Coalescence in Bellman-Harris and Multi-Type Branching Processes Jyy-I Joy Hong Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Coalescence in Bellman-Harris and Multi-Type Branching Processes Jyy-I Joy Hong Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Coalescence in Bellman-Harris and multi-type branching processes Jyy-i Joy Hong Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Hong, Jyy-i Joy, "Coalescence in Bellman-Harris and multi-type branching processes" (2011). Graduate Theses and Dissertations. 10103. https://lib.dr.iastate.edu/etd/10103 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Coalescence in Bellman-Harris and multi-type branching processes by Jyy-I Hong A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Krishna B. Athreya, Major Professor Clifford Bergman Dan Nordman Ananda Weerasinghe Paul E. Sacks Iowa State University Ames, Iowa 2011 Copyright c Jyy-I Hong, 2011. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents Wan-Fu Hong and Wen-Hsiang Tseng for their un- conditional love and support. Without them, the completion of this work would not have been possible. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS . vii ABSTRACT . viii CHAPTER 1. PRELIMINARIES . 1 1.1 Introduction . 1 1.2 Discrete-time Single-type Galton-Watson Branching Processes . 3 1.2.1 Definitions and Notations . 3 1.2.2 Limit Theorems . 4 1.3 Discrete-time Multi-type Galton-Watson Branching Processes . 7 1.3.1 Definitions, Assumptions and Notations . 7 1.3.2 Limit Theorems . 10 1.4 Continuous-time Single-type Age-dependent Bellman-Harris Branching Processes . 13 1.4.1 Definitions, Assumptions and Notations . 13 1.4.2 Limit Theorems . 14 1.4.3 Age Distribution in Bellman-Harris Processes . 16 1.5 Continuous-time Multi-type Age-dependent Bellman-Harris Branching Processes . 18 1.5.1 Definitions, Assumptions and Notations . 18 1.5.2 Limit Theorems . 19 1.5.3 Age Distribution in Multi-type Age-dependent Branching Processes . 19 CHAPTER 2. REVIEW OF THE COALESCENCE IN DISCRETE-TIME SINGLE-TYPE GALTON-WATSON BRANCHING PROCESSES . 21 2.1 Introduction . 21 2.2 The Supercritical Case . 23 iv 2.3 The Critical Case . 23 2.4 The Subcritical Case . 24 2.5 The Explosive Case . 25 CHAPTER 3. COALESCENCE IN DISCRETE-TIME MULTI-TYPE GALTON-WATSON BRANCHING PROCESSES . 27 3.1 Introduction . 27 3.2 Results in The Supercritical Case . 28 3.2.1 The Statements of Results . 29 3.2.2 The Proof of Theorem 3.1 ............................ 30 3.2.3 The Proof of Theorem 3.2 ............................ 32 3.2.4 The Proof of Theorem 3.3 ............................ 33 3.3 Results in The Critical Case . 35 3.3.1 The statements of Results . 35 3.3.2 The Proof of Theorem 3.5 ............................ 37 3.3.3 The Proof of Theorem 3.6 ............................ 41 3.3.4 The Proof of Theorem 3.7 ............................ 43 3.4 Results in The Subcritical Case . 46 3.4.1 The Statements of Results . 46 3.4.2 The Proof of Theorem 3.8 ............................ 48 3.4.3 The Proof of Theorem 3.9 ............................ 50 3.4.4 The Proof of Theorem 3.10 ............................ 51 3.5 The Markov Property on Types . 54 3.5.1 The Statements of Results . 54 3.5.2 The Proof of Theorem 3.11 ............................ 56 3.5.3 The Proof of Theorem 3.12 ............................ 59 CHAPTER 4. COALESCENCE IN CONTINUOUS-TIME SINGLE-TYPE AGE-DEPEN- DENT BELLMAN-HARRIS BRANCHING PROCESSES . 66 4.1 Introduction . 66 v 4.2 Results in The Supercritical Case . 67 4.2.1 The statement of Results . 67 4.2.2 The proof of Theorem 4.1 ............................ 69 4.2.3 The proof of Theorem 4.2 ............................ 73 4.2.4 The proof of Theorem 4.3 ............................ 75 4.2.5 The proof of Theorem 4.4 ............................ 85 4.3 Results in The Subcritical Case . 86 4.3.1 The statements of Results . 86 4.3.2 The proof of Theorem 4.5 ............................ 87 4.3.3 The proof of Theorem 4.6 ............................ 96 CHAPTER 5. COALESCENCE IN CONTINUOUS-TIME MULTI-TYPE AGE-DEPEND- ENT BELLMAN-HARRIS BRANCHING PROCESSES . 101 5.1 Introduction . 101 5.2 Results in The Supercritical Case . 102 5.2.1 The statements of Results . 102 5.2.2 The proof of Theorem 5.1 ............................ 104 5.2.3 The proof of Theorem 5.2 ............................ 114 5.2.4 The proof of Theorem 5.3 ............................ 119 5.3 The Generation Problem in Supercritical Case . 122 5.3.1 The statement of Result . 123 5.3.2 The proof of Theorem 5.4 ............................ 123 CHAPTER 6. APPLICATION TO BRANCHING RANDOM WALKS . 128 6.1 Introduction . 128 6.2 Review of Results in The Supercritical Case . 