Theoretical Studies on Brown Dwarfs and Extrasolar Planets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
POPULATION PROPERTIES of BROWN DWARF ANALOGS to EXOPLANETS∗ Jacqueline K
Draft version May 26, 2016 Preprint typeset using LATEX style emulateapj v. 01/23/15 POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS∗ Jacqueline K. Faherty1,2,9, Adric R. Riedel2,3, Kelle L. Cruz2,3,11, Jonathan Gagne1, 10, Joseph C. Filippazzo2,4,11, Erini Lambrides2, Haley Fica2, Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5, Emily Lemonier2,6, Emily L. Rice2,4,11 Draft version May 26, 2016 ABSTRACT We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low- surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color-magnitude, luminosity and effective temperature. We find that gravity classification and photometric color clearly separate 5-130 Myr sources from > 3 Gyr field objects, but they do not correlate one-to-one with the narrower 5 -130 Myr age range. Sources with the same spectral subtype in the same group have systematically redder colors, but they are distributed between 1-4σ from the field sequences and the most extreme outlier switches between intermediate and low-gravity sources either confirmed in a group or not. -
Privacy Policy
Privacy Policy Culmia Privacy Policy Culmia Desarrollos Inmobiliarios, S.L.U. (hereinafter, “the manager”), with headquarters in Madrid, Calle Génova, 27, Company Tax No. B-67186999, is an integral manager of property assets and a member of a Property Group to which it provides its services. The manager provides its services to the following property developers who are members of its Group: Company Company Company Company Tax Tax No. No. Saturn Holdco S.A.U. A88554100 Antea Activos Inmobiliarios B88554324 S.L.U. Thrym Activos Inmobiliarios S.L.U. B88554142 Redes Promotora 1 Ma, B88093117 S.L.U. Erriap Activos Inmobiliarios S.L.U. B88554159 Redes Promotora 2 Ma, B88093174 S.L.U. Daphne Activos Inmobiliarios S.L.U. B88554167 Redes Promotora 3 Ma, B88093265 S.L.U. Dione Activos Inmobiliarios S.L.U. B88554183 Redes Promotora 4 Ma, B88093356 S.L.U. Fornjot Activos Inmobiliarios S.L.U. B88554191 Redes Promotora 5 Ma, B88093471 S.L.U. Greip Activos Inmobiliarios S.L.U. B88554217 Redes Promotora 6 Ma, B88145073 S.L.U. Hiperion Activos Inmobiliarios B88554233 Redes Promotora 7 Ma, B88145123 S.L.U. S.L.U. Loge Activos Inmobiliarios S.L.U. B88554241 Redes Promotora 8 Ma, B88145263 S.L.U. Kiviuq Activos Inmobiliarios S.L.U. B88554258 Redes Promotora 9, S.L.U. B88159728 Narvi Activos Inmobiliarios S.L.U. B88554266 Redes 2 2018 Iberica 2 B88160221 S.L.U. Polux Activos Inmobiliarios S.L.U. B88554282 Redes 2 2018 Iberica 3 B88160239 S.L.U. Siarnaq Activos Inmobiliarios S.L.U. B88554290 Redes 2 Promotora B88160247 Inversiones 2018 IV S.L.U. -
Cassini Observations of Saturn's Irregular Moons
EPSC Abstracts Vol. 12, EPSC2018-103-1, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Cassini Observations of Saturn's Irregular Moons Tilmann Denk (1) and Stefano Mottola (2) (1) Freie Universität Berlin, Germany ([email protected]), (2) DLR Berlin, Germany 1. Introduction two prograde irregulars are slower than ~13 h, while the periods of all but two retrogrades are faster than With the ISS-NAC camera of the Cassini spacecraft, ~13 h. The fastest period (Hati) is much slower than we obtained photometric lightcurves of 25 irregular the disruption rotation barrier for asteroids (~2.3 h), moons of Saturn. The goal was to derive basic phys- indicating that Saturn's irregulars may be rubble piles ical properties of these objects (like rotational periods, of rather low densities, possibly as low as of comets. shapes, pole-axis orientations, possible global color variations, ...) and to get hints on their formation and Table: Rotational periods of 25 Saturnian irregulars evolution. Our campaign marks the first utilization of an interplanetary probe for a systematic photometric Moon Approx. size Rotational period survey of irregular moons. name [km] [h] Hati 5 5.45 ± 0.04 The irregular moons are a class of objects that is very Mundilfari 7 6.74 ± 0.08 distinct from the inner moons of Saturn. Not only are Loge 5 6.9 ± 0.1 ? they more numerous (38 versus 24), but also occupy Skoll 5 7.26 ± 0.09 (?) a much larger volume within the Hill sphere of Suttungr 7 7.67 ± 0.02 Saturn. -
