∼2′′ ini South in order to identify such new objects full-width at half maximum) and are significantly through their distinctive far-red and near-infrared deeper (10 σ at J ∼ 18), they provide an oppor- colors. We report here a first discovery from tunity to identify relatively tight (2 − 6′′) over- this survey; a co-moving companion to 2MASS looked companions. We performed a radial profile J02192210–3925225 (J0219–3925), an M6 γ candi- subtraction on all primaries and visually inspected date member of the Tucana-Horologium associa- the residuals. Through this process, a single can- tion (THA) that has a low-gravity L4 γ compan- didate was identified, at an angular distance of ion. about 4′′ from the M6 star J0219–3925. No other The survey that led to this discovery is de- star within our sample presented a similar candi- − ′′ scribed in section 2. The discovery and photo- date companions within in a 2 6 annulus down 2 to a contrast of ∆J < 5. 3. Observation and reduction 3.1. Imaging The J-band discovery dataset of J0219–3925 g, GMOS i, GMOS was obtained with SIMON on 2013 November 5 6 6 at the CTIO, and follow-up H and Ks-band imag- 4 4 ing were obtained on 2014 February 2, with the 2 2 same instrument and telescope. For all 3 imaging 0 0 −2 −2 sequences, we employed a 4-point dither pattern DEC offset (") DEC offset (") ′ ′ along the corners of a 2 × 2 square. At each −4 −4 dither position, 15 images (J) and 5 images (H −6 −6 6 4 2 0 −2 −4 −6 6 4 2 0 −2 −4 −6 and Ks) were taken. All sequences used a 30s RA offset (") RA offset (") per-frame exposure time. The images were sky- J, SIMON J, F2 subtracted using a sky frame constructed from the 6 6 median combination of all science images taken 4 4 on that night within that band. Flat-fielding was 2 2 performed with a flat constructed from images of 0 0 −2 −2 a flat screen. The astrometric solution was per- DEC offset (") DEC offset (") formed using a cross-match of the 2MASS cata- −4 −4 −6 −6 log with field stars. All images were registered 6 4 2 0 −2 −4 −6 6 4 2 0 −2 −4 −6 and median-combined to produce the final science RA offset (") RA offset (") frame. K, 2MASS Gemini giJ 10 The contrast ratio between the two components 6 4 was determined by performing a PSF fitting of 5 2 the two J0219–3925 components using two isolated ′ 0 0 bright and nearby field stars (< 2.5, J > 13.5) as −2 DEC offset (") DEC offset (") −5 input PSFs.
Recommended publications
  • POPULATION PROPERTIES of BROWN DWARF ANALOGS to EXOPLANETS∗ Jacqueline K
    Draft version May 26, 2016 Preprint typeset using LATEX style emulateapj v. 01/23/15 POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS∗ Jacqueline K. Faherty1,2,9, Adric R. Riedel2,3, Kelle L. Cruz2,3,11, Jonathan Gagne1, 10, Joseph C. Filippazzo2,4,11, Erini Lambrides2, Haley Fica2, Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5, Emily Lemonier2,6, Emily L. Rice2,4,11 Draft version May 26, 2016 ABSTRACT We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low- surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color-magnitude, luminosity and effective temperature. We find that gravity classification and photometric color clearly separate 5-130 Myr sources from > 3 Gyr field objects, but they do not correlate one-to-one with the narrower 5 -130 Myr age range. Sources with the same spectral subtype in the same group have systematically redder colors, but they are distributed between 1-4σ from the field sequences and the most extreme outlier switches between intermediate and low-gravity sources either confirmed in a group or not.
    [Show full text]
  • Exoplanet Meteorology: Characterizing the Atmospheres Of
    Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system.
