Two Representations of a Conditioned Superprocess

Total Page:16

File Type:pdf, Size:1020Kb

Two Representations of a Conditioned Superprocess Two Representations of a Conditioned Superprocess By Steven N. Evans* Technical Report No. 335 February 1992 *Research supported in part by a Presidential Young Investigator Award Department of Statistics University of California Berkeley, California 94720 Two representations of a conditioned superprocess Steven N. Evans* Department of Statistics University of California at Berkeley 367 Evans Hall Berkeley CA 94720 Abstract: We consider a class of measure-valued Markov processes that are constructed by taking a superprocess over some underlying Markov process and conditioning it to stay alive forever. We obtain two representations of such a process. The first representation is in terms of an "immortal particle" that moves around according to the underlying Markov process and throws of pieces of mass, which then proceed to evolve in the same way that mass evolves for the unconditioned superprocess. As a consequence of this representation, we show that the tail a-field of the conditioned superprocess is trivial if the tail a-field of the underlying process is trivial. The second representation is analogous to one obtained by LeGall in the unconditioned case. It represents the conditioned superprocess in terms of a certain process taking values in the path space of the underlying process. This repre- sentation is useful for studying the "transience" and "recurrence" properties of the closed support process. In particular, we find some evidence for the conjecture that the closed support of conditioned super Brownian motion is "transient" in more than 4 dimensions and "recurrent" otherwise. American Mathematical Society 1980 subject classifications: Primary 60G57, 60J80. Secondary 60F20, 60J25. Keywords and Phrases: superprocess, measure-valued, diffusion, branching process, tail event, Campbell measure, path-valued, transience, recurrence. * Research supported in part by a Presidential Young Investigator Award 1 1. Introduction We begin by recalling a special case of the superprocess construction of Fitzsimmons (1988) (see also Dynkin (1989)). We recommend Dawson (1991) as a general introduction to, and bibliographic survey of, the extensive literature on superprocesses and measure- valued Markov processes in general. In particular, the latter work provides a thorough discussion of the manner in which superprocesses arise as limits of branching particle systems. Suppose that E is a topological Lusin space and E is the Borel a-field of E. Denote by M(E) the class of finite Borel measures on E. Define M(E) to be the a-field of subsets of M(E) generated by the maps p '-+ (i, f)Jf u(dx)f(x) as f runs over bp£, the class of bounded, nonnegativle, E-measurable functions. Let C =(= , Ot,.F, at, PX) be a Borel right Markov process with state space (E, C) and semigroup (Pt). Assume Ptd = 1. For each f E bp£ the integral equation (1.1) vt(X) = Ptf(x) - ,/j P.(x, v2 ) ds has a unique solution, which we denote by (t, x) i-+ Vtf(x); and there exists a Markov semigroup (Qt) on (M(E), M(E)) with Laplace functionals (1.2) J Q(p,dv) exp(-(v,f)) = exp(-(p, Vtf)) for all P E M(E), t > 0 and f E bpE. Write Mo(E) for the set M(E) topologised by the weak topology. That is, give M(E) the weakest topology which makes all the maps p i-i (i, f) continuous, where f runs over the bounded, continuous functions on E. The Borel u-field of Mo(E) is M(E). There is a Markov process X (,7,t,It,Xt,Pi&) with state space (M(E), M(E)) and semigroup (Qt). This process is a right process on Mo(E). In the nomenclature of Fitzsimmons (1988), the process X is called the (C,-A2/2)-superprocess. Starting from any initial measure 1u the process X "dies out" PI-almost surely. That is, Xt is the null measure 0 for all t sufficiently large. We are interested in the process constructed by starting X at an initial measure p E M(E) = M(E)\{0} and conditioning 2 X to stay alive forever. This type of construction was carried out in Roelly-Coppoletta and Rouault (1989) and Evans and Perkins (1990). We will briefly recall the relevant details. If T > t and r is a bounded gt-measurable random variable, then P[rIX. # O, < s < T] = P.