129 6.3 Results in The Explosive Case . 130 6.3.1 The Statements of Theorems in The Explosive Case . 131 6.3.2 The Proof of Theorem 6.3 ............................ 132 6.3.3 The Proof of Theorem 6.4 ............................ 137 vi CHAPTER 7. OPEN PROBLEMS . 139 7.1 Problems in Discrete-time Multi-type Galton-Watson Branching Processes . 139 7.2 Problems in Continuous-time Single-type Bellman-Harris Branching Processes . 139 7.3 Problems in Continuous-time Multi-type Bellman-Harris Branching Processes . 140 BIBLIOGRAPHY . 141 vii ACKNOWLEDGEMENTS First of all, I would like to take this opportunity to express my appreciation to my advisor Dr. Krishna B. Athreya for his excellent teaching and expert guidance. From the knowledge of mathematics to the advice of study, research and even life, I always feel so comfortable and encouraged to discuss with him and learn from him. Secondly, I would like to thank the members of my committee: Dr. Ananda Weerasinghe, Dr. Paul E. Sacks, Dr. Clifford Bergman and Dr. Dan Nordman for their precious advices and suggestions. Also, my thanks are given to Dr. Jerold Mathews for the wonderful reading time he spent in improving my English and to Dr. Leslie Hogben for her helps in many ways. Furthermore, I would like to give my thanks to Dr. Jhishen Tsay (National Sun Yat-sen University, Taiwan) and his wife Chun-Tor Lee for their continuous encouragement when I was struggling and depressed. In addition, I would like to thank all the friends from LIFE at Campus Baptist Church for everything they have done for me. Finally, I would like to give my deepest appreciation to my mother, my sister, Mou-Mou, My brother, Shih-Hsun, and my brother-in-low, Cohuahua, for their love, care, understanding and patience. With their endless support in my life, I was able to pursue my dreams. I also give my special thanks to my husband, Chao-Chun, for his love and company during these years and it means a lot to me. viii ABSTRACT For branching processes, there are many well-known limit theorems regarding the evolution of the population in the future time. In this dissertation, we investigate the other direction of the evolution, that is, the past of the processes. We pick some individuals at random by simple random sampling without replacement and trace their lines of descent backward in time until they meet. We study the coalescence problem of the discrete-time multi-type Galton-Watson branching process and both the continuous- time single-type and multi-type Bellman-Harris branching processes including the generation number, the death time (in the continuous-time processes) and the type (in the multi-type processes) of the last common ancestor ( also called the most recent common ancestor) of the randomly chosen individuals for the different cases (supercritical, critical, subcritical and explosive). 1 CHAPTER 1. PRELIMINARIES 1.1 Introduction The study of branching processes has a long history and was essentially motivated by the observa- tion of the extinction of certain family lines of the European aristocracy in contrast to the rapid exponen- tial growth of the whole population. Francis Galton formulated this extinction problem and originally posed it in the Educational Times in 1874 and the Reverend Henry William Watson replied with a so- lution (see Harris (1963)). Seneta and Heyde (1977) have pointed out that the French mathematician Bienayme´ had formulated essentially the same model fifty years earlier. The model of Galton and Watson (called the Galton-Watson branching process) appeared to have been neglected for many years after its creation. After 1940, interest in this model increased, partly because of the analogy between the growth of families and nuclear chain reactions and also partly because of the increased general interest in applications of probability theory. Since then, branching processes have been regarded as appropriate probability models for the description of the behavior of systems whose components (cells, particles, individuals in general) reproduce, are transformed, or die (see Harris [20], Athreya and Ney [5], Jagers [22], Mode [28] and Sevastyanov [35]). Nowadays, this theory is an area of active and interesting research. There are many generalizations of the single-type Galton-Watson branching process in discrete time. Of these the multi-type branching process model in discrete time is a natural one. The multi- type branching process is important because it is constructed in a way that closely matches real-life situations and hence can be used to study a wide variety of real-life problems, including those related to differences in types of ethnicities, types of genes, types of cosmic rays, etc.