    [Show full text]
  • Csillagászati Évkönyv
    meteor csillagászati évkönyv meteor csillagászati évkönyv 2006 szerkesztette: Mizser Attila Taracsák Gábor Magyar Csillagászati Egyesület Budapest, 2005 A z évkönyv összeállításában közreműködött: Horvai Ferenc Jean Meeus (Belgium) Sárneczky Krisztián Szakmailag ellenőrizte: Szabados László (cikkek, beszámolók) Szabadi Péter (táblázatok) Műszaki szerkesztés és illusztrációk: Taracsák Gábor A szerkesztés és a kiadás támogatói: MLog Műszereket Gyártó és Forgalmazó Kft. MTA Csillagászati Kutatóintézete ISSN 0866-2851 Felelős kiadó: Mizser Attila Készült a G-PRINT BT. nyomdájában Felelős vezető: Wilpert Gábor Terjedelem: 18.75 ív + 8 oldal melléklet Példányszám: 4000 2005. október Csillagászati évkönyv 2006 5 Tartalom Tartalom B evezető.......................................................................................................................... 7 Használati útmutató ...................................................... .......................................... 8 Jelek és rövidítések .................................................................................................. 13 A csillagképek latin és magyar n e v e ........................................................................14 Táblázatok Jelenségnaptár............................................................................................................ 16 A bolygók kelése és nyugvása (ábra) ................................................................. 64 A bolygók a d a ta i....................................................................................................
    [Show full text]
  • A Survey of Young, Nearby, and Dusty Stars to Understand the Formation of Wide-Orbit Giant Planets
    Astronomy & Astrophysics manuscript no. paper c ESO 2021 June 14, 2021 A survey of young, nearby, and dusty stars to understand the formation of wide-orbit giant planets VLT/NaCo adaptive optics thermal and angular differential imaging⋆ J. Rameau1, G. Chauvin1, A.-M. Lagrange1, H. Klahr2, M. Bonnefoy2, C. Mordasini2, M. Bonavita3, S. Desidera4, C. Dumas5, and J. H. Girard5 1 UJF-Grenoble 1 / CNRS-INSU, Institut de Plan´etologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France e-mail: [email protected] 2 Max Planck Institute f¨ur Astronomy, K¨onigsthul 17, D-69117 Heidelberg, Germany 3 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, Canada M5S 3H4 4 INAF - Osservatorio Astronomico di Padova, Vicolo dell’ Osservatorio 5, 35122, Padova, Italy 5 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile Received December 21st, 2012; accepted February, 21st, 2013. ABSTRACT Context. Over the past decade, direct imaging has confirmed the existence of substellar companions on wide orbits from their parent stars. To understand the formation and evolution mechanisms of these companions, their individual, as well as the full population properties, must be characterized. Aims. We aim at detecting giant planet and/or brown dwarf companions around young, nearby, and dusty stars. Our goal is also to provide statistics on the population of giant planets at wide-orbits and discuss planet formation models. Methods. We report the results of a deep survey of 59 stars, members of young stellar associations. The observations were conducted with the ground-based adaptive optics system VLT/NaCo at L ′-band (3.8µm).
    [Show full text]
  • SIRTF</Italic>
    From Molecular Cores to Planet‐forming Disks: An SIRTF Legacy Program Author(s): Neal J. Evans II, Lori E. Allen, Geoffrey A. Blake, A. C. A. Boogert, Tyler Bourke, Paul M. Harvey, J. E. Kessler, David W. Koerner, Chang Won Lee, Lee G. Mundy, Philip C. Myers, Deborah L. Padgett, K. Pontoppidan, Anneila I. Sargent, Karl R. Stapelfeldt, Ewine F. van Dishoeck, Chadwick H. Young, and Kaisa E. Young Reviewed work(s): Source: Publications of the Astronomical Society of the Pacific, Vol. 115, No. 810 (August 2003), pp. 965-980 Published by: The University of Chicago Press on behalf of the Astronomical Society of the Pacific Stable URL: http://www.jstor.org/stable/10.1086/376697 . Accessed: 17/09/2012 17:23 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Astronomical Society of the Pacific are collaborating with JSTOR to digitize, preserve and extend access to Publications of the Astronomical Society of the Pacific. http://www.jstor.org Publications of the Astronomical Society of the Pacific, 115:965–980, 2003 August ᭧ 2003. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.