[r{1-exp(-4(Xt, 1)(T-t1) }' -H ~~~~ exp-4[(Xt I 1)]T as T - oo. Let M(E) denote the trace of M(E) on M(E). If we set (1.3) QtF(1) = (y, 1)-1Pi[F(Xt)(Xt, 1)] for each bounded M(E)-measurable functions F, then (Qt) is a Markov semigroup that is the transition semigroup of a Markov process X = (_, I, t, It,X,t,pi) with state space (M(E),M(E)). The process X is a right process on M0(E), where Mo(E) is M(E) equipped with relative topology inherited from Mo(E). Besides Roelly-Coppoletta and Rouault (1989) and Evans and Perkins (1990), the process X has also been investigated in Evans (1991, 1992) and Aldous (1991). A noteworthy feature of the work on conditioned superprocesses is that, in some sense, the process X inherits some of the properties of the underlying process 6. For instance, it is shown by analytic arguments in Evans and Perkins (1990) that, if Pt converges in a suitable sense to an invariant probability measure v as t -4 oo, then (XAt, 1)- Xt converges in probability to v as t - oo. As part of his work on continuum random trees, Aldous (1991) offers a somewhat heuristic explanation of such results. He sketches an argument that X under F should be distributed as the sum of two independent measure-valued process. The first component is a copy of X under PIt. Roughly speaking, the second component is produced by taking an "immortal particle" that moves around as a copy of 6 under PA, where /i = (t, 1)-,s, and throws off pieces of mass that continue to evolve according to the dynamics under which mass evolves for X. Our first aim here is to give a rigorous treatment of this representation. We do this in §2. As a consequence, it would be possible to obtain more probabilistic proofs of some existing results along the lines set out in Aldous (1991). Rather than do this, we prove the following result as an example of the usefulness of this representation. 3 Theorem 1.4. Suppose that p E M(E). Ifthe tail a-field nt,o au{, : s > t} is PA-trivial, then the tail a-field nt>oa{X S > t} is Pt-trial. The most obvious question to ask about the tail of X is whether a given set A E E is intersected by the closed support of Xt for arbitrarily large values of t. Because of the rather pathological behaviour of the support when the sample paths of C contain jumps (see, for example, Perkins (1990) or Evans and Perkins (1991)), this question is only of interest in the case of those g with sample paths that are sufficiently continuous so that the closed support supp Xt is a compact set for all t > 0. As yet, a necessary and sufficient condition on C for suppXt, t > 0, to be compact is not known. LeGall (1991) gives a sufficient condition. Brownian motion in Rd for any d > 1 is an example of a C with this compact support property. We can think of the study of the probability of the event nt>0{13 > t: supp XJ f A # 0} as being about "recurrence" or "transience" of the set A for the closed support process {suppXt : t > 0}. LeGall (1991) considers the analogously defined question of whether or not a set A is "polar" for {suppXt : t > 0}; that is, whether or not the probability of the event {3t > 0 : suppXt n A # 0} is zero. As a first step in that investigation, a construction of X is given in terms of a Markov process Z taking values in the space of continuous E-valued stopped paths. (An E-valued stopped path is a pair w = (f, P), where ,B 2 0 and f : [0, oo[-- E is a continuous function such that f(s) = f(3) for every s > P.) Letting (ft,8t) = Zt, it is then shown that the probability of the event in question is also the probability of the event {3t > O: ft(/t) E A}. The latter probability can then be studied with the tools of probabilistic potential theory. We remark that the path-valued process construction of X is of independent interest and has applications other than the one we have just outlined. We carry out the analogue of this programme in §3. Firstly, we obtain a similar construction of X in terms of two identically distributed, dependent path-valued Markov processes Z+ and Z- and an independent copy of the process Z. Letting (f+, P+) - Z+, we then show that the probability of the event nt>ol{3s > t suppX,. n A 0 0} is zero if and only if the probability of the event ntfl{3s > t f:(fl:) E A} is zero. 4 Unfortunately, we are as yet unable to apply this criterion in the simplest case - when ( is Brownian motion in Rd and A is a bounded open set. However, this approach suggests the conjecture that in this case the probability starting from any initial state of the event nflo>{3s > t : suppX,. n A :# 0} is either 1 of 0 depending on whether d < 4 or d > 4.