Recommended publications
  • Poisson Representations of Branching Markov and Measure-Valued
    The Annals of Probability 2011, Vol. 39, No. 3, 939–984 DOI: 10.1214/10-AOP574 c Institute of Mathematical Statistics, 2011 POISSON REPRESENTATIONS OF BRANCHING MARKOV AND MEASURE-VALUED BRANCHING PROCESSES By Thomas G. Kurtz1 and Eliane R. Rodrigues2 University of Wisconsin, Madison and UNAM Representations of branching Markov processes and their measure- valued limits in terms of countable systems of particles are con- structed for models with spatially varying birth and death rates. Each particle has a location and a “level,” but unlike earlier con- structions, the levels change with time. In fact, death of a particle occurs only when the level of the particle crosses a specified level r, or for the limiting models, hits infinity. For branching Markov pro- cesses, at each time t, conditioned on the state of the process, the levels are independent and uniformly distributed on [0,r]. For the limiting measure-valued process, at each time t, the joint distribu- tion of locations and levels is conditionally Poisson distributed with mean measure K(t) × Λ, where Λ denotes Lebesgue measure, and K is the desired measure-valued process. The representation simplifies or gives alternative proofs for a vari- ety of calculations and results including conditioning on extinction or nonextinction, Harris’s convergence theorem for supercritical branch- ing processes, and diffusion approximations for processes in random environments. 1. Introduction. Measure-valued processes arise naturally as infinite sys- tem limits of empirical measures of finite particle systems. A number of ap- proaches have been developed which preserve distinct particles in the limit and which give a representation of the measure-valued process as a transfor- mation of the limiting infinite particle system.
    [Show full text]
  • Lecture 16: March 12 Instructor: Alistair Sinclair
    CS271 Randomness & Computation Spring 2020 Lecture 16: March 12 Instructor: Alistair Sinclair Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may be distributed outside this class only with the permission of the Instructor. 16.1 The Giant Component in Gn,p In an earlier lecture we briefly mentioned the threshold for the existence of a “giant” component in a random graph, i.e., a connected component containing a constant fraction of the vertices. We now derive this threshold rigorously, using both Chernoff bounds and the useful machinery of branching processes. We work c with our usual model of random graphs, Gn,p, and look specifically at the range p = n , for some constant c. Our goal will be to prove: c Theorem 16.1 For G ∈ Gn,p with p = n for constant c, we have: 1. For c < 1, then a.a.s. the largest connected component of G is of size O(log n). 2. For c > 1, then a.a.s. there exists a single largest component of G of size βn(1 + o(1)), where β is the unique solution in (0, 1) to β + e−βc = 1. Moreover, the next largest component in G has size O(log n). Here, and throughout this lecture, we use the phrase “a.a.s.” (asymptotically almost surely) to denote an event that holds with probability tending to 1 as n → ∞. This behavior is shown pictorially in Figure 16.1. For c < 1, G consists of a collection of small components of size at most O(log n) (which are all “tree-like”), while for c > 1 a single “giant” component emerges that contains a constant fraction of the vertices, with the remaining vertices all belonging to tree-like components of size O(log n).
    [Show full text]
  • Processes on Complex Networks. Percolation
    Chapter 5 Processes on complex networks. Percolation 77 Up till now we discussed the structure of the complex networks. The actual reason to study this structure is to understand how this structure influences the behavior of random processes on networks. I will talk about two such processes. The first one is the percolation process. The second one is the spread of epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated as: How the network topology influences the dynamics of random processes on this network. We are still quite far from a definite answer to this question. 5.1 Percolation 5.1.1 Introduction to percolation Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This means that there is a parameter in the system, whose small change yields a large change in the system behavior. To define the percolation process, consider a graph, that has a large connected component. In the classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We have parameter ϕ, which is the probability that any edge present in the underlying graph is open or closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about the vertices being open or closed, and this is called site percolation.
    [Show full text]
  • Chapter 21 Epidemics
    From the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World. By David Easley and Jon Kleinberg. Cambridge University Press, 2010. Complete preprint on-line at http://www.cs.cornell.edu/home/kleinber/networks-book/ Chapter 21 Epidemics The study of epidemic disease has always been a topic where biological issues mix with social ones. When we talk about epidemic disease, we will be thinking of contagious diseases caused by biological pathogens — things like influenza, measles, and sexually transmitted diseases, which spread from person to person. Epidemics can pass explosively through a population, or they can persist over long time periods at low levels; they can experience sudden flare-ups or even wave-like cyclic patterns of increasing and decreasing prevalence. In extreme cases, a single disease outbreak can have a significant effect on a whole civilization, as with the epidemics started by the arrival of Europeans in the Americas [130], or the outbreak of bubonic plague that killed 20% of the population of Europe over a seven-year period in the 1300s [293]. 21.1 Diseases and the Networks that Transmit Them The patterns by which epidemics spread through groups of people is determined not just by the properties of the pathogen carrying it — including its contagiousness, the length of its infectious period, and its severity — but also by network structures within the population it is affecting. The social network within a population — recording who knows whom — determines a lot about how the disease is likely to spread from one person to another. But more generally, the opportunities for a disease to spread are given by a contact network: there is a node for each person, and an edge if two people come into contact with each other in a way that makes it possible for the disease to spread from one to the other.