Exoplanet Meteorology: Characterizing the Atmospheres Of
Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. -
Csillagászati Évkönyv
meteor csillagászati évkönyv meteor csillagászati évkönyv 2006 szerkesztette: Mizser Attila Taracsák Gábor Magyar Csillagászati Egyesület Budapest, 2005 A z évkönyv összeállításában közreműködött: Horvai Ferenc Jean Meeus (Belgium) Sárneczky Krisztián Szakmailag ellenőrizte: Szabados László (cikkek, beszámolók) Szabadi Péter (táblázatok) Műszaki szerkesztés és illusztrációk: Taracsák Gábor A szerkesztés és a kiadás támogatói: MLog Műszereket Gyártó és Forgalmazó Kft. MTA Csillagászati Kutatóintézete ISSN 0866-2851 Felelős kiadó: Mizser Attila Készült a G-PRINT BT. nyomdájában Felelős vezető: Wilpert Gábor Terjedelem: 18.75 ív + 8 oldal melléklet Példányszám: 4000 2005. október Csillagászati évkönyv 2006 5 Tartalom Tartalom B evezető.......................................................................................................................... 7 Használati útmutató ...................................................... .......................................... 8 Jelek és rövidítések .................................................................................................. 13 A csillagképek latin és magyar n e v e ........................................................................14 Táblázatok Jelenségnaptár............................................................................................................ 16 A bolygók kelése és nyugvása (ábra) ................................................................. 64 A bolygók a d a ta i.................................................................................................... -
PDS4 Context List
Target Context List Name Type LID 136108 HAUMEA Planet urn:nasa:pds:context:target:planet.136108_haumea 136472 MAKEMAKE Planet urn:nasa:pds:context:target:planet.136472_makemake 1989N1 Satellite urn:nasa:pds:context:target:satellite.1989n1 1989N2 Satellite urn:nasa:pds:context:target:satellite.1989n2 ADRASTEA Satellite urn:nasa:pds:context:target:satellite.adrastea AEGAEON Satellite urn:nasa:pds:context:target:satellite.aegaeon AEGIR Satellite urn:nasa:pds:context:target:satellite.aegir ALBIORIX Satellite urn:nasa:pds:context:target:satellite.albiorix AMALTHEA Satellite urn:nasa:pds:context:target:satellite.amalthea ANTHE Satellite urn:nasa:pds:context:target:satellite.anthe APXSSITE Equipment urn:nasa:pds:context:target:equipment.apxssite ARIEL Satellite urn:nasa:pds:context:target:satellite.ariel ATLAS Satellite urn:nasa:pds:context:target:satellite.atlas BEBHIONN Satellite urn:nasa:pds:context:target:satellite.bebhionn BERGELMIR Satellite urn:nasa:pds:context:target:satellite.bergelmir BESTIA Satellite urn:nasa:pds:context:target:satellite.bestia BESTLA Satellite urn:nasa:pds:context:target:satellite.bestla BIAS Calibrator urn:nasa:pds:context:target:calibrator.bias BLACK SKY Calibration Field urn:nasa:pds:context:target:calibration_field.black_sky CAL Calibrator urn:nasa:pds:context:target:calibrator.cal CALIBRATION Calibrator urn:nasa:pds:context:target:calibrator.calibration CALIMG Calibrator urn:nasa:pds:context:target:calibrator.calimg CAL LAMPS Calibrator urn:nasa:pds:context:target:calibrator.cal_lamps CALLISTO Satellite urn:nasa:pds:context:target:satellite.callisto -
A Survey of Young, Nearby, and Dusty Stars to Understand the Formation of Wide-Orbit Giant Planets
Astronomy & Astrophysics manuscript no. paper c ESO 2021 June 14, 2021 A survey of young, nearby, and dusty stars to understand the formation of wide-orbit giant planets VLT/NaCo adaptive optics thermal and angular differential imaging⋆ J. Rameau1, G. Chauvin1, A.