Recommended publications
  • Conditioning and Markov Properties
    Conditioning and Markov properties Anders Rønn-Nielsen Ernst Hansen Department of Mathematical Sciences University of Copenhagen Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Copyright 2014 Anders Rønn-Nielsen & Ernst Hansen ISBN 978-87-7078-980-6 Contents Preface v 1 Conditional distributions 1 1.1 Markov kernels . 1 1.2 Integration of Markov kernels . 3 1.3 Properties for the integration measure . 6 1.4 Conditional distributions . 10 1.5 Existence of conditional distributions . 16 1.6 Exercises . 23 2 Conditional distributions: Transformations and moments 27 2.1 Transformations of conditional distributions . 27 2.2 Conditional moments . 35 2.3 Exercises . 41 3 Conditional independence 51 3.1 Conditional probabilities given a σ{algebra . 52 3.2 Conditionally independent events . 53 3.3 Conditionally independent σ-algebras . 55 3.4 Shifting information around . 59 3.5 Conditionally independent random variables . 61 3.6 Exercises . 68 4 Markov chains 71 4.1 The fundamental Markov property . 71 4.2 The strong Markov property . 84 4.3 Homogeneity . 90 4.4 An integration formula for a homogeneous Markov chain . 99 4.5 The Chapmann-Kolmogorov equations . 100 iv CONTENTS 4.6 Stationary distributions . 103 4.7 Exercises . 104 5 Ergodic theory for Markov chains on general state spaces 111 5.1 Convergence of transition probabilities . 113 5.2 Transition probabilities with densities . 115 5.3 Asymptotic stability . 117 5.4 Minorisation . 122 5.5 The drift criterion . 127 5.6 Exercises . 131 6 An introduction to Bayesian networks 141 6.1 Introduction . 141 6.2 Directed graphs .
    [Show full text]
  • Poisson Representations of Branching Markov and Measure-Valued
    The Annals of Probability 2011, Vol. 39, No. 3, 939–984 DOI: 10.1214/10-AOP574 c Institute of Mathematical Statistics, 2011 POISSON REPRESENTATIONS OF BRANCHING MARKOV AND MEASURE-VALUED BRANCHING PROCESSES By Thomas G. Kurtz1 and Eliane R. Rodrigues2 University of Wisconsin, Madison and UNAM Representations of branching Markov processes and their measure- valued limits in terms of countable systems of particles are con- structed for models with spatially varying birth and death rates. Each particle has a location and a “level,” but unlike earlier con- structions, the levels change with time. In fact, death of a particle occurs only when the level of the particle crosses a specified level r, or for the limiting models, hits infinity. For branching Markov pro- cesses, at each time t, conditioned on the state of the process, the levels are independent and uniformly distributed on [0,r]. For the limiting measure-valued process, at each time t, the joint distribu- tion of locations and levels is conditionally Poisson distributed with mean measure K(t) × Λ, where Λ denotes Lebesgue measure, and K is the desired measure-valued process. The representation simplifies or gives alternative proofs for a vari- ety of calculations and results including conditioning on extinction or nonextinction, Harris’s convergence theorem for supercritical branch- ing processes, and diffusion approximations for processes in random environments. 1. Introduction. Measure-valued processes arise naturally as infinite sys- tem limits of empirical measures of finite particle systems. A number of ap- proaches have been developed which preserve distinct particles in the limit and which give a representation of the measure-valued process as a transfor- mation of the limiting infinite particle system.