    [Show full text]
  • Population Properties of Brown Dwarf Analogs to Exoplanets Jacqueline K
    Dartmouth College Dartmouth Digital Commons Open Dartmouth: Faculty Open Access Articles 7-2016 Population Properties of Brown Dwarf Analogs to Exoplanets Jacqueline K. FahertY American Museum of Natural History Adric R. Riedel American Museum of Natural History Kelle L. Cruz American Museum of Natural History Jonathan Gagne Carnegie Institution of Washington Joseph C. Filippazzo American Museum of Natural History See next page for additional authors Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation FahertY, Jacqueline K.; Riedel, Adric R.; Cruz, Kelle L.; Gagne, Jonathan; Filippazzo, Joseph C.; Lambrides, Erini; Fica, Haley; Weinberger, Alycia; and Thorstensen, John R., "Population Properties of Brown Dwarf Analogs to Exoplanets" (2016). Open Dartmouth: Faculty Open Access Articles. 2297. https://digitalcommons.dartmouth.edu/facoa/2297 This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Jacqueline K. FahertY, Adric R. Riedel, Kelle L. Cruz, Jonathan Gagne, Joseph C. Filippazzo, Erini Lambrides, Haley Fica, Alycia Weinberger, and John R. Thorstensen This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/2297 The Astrophysical Journal Supplement Series, 225:10 (57pp), 2016 July doi:10.3847/0067-0049/225/1/10 © 2016. The American Astronomical Society. All rights reserved. POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS* Jacqueline K. Faherty1,2,11, Adric R. Riedel2,3, Kelle L.
    [Show full text]
  • Theoretical Studies on Brown Dwarfs and Extrasolar Planets
    Theoretical Studies on Brown Dwarfs and Extrasolar Planets Dissertation zur Erlangung des Doktorgrades des Department Physik der Universität Hamburg verfasst von René Heller aus Hoyerswerda Hamburg, den 09. Juli 2010 Gutachter der Dissertation: Prof. Dr. Günter Wiedemann Prof. Dr. Stefan Dreizler Prof. Dr. Wilhelm Kley Gutachter der Disputation: Prof. Dr. Jürgen H. M. M. Schmitt Prof. Dr. Peter H. Hauschildt Datum der Disputation: 24. August 2010 Vorsitzender des Prüfungsausschusses: Dr. Robert Baade Vorsitzender des Promotionsausschusses: Prof. Dr. Jochen Bartels Dekan der Fakultät für Mathematik, Informatik und Naturwissenschaften : Prof. Dr. Heinrich Graener iii Contents I Opening thoughts 1 1 Abstract 3 2 Celestial mechanics 7 2.1 Historical context ......................................... 7 2.2 Classical celestial mechanics .................................. 9 2.2.1 Visual binaries ....................................... 10 2.2.2 Double-lined spectroscopic binaries ........................... 10 2.3 Tidal distortion .......................................... 11 2.4 Orbital evolution ......................................... 11 2.5 Feedback between structural and orbital evolution ...................... 12 3 Brown dwarfs and extrasolar planets 15 3.1 Formation of sub-stellar objects ................................. 15 3.2 The brown dwarf desert ..................................... 16 3.3 Evolution of sub-stellar objects ................................. 17 4 The observational bonanza of transits 19 4.1 Photometry ............................................