-M. Lagrange1, H. Klahr2, M. Bonnefoy2, C. Mordasini2, M. Bonavita3, S. Desidera4, C. Dumas5, and J. H. Girard5 1 UJF-Grenoble 1 / CNRS-INSU, Institut de Plan´etologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France e-mail: [email protected] 2 Max Planck Institute f¨ur Astronomy, K¨onigsthul 17, D-69117 Heidelberg, Germany 3 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, Canada M5S 3H4 4 INAF - Osservatorio Astronomico di Padova, Vicolo dell’ Osservatorio 5, 35122, Padova, Italy 5 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile Received December 21st, 2012; accepted February, 21st, 2013. ABSTRACT Context. Over the past decade, direct imaging has confirmed the existence of substellar companions on wide orbits from their parent stars. To understand the formation and evolution mechanisms of these companions, their individual, as well as the full population properties, must be characterized. Aims. We aim at detecting giant planet and/or brown dwarf companions around young, nearby, and dusty stars. Our goal is also to provide statistics on the population of giant planets at wide-orbits and discuss planet formation models. Methods. We report the results of a deep survey of 59 stars, members of young stellar associations. The observations were conducted with the ground-based adaptive optics system VLT/NaCo at L ′-band (3.8µm). -
SIRTF</Italic>
From Molecular Cores to Planet‐forming Disks: An SIRTF Legacy Program Author(s): Neal J. Evans II, Lori E. Allen, Geoffrey A. Blake, A. C. A. Boogert, Tyler Bourke, Paul M. Harvey, J. E. Kessler, David W. Koerner, Chang Won Lee, Lee G. Mundy, Philip C. Myers, Deborah L. Padgett, K. Pontoppidan, Anneila I. Sargent, Karl R. Stapelfeldt, Ewine F. van Dishoeck, Chadwick H. Young, and Kaisa E. Young Reviewed work(s): Source: Publications of the Astronomical Society of the Pacific, Vol. 115, No. 810 (August 2003), pp. 965-980 Published by: The University of Chicago Press on behalf of the Astronomical Society of the Pacific Stable URL: http://www.jstor.org/stable/10.1086/376697 . Accessed: 17/09/2012 17:23 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Astronomical Society of the Pacific are collaborating with JSTOR to digitize, preserve and extend access to Publications of the Astronomical Society of the Pacific. http://www.jstor.org Publications of the Astronomical Society of the Pacific, 115:965–980, 2003 August ᭧ 2003. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. -
Population Properties of Brown Dwarf Analogs to Exoplanets Jacqueline K
Dartmouth College Dartmouth Digital Commons Open Dartmouth: Faculty Open Access Articles 7-2016 Population Properties of Brown Dwarf Analogs to Exoplanets Jacqueline K. FahertY American Museum of Natural History Adric R. Riedel American Museum of Natural History Kelle L. Cruz American Museum of Natural History Jonathan Gagne Carnegie Institution of Washington Joseph C. Filippazzo American Museum of Natural History See next page for additional authors Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation FahertY, Jacqueline K.; Riedel, Adric R.; Cruz, Kelle L.; Gagne, Jonathan; Filippazzo, Joseph C.; Lambrides, Erini; Fica, Haley; Weinberger, Alycia; and Thorstensen, John R., "Population Properties of Brown Dwarf Analogs to Exoplanets" (2016). Open Dartmouth: Faculty Open Access Articles. 2297. https://digitalcommons.dartmouth.edu/facoa/2297 This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Authors Jacqueline K. FahertY, Adric R. Riedel, Kelle L. Cruz, Jonathan Gagne, Joseph C. Filippazzo, Erini Lambrides, Haley Fica, Alycia Weinberger, and John R. Thorstensen This article is available at Dartmouth Digital Commons: https://digitalcommons.dartmouth.edu/facoa/2297 The Astrophysical Journal Supplement Series, 225:10 (57pp), 2016 July doi:10.3847/0067-0049/225/1/10 © 2016. The American Astronomical Society. All rights reserved. POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS* Jacqueline K. Faherty1,2,11, Adric R. Riedel2,3, Kelle L. -
A Absorptivity, 642, 682 Abundance(S), 339, 388, 389, 408
Index A momentum, 354, 383–385, 443–445, 475, Absorptivity, 642, 682 479, 510, 589, 607, 681, 701, 778 Abundance(s), 339, 388, 389, 408, 410, 484, resolution, 686 485, 491, 509, 541, 560, 561, 616, velocity/velocities, 349, 350, 354, 570, 605 619, 621, 648, 654, 658–661, 665, Apollonius of Myndus, 598 667, 668, 670, 673, 676, 780 Aquinas, T., 598 Acetonitrile (CH3CN), 561, 619 Archaeomagnetic data, 423 Acetylene (C2H2), 559, 560, 562 Ariel (satellite, Uranus I), 523, 527, 532, Adams, J.C., 492, 493, 582 533, 564 Adams-Williamson equation, 494 albedo, 564 Adiabatic Aristotle, 598, 599 convection, 344, 345 Artemis, 648 lapse rate, 348, 368, 369, 375, 385 Asteroid(s) (general) pressure-density relation, 344 albedo(s), 683, 686–688, 696, 700 processes, 345 densities, 639, 689–690 Adoration of Magi, 610, 612 dimension(s), 686–690 Adrastea (satellite, Jupiter XV), 524, 529, 572 double, 689 Airy, G.B., 492 inner solar system plot, 678, 681, 690 Albedo masses, 686–690 bolometric, 338, 477, 636, 642, 687, 780 nomenclature, 648–649, 677–681 bond, 477, 516, 627, 747, 772, 780 orbital properties geometric (visual), 477, 564, 581 families, 681–685 Alfve´n waves, 460 Kirkwood gaps, 582, 678, 695, 697 Aluminum isotopes, 694 outer solar system plot, 588–590, 603 Alvarez, L., 668 radii, 688 Amalthea (satellite, Jupiter V), 355, 529, rotations, 688, 700 537, 572 thermal emissions, 697 Ambipolar diffusion, 402, 703 Asteroid mill, 639, 676, 769 American Meteor Society, 637, 638 Asteroids (individual) Amidogen radical (NH2), (2101) Adonis, 683 Ammonia (NH3), 348, 391, 480, 481, 483, (1221) Amor, 681, 690 485, 512, 558, 560, 619, 625, (3554) Amun, 683 627, 756 (1943) Anteros, 681 Ammonium hydrosulfide (NH4SH), 481, 483 (2061) Anza, 681 Anaxagoras of Clazomenae, 598 (1862) Apollo, 683, 684, 698 Angular (197) Ariete, 689 diameter(s), 493, 686 (2062) Aten, 683 E.F. -
Perfect Little Planet Educator's Guide
Educator’s Guide Perfect Little Planet Educator’s Guide Table of Contents Vocabulary List 3 Activities for the Imagination 4 Word Search 5 Two Astronomy Games 7 A Toilet Paper Solar System Scale Model 11 The Scale of the Solar System 13 Solar System Models in Dough 15 Solar System Fact Sheet 17 2 “Perfect Little Planet” Vocabulary List Solar System Planet Asteroid Moon Comet Dwarf Planet Gas Giant "Rocky Midgets" (Terrestrial Planets) Sun Star Impact Orbit Planetary Rings Atmosphere Volcano Great Red Spot Olympus Mons Mariner Valley Acid Solar Prominence Solar Flare Ocean Earthquake Continent Plants and Animals Humans 3 Activities for the Imagination The objectives of these activities are: to learn about Earth and other planets, use language and art skills, en- courage use of libraries, and help develop creativity. The scientific accuracy of the creations may not be as im- portant as the learning, reasoning, and imagination used to construct each invention. Invent a Planet: Students may create (draw, paint, montage, build from household or classroom items, what- ever!) a planet. Does it have air? What color is its sky? Does it have ground? What is its ground made of? What is it like on this world? Invent an Alien: Students may create (draw, paint, montage, build from household items, etc.) an alien. To be fair to the alien, they should be sure to provide a way for the alien to get food (what is that food?), a way to breathe (if it needs to), ways to sense the environment, and perhaps a way to move around its planet. -
Energization of Particles in Saturn\'S Inner Magnetosphere: Monte Carlo
A&A 470, 1165–1173 (2007) Astronomy DOI: 10.1051/0004-6361:20066530 & c ESO 2007 Astrophysics Energization of particles in Saturn’s inner magnetosphere: Monte Carlo simulation of stochastic electric field effects E. Martínez-Gómez, H. Durand-Manterola, and H. Pérez Institute of Geophysics, Department of Space Physics, National University of Mexico, Ciudad Universitaria 04510, Mexico e-mail: [email protected];[email protected];[email protected] Received 10 October 2006 / Accepted 23 April 2007 ABSTRACT Context. Our knowledge of energetic particles in Saturn’s inner magnetosphere is based on observations made during the flybys of Pioneer 11, Voyager 1, Voyager 2, and recently by Cassini. The most important features of the energetic particle population in the inner Saturnian magnetosphere are: 1) the rings and the many large and small satellites inside this region reduce the population of particles whose energies are higher than 0.5 MeV to values of the order of 103 times less than would otherwise be present; 2) the sputtering and outgassing of the surfaces of the satellites injects particles into the system and by some physical process, particles of the resultant plasma are accelerated to energies of the order of tens of keV; 3) the radial distribution of very energetic protons Ep > tens of MeV exhibits three major peaks associated with rings and satellites; 4) a proton population Ep ∼ 1 MeV lies outside the orbit of Enceladus; 5) a proton population Ep < 0.25 MeV has an apparent origin associated with Dione, Tethys, Enceladus, E-ring, Mimas, and G-ring; 6) a population of low-energy electrons is associated with the satellites.