    [Show full text]
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • Perturbed Bessel Processes Séminaire De Probabilités (Strasbourg), Tome 32 (1998), P
    SÉMINAIRE DE PROBABILITÉS (STRASBOURG) R.A. DONEY JONATHAN WARREN MARC YOR Perturbed Bessel processes Séminaire de probabilités (Strasbourg), tome 32 (1998), p. 237-249 <http://www.numdam.org/item?id=SPS_1998__32__237_0> © Springer-Verlag, Berlin Heidelberg New York, 1998, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou im- pression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Perturbed Bessel Processes R.A.DONEY, J.WARREN, and M.YOR. There has been some interest in the literature in Brownian Inotion perturbed at its maximum; that is a process (Xt ; t > 0) satisfying (0.1) , where Mf = XS and (Bt; t > 0) is Brownian motion issuing from zero. The parameter a must satisfy a 1. For example arc-sine laws and Ray-Knight theorems have been obtained for this process; see Carmona, Petit and Yor [3], Werner [16], and Doney [7]. Our initial aim was to identify a process which could be considered as the process X conditioned to stay positive. This new process behaves like the Bessel process of dimension three except when at its maximum and we call it a perturbed three-dimensional Bessel process. We establish Ray-Knight theorems for the local times of this process, up to a first passage time and up to infinity (see Theorem 2.3), and observe that these descriptions coincide with those of the local times of two processes that have been considered in Yor [18].
    [Show full text]
  • A Predictive Model Using the Markov Property
    A Predictive Model using the Markov Property Robert A. Murphy, Ph.D. e-mail: [email protected] Abstract: Given a data set of numerical values which are sampled from some unknown probability distribution, we will show how to check if the data set exhibits the Markov property and we will show how to use the Markov property to predict future values from the same distribution, with probability 1. Keywords and phrases: markov property. 1. The Problem 1.1. Problem Statement Given a data set consisting of numerical values which are sampled from some unknown probability distribution, we want to show how to easily check if the data set exhibits the Markov property, which is stated as a sequence of dependent observations from a distribution such that each suc- cessive observation only depends upon the most recent previous one. In doing so, we will present a method for predicting bounds on future values from the same distribution, with probability 1. 1.2. Markov Property Let I R be any subset of the real numbers and let T I consist of times at which a numerical ⊆ ⊆ distribution of data is randomly sampled. Denote the random samples by a sequence of random variables Xt t∈T taking values in R. Fix t T and define T = t T : t>t to be the subset { } 0 ∈ 0 { ∈ 0} of times in T that are greater than t . Let t T . 0 1 ∈ 0 Definition 1 The sequence Xt t∈T is said to exhibit the Markov Property, if there exists a { } measureable function Yt1 such that Xt1 = Yt1 (Xt0 ) (1) for all sequential times t0,t1 T such that t1 T0.
    [Show full text]
  • Local Conditioning in Dawson–Watanabe Superprocesses
    The Annals of Probability 2013, Vol. 41, No. 1, 385–443 DOI: 10.1214/11-AOP702 c Institute of Mathematical Statistics, 2013 LOCAL CONDITIONING IN DAWSON–WATANABE SUPERPROCESSES By Olav Kallenberg Auburn University Consider a locally finite Dawson–Watanabe superprocess ξ =(ξt) in Rd with d ≥ 2. Our main results include some recursive formulas for the moment measures of ξ, with connections to the uniform Brown- ian tree, a Brownian snake representation of Palm measures, continu- ity properties of conditional moment densities, leading by duality to strongly continuous versions of the multivariate Palm distributions, and a local approximation of ξt by a stationary clusterη ˜ with nice continuity and scaling properties. This all leads up to an asymptotic description of the conditional distribution of ξt for a fixed t> 0, given d that ξt charges the ε-neighborhoods of some points x1,...,xn ∈ R . In the limit as ε → 0, the restrictions to those sets are conditionally in- dependent and given by the pseudo-random measures ξ˜ orη ˜, whereas the contribution to the exterior is given by the Palm distribution of ξt at x1,...,xn. Our proofs are based on the Cox cluster representa- tions of the historical process and involve some delicate estimates of moment densities. 1. Introduction. This paper may be regarded as a continuation of [19], where we considered some local properties of a Dawson–Watanabe super- process (henceforth referred to as a DW-process) at a fixed time t> 0. Recall that a DW-process ξ = (ξt) is a vaguely continuous, measure-valued diffu- d ξtf µvt sion process in R with Laplace functionals Eµe− = e− for suitable functions f 0, where v = (vt) is the unique solution to the evolution equa- 1 ≥ 2 tion v˙ = 2 ∆v v with initial condition v0 = f.