    [Show full text]
  • A Absorptivity, 642, 682 Abundance(S), 339, 388, 389, 408
    Index A momentum, 354, 383–385, 443–445, 475, Absorptivity, 642, 682 479, 510, 589, 607, 681, 701, 778 Abundance(s), 339, 388, 389, 408, 410, 484, resolution, 686 485, 491, 509, 541, 560, 561, 616, velocity/velocities, 349, 350, 354, 570, 605 619, 621, 648, 654, 658–661, 665, Apollonius of Myndus, 598 667, 668, 670, 673, 676, 780 Aquinas, T., 598 Acetonitrile (CH3CN), 561, 619 Archaeomagnetic data, 423 Acetylene (C2H2), 559, 560, 562 Ariel (satellite, Uranus I), 523, 527, 532, Adams, J.C., 492, 493, 582 533, 564 Adams-Williamson equation, 494 albedo, 564 Adiabatic Aristotle, 598, 599 convection, 344, 345 Artemis, 648 lapse rate, 348, 368, 369, 375, 385 Asteroid(s) (general) pressure-density relation, 344 albedo(s), 683, 686–688, 696, 700 processes, 345 densities, 639, 689–690 Adoration of Magi, 610, 612 dimension(s), 686–690 Adrastea (satellite, Jupiter XV), 524, 529, 572 double, 689 Airy, G.B., 492 inner solar system plot, 678, 681, 690 Albedo masses, 686–690 bolometric, 338, 477, 636, 642, 687, 780 nomenclature, 648–649, 677–681 bond, 477, 516, 627, 747, 772, 780 orbital properties geometric (visual), 477, 564, 581 families, 681–685 Alfve´n waves, 460 Kirkwood gaps, 582, 678, 695, 697 Aluminum isotopes, 694 outer solar system plot, 588–590, 603 Alvarez, L., 668 radii, 688 Amalthea (satellite, Jupiter V), 355, 529, rotations, 688, 700 537, 572 thermal emissions, 697 Ambipolar diffusion, 402, 703 Asteroid mill, 639, 676, 769 American Meteor Society, 637, 638 Asteroids (individual) Amidogen radical (NH2), (2101) Adonis, 683 Ammonia (NH3), 348, 391, 480, 481, 483, (1221) Amor, 681, 690 485, 512, 558, 560, 619, 625, (3554) Amun, 683 627, 756 (1943) Anteros, 681 Ammonium hydrosulfide (NH4SH), 481, 483 (2061) Anza, 681 Anaxagoras of Clazomenae, 598 (1862) Apollo, 683, 684, 698 Angular (197) Ariete, 689 diameter(s), 493, 686 (2062) Aten, 683 E.F.
    [Show full text]
  • Oca Club Meeting Star Parties
    June 2005 Free to members, subscriptions $12 for 12 issues Volume 32, Number 6 This image of the Andromeda Galaxy (M31) with companions M110 (near upper left) and M32 (right of center) was taken on December 28, 2002 by Bill Patterson through a Takahashi FSQ106 from Sunglow Ranch, Arizona. Visible in almost any instrument, M31 rises around 12:30 AM at the beginning of this month and is a great object to view all summer long! OCA CLUB MEETING STAR PARTIES COMING UP The free and open club The Black Star Canyon site will be open The next session of the meeting will be held Friday, again on July 2nd. The Anza site will be open Beginners Class will be held on June 10th at 7:30 PM in the June 4th. Members are encouraged to check Friday, June 3rd (and next Irvine Lecture Hall of the the website calendar, for the latest updates month on July 1st) at the Hashinger Science Center on star parties and other events. Centennial Heritage Museum at at Chapman University in 3101 West Harvard Street in Orange. The featured Please check the website calendar for the Santa Ana. speaker this month is still outreach events this month! Volunteers GOTO SIG: June 6th to be arranged as of press are always welcome! Astro-Imagers SIG: June 21st, time. Be sure to check the You are also reminded to check the web July 19th Calendar on our website site frequently for updates to the calendar EOA SIG: June 27th, July 25th (www.ocastronomers.org) of events and other club news.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Precyzyjna Astrometria Układów Podwójnych Za Pomocą Optyki Adaptywnej