    [Show full text]
  • Coalescence in Bellman-Harris and Multi-Type Branching Processes Jyy-I Joy Hong Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Coalescence in Bellman-Harris and multi-type branching processes Jyy-i Joy Hong Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Hong, Jyy-i Joy, "Coalescence in Bellman-Harris and multi-type branching processes" (2011). Graduate Theses and Dissertations. 10103. https://lib.dr.iastate.edu/etd/10103 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Coalescence in Bellman-Harris and multi-type branching processes by Jyy-I Hong A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Krishna B. Athreya, Major Professor Clifford Bergman Dan Nordman Ananda Weerasinghe Paul E. Sacks Iowa State University Ames, Iowa 2011 Copyright c Jyy-I Hong, 2011. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents Wan-Fu Hong and Wen-Hsiang Tseng for their un- conditional love and support. Without them, the completion of this work would not have been possible. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . vii ABSTRACT . viii CHAPTER 1. PRELIMINARIES . 1 1.1 Introduction . 1 1.2 Discrete-time Single-type Galton-Watson Branching Processes .
    [Show full text]
  • Patterns in Random Walks and Brownian Motion
    Patterns in Random Walks and Brownian Motion Jim Pitman and Wenpin Tang Abstract We ask if it is possible to find some particular continuous paths of unit length in linear Brownian motion. Beginning with a discrete version of the problem, we derive the asymptotics of the expected waiting time for several interesting patterns. These suggest corresponding results on the existence/non-existence of continuous paths embedded in Brownian motion. With further effort we are able to prove some of these existence and non-existence results by various stochastic analysis arguments. A list of open problems is presented. AMS 2010 Mathematics Subject Classification: 60C05, 60G17, 60J65. 1 Introduction and Main Results We are interested in the question of embedding some continuous-time stochastic processes .Zu;0Ä u Ä 1/ into a Brownian path .BtI t 0/, without time-change or scaling, just by a random translation of origin in spacetime. More precisely, we ask the following: Question 1 Given some distribution of a process Z with continuous paths, does there exist a random time T such that .BTCu BT I 0 Ä u Ä 1/ has the same distribution as .Zu;0Ä u Ä 1/? The question of whether external randomization is allowed to construct such a random time T, is of no importance here. In fact, we can simply ignore Brownian J. Pitman ()•W.Tang Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720-3860, USA e-mail: [email protected]; [email protected] © Springer International Publishing Switzerland 2015 49 C. Donati-Martin et al.
    [Show full text]
  • Lecture 16: March 12 Instructor: Alistair Sinclair
    CS271 Randomness & Computation Spring 2020 Lecture 16: March 12 Instructor: Alistair Sinclair Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may be distributed outside this class only with the permission of the Instructor. 16.1 The Giant Component in Gn,p In an earlier lecture we briefly mentioned the threshold for the existence of a “giant” component in a random graph, i.e., a connected component containing a constant fraction of the vertices. We now derive this threshold rigorously, using both Chernoff bounds and the useful machinery of branching processes. We work c with our usual model of random graphs, Gn,p, and look specifically at the range p = n , for some constant c. Our goal will be to prove: c Theorem 16.1 For G ∈ Gn,p with p = n for constant c, we have: 1. For c < 1, then a.a.s. the largest connected component of G is of size O(log n). 2. For c > 1, then a.a.s. there exists a single largest component of G of size βn(1 + o(1)), where β is the unique solution in (0, 1) to β + e−βc = 1. Moreover, the next largest component in G has size O(log n). Here, and throughout this lecture, we use the phrase “a.a.s.” (asymptotically almost surely) to denote an event that holds with probability tending to 1 as n → ∞. This behavior is shown pictorially in Figure 16.1. For c < 1, G consists of a collection of small components of size at most O(log n) (which are all “tree-like”), while for c > 1 a single “giant” component emerges that contains a constant fraction of the vertices, with the remaining vertices all belonging to tree-like components of size O(log n).
    [Show full text]
  • Processes on Complex Networks. Percolation
    Chapter 5 Processes on complex networks. Percolation 77 Up till now we discussed the structure of the complex networks. The actual reason to study this structure is to understand how this structure influences the behavior of random processes on networks. I will talk about two such processes. The first one is the percolation process. The second one is the spread of epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated as: How the network topology influences the dynamics of random processes on this network. We are still quite far from a definite answer to this question. 5.1 Percolation 5.1.1 Introduction to percolation Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This means that there is a parameter in the system, whose small change yields a large change in the system behavior. To define the percolation process, consider a graph, that has a large connected component. In the classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We have parameter ϕ, which is the probability that any edge present in the underlying graph is open or closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about the vertices being open or closed, and this is called site percolation.
    [Show full text]
  • Chapter 21 Epidemics
    From the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World. By David Easley and Jon Kleinberg. Cambridge University Press, 2010. Complete preprint on-line at http://www.cs.cornell.edu/home/kleinber/networks-book/ Chapter 21 Epidemics The study of epidemic disease has always been a topic where biological issues mix with social ones. When we talk about epidemic disease, we will be thinking of contagious diseases caused by biological pathogens — things like influenza, measles, and sexually transmitted diseases, which spread from person to person. Epidemics can pass explosively through a population, or they can persist over long time periods at low levels; they can experience sudden flare-ups or even wave-like cyclic patterns of increasing and decreasing prevalence. In extreme cases, a single disease outbreak can have a significant effect on a whole civilization, as with the epidemics started by the arrival of Europeans in the Americas [130], or the outbreak of bubonic plague that killed 20% of the population of Europe over a seven-year period in the 1300s [293]. 21.1 Diseases and the Networks that Transmit Them The patterns by which epidemics spread through groups of people is determined not just by the properties of the pathogen carrying it — including its contagiousness, the length of its infectious period, and its severity — but also by network structures within the population it is affecting. The social network within a population — recording who knows whom — determines a lot about how the disease is likely to spread from one person to another. But more generally, the opportunities for a disease to spread are given by a contact network: there is a node for each person, and an edge if two people come into contact with each other in a way that makes it possible for the disease to spread from one to the other.
    [Show full text]
  • Pdf File of Second Edition, January 2018
    Probability on Graphs Random Processes on Graphs and Lattices Second Edition, 2018 GEOFFREY GRIMMETT Statistical Laboratory University of Cambridge copyright Geoffrey Grimmett Geoffrey Grimmett Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WB United Kingdom 2000 MSC: (Primary) 60K35, 82B20, (Secondary) 05C80, 82B43, 82C22 With 56 Figures copyright Geoffrey Grimmett Contents Preface ix 1 Random Walks on Graphs 1 1.1 Random Walks and Reversible Markov Chains 1 1.2 Electrical Networks 3 1.3 FlowsandEnergy 8 1.4 RecurrenceandResistance 11 1.5 Polya's Theorem 14 1.6 GraphTheory 16 1.7 Exercises 18 2 Uniform Spanning Tree 21 2.1 De®nition 21 2.2 Wilson's Algorithm 23 2.3 Weak Limits on Lattices 28 2.4 Uniform Forest 31 2.5 Schramm±LownerEvolutionsÈ 32 2.6 Exercises 36 3 Percolation and Self-Avoiding Walks 39 3.1 PercolationandPhaseTransition 39 3.2 Self-Avoiding Walks 42 3.3 ConnectiveConstantoftheHexagonalLattice 45 3.4 CoupledPercolation 53 3.5 Oriented Percolation 53 3.6 Exercises 56 4 Association and In¯uence 59 4.1 Holley Inequality 59 4.2 FKG Inequality 62 4.3 BK Inequalitycopyright Geoffrey Grimmett63 vi Contents 4.4 HoeffdingInequality 65 4.5 In¯uenceforProductMeasures 67 4.6 ProofsofIn¯uenceTheorems 72 4.7 Russo'sFormulaandSharpThresholds 80 4.8 Exercises 83 5 Further Percolation 86 5.1 Subcritical Phase 86 5.2 Supercritical Phase 90 5.3 UniquenessoftheIn®niteCluster 96 5.4 Phase Transition 99 5.5 OpenPathsinAnnuli 103 5.6 The Critical Probability in Two Dimensions 107
    [Show full text]