    Uniwersytet Mikołaja Kopernika Wydział Fizyki, Astronomii i Informatyki Stosowanej Krzysztof Hełminiak Precyzyjna astrometria układów podwójnych za pomocą optyki adaptywnej. Praca magisterska wykonana w Katedrze Astronomii i Astrofizyki opiekun: dr hab. Maciej Konacki (CAMK PAN, Toruń) 2 Toruń 2006 Dziękuję dr hab. Maciejowi Konackiemu za opiekę nad pracą, cenne uwagi, dyskusję i pomoc merytoryczną; dr hab. Krzysztofowi Goździewskiemu za nieocenioną pomoc techniczną, merytoryczną i cierpliwość; dr Wojciechowi Lewandowskiemu za pomoc techniczną; Emilii Kołakowskiej, mgr Marcie Liberkowskiej, mgr Bartoszowi Wardzińskiemu i swojej Rodzinie za wsparcie; specjalne podziękowania dla dr Macieja Mikołajewskiego. 3 UMK zastrzega sobie prawo własności niniejszej pracy magisterskiej w celu udostępniania dla potrzeb działalności naukowo-badawczej lub dydaktycznej 4 Spis treści 1 Wstęp 9 1.1 Oplanetachpozasłonecznych . ... 9 1.2 Przegląd metod wykrywania planet . .... 11 1.2.1 Obserwacjebezpośrednie . 11 1.2.2 Chronemetrażpulsarów . .. .. 12 1.2.3 Prędkościradialne(RV) . 13 1.2.4 Mikrosoczewkowanie grawitacyjne . .... 14 1.2.5 Fotometriatranzytów. 15 1.2.6 Światłoodbite............................... 16 1.2.7 Astrometria ................................ 16 1.3 Powstawanie układów planetarnych . ..... 19 1.3.1 Zarys ogólnego modelu powstawania planet . ..... 19 1.3.2 Niedociągnięcia ogólnego modelu Safronova . ...... 20 1.4 Właściwości znanych egzoplanet . ..... 21 1.4.1 Masyplanet................................ 21 1.4.2 Ekscentryczności ............................. 22 1.4.3 Wielkiepółosie............................... 22 1.4.4 Metalicznośćgwiazd ........................... 23 1.5 Planety w układach wielokrotnych . ..... 23 1.5.1 Stabilność orbit planetarnych . ... 24 1.5.2 Powstawanie i ewolucja planet w układach podwójnych . ....... 25 1.5.3 Gwiazdy/planety ............................. 26 1.6 Celeniniejszejpracy ............................. .. 28 2 Astrometria CCD 29 2.1 Podstawy ..................................... 29 2.2 Dane astrometryczne i detekcja planety .
    [Show full text]
  • Dimensions De L'univers Observable
    Dimensions de l‘Univers Observable Nuits des Etoiles 2012 Chassiers (Ardèche) [email protected] http://www.astrosurf.com/alborak/ Un seul UNIVERS pour l‘astro physique : l‘univers OBSERVABLE ! Cela n‘empêche ni les théories ni les conceptions audacieuses… POURVU qu‘elles se confrontent à l‘OBSERVATION quelque soit l‘instrument à la MESURE de DIMENSIONS physiques quelque soit l‘expérience (outils, méthodes) 1 Dimensions interplanétaires le premier siècle de l‘astronautique 40 000 km 400 000 km = 1,3s de lumière = 3j voyage 150 000 000 km = 8m de lumière = 1 UA 40 UA = 5h 20m de lumière = 10ans voyage 10/08/2012 Nuit des étoiles - Chassiers page 2 Où le mètre n‘est plus l‘unité de mesure la plus commode Dimensions humaines/terrestres • mètre, km - déplacements horizontaux ou verticaux • le tour de la Terre 40 000 km, 90mn pour la Station Spatiale (8km/s) • de la Terre à la Lune 400 000 km, plus de 3jours pour Apollo (10km/s), un peu plus d‘une seconde pour la lumière ou la radio (300 000 km/s) Dimensions interplanétaires • le plan de l‘écliptique • l‘UA (150 000 000 km) • distances au soleil 0.3 0.7 1 1.5 5 10 20 30 UA Dimensions de l‘astronautique • vitesse en dizaines de km/s • voyages en mois, années • télécommunications en minutes, heures Terre-Lune 1,3 seconde Soleil-Terre 8 minutes Terre-Saturne et Titan 88 minutes Soleil-Neptune 4,2 heures 2 APOD 28/03/2012 Earthshine and Venus Over Sierra de Guadarrama page 3 Proches? Lointains? En km, en temps lumière, en temps de voyage Earthshine and Venus Over Sierra de Guadarrama Image Credit: Daniel Fernández (DANIKXT) What just above that ridge? The Moon .
    [Show full text]