    [Show full text]
  • Pdf File of Second Edition, January 2018
    Probability on Graphs Random Processes on Graphs and Lattices Second Edition, 2018 GEOFFREY GRIMMETT Statistical Laboratory University of Cambridge copyright Geoffrey Grimmett Geoffrey Grimmett Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WB United Kingdom 2000 MSC: (Primary) 60K35, 82B20, (Secondary) 05C80, 82B43, 82C22 With 56 Figures copyright Geoffrey Grimmett Contents Preface ix 1 Random Walks on Graphs 1 1.1 Random Walks and Reversible Markov Chains 1 1.2 Electrical Networks 3 1.3 FlowsandEnergy 8 1.4 RecurrenceandResistance 11 1.5 Polya's Theorem 14 1.6 GraphTheory 16 1.7 Exercises 18 2 Uniform Spanning Tree 21 2.1 De®nition 21 2.2 Wilson's Algorithm 23 2.3 Weak Limits on Lattices 28 2.4 Uniform Forest 31 2.5 Schramm±LownerEvolutionsÈ 32 2.6 Exercises 36 3 Percolation and Self-Avoiding Walks 39 3.1 PercolationandPhaseTransition 39 3.2 Self-Avoiding Walks 42 3.3 ConnectiveConstantoftheHexagonalLattice 45 3.4 CoupledPercolation 53 3.5 Oriented Percolation 53 3.6 Exercises 56 4 Association and In¯uence 59 4.1 Holley Inequality 59 4.2 FKG Inequality 62 4.3 BK Inequalitycopyright Geoffrey Grimmett63 vi Contents 4.4 HoeffdingInequality 65 4.5 In¯uenceforProductMeasures 67 4.6 ProofsofIn¯uenceTheorems 72 4.7 Russo'sFormulaandSharpThresholds 80 4.8 Exercises 83 5 Further Percolation 86 5.1 Subcritical Phase 86 5.2 Supercritical Phase 90 5.3 UniquenessoftheIn®niteCluster 96 5.4 Phase Transition 99 5.5 OpenPathsinAnnuli 103 5.6 The Critical Probability in Two Dimensions 107
    [Show full text]
  • BRANCHING PROCESSES in RANDOM TREES by Yanjmaa
    BRANCHING PROCESSES IN RANDOM TREES by Yanjmaa Jutmaan A dissertation submitted to the faculty of the University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Charlotte 2012 Approved by: Dr. Stanislav A. Molchanov Dr. Isaac Sonin Dr. Michael Grabchak Dr. Celine Latulipe ii c 2012 Yanjmaa Jutmaan ALL RIGHTS RESERVED iii ABSTRACT YANJMAA JUTMAAN. Branching processes in random trees. (Under the direction of DR. STANISLAV MOLCHANOV) We study the behavior of branching process in a random environment on trees in the critical, subcritical and supercritical case. We are interested in the case when both the branching and the step transition parameters are random quantities. We present quenched and annealed classifications for such processes and determine some limit theorems in the supercritical quenched case. Corollaries cover the percolation problem on random trees. The main tool is the compositions of random generating functions. iv ACKNOWLEDGMENTS This work would not have been possible without the support and assistance of my colleagues, friends, and family. I have been fortunate to be Dr. Stanislav Molchanov's student. I am grateful for his guidance, teaching and involvement in my graduate study. I have learned much from him; this will be remembered and valued throughout my life. I am thankful also to the other members of my committee, Dr. Isaac Sonin, Dr. Michael Grabchak and Dr. Celine Latulipe for their time and support provided. I would also like to thank Dr. Joel Avrin, graduate coordinator, for his advice, kindness and patience. I am eternally thankful to my father Dagva and mother Tsendmaa for their love that I feel even this far away.
    [Show full text]
  • Ewens' Sampling Formula
    Ewens’ sampling formula; a combinatorial derivation Bob Griffiths, University of Oxford Sabin Lessard, Universit´edeMontr´eal Infinitely-many-alleles-model: unique mutations ......................................................................................................... •. •. •. ............................................................................................................ •. •. .................................................................................................... •. •. •. ............................................................. ......................................... .............................................. •. ............................... ..................... ..................... ......................................... ......................................... ..................... • ••• • • • ••• • • • • • Sample configuration of alleles 4 A1,1A2,4A3,3A4,3A5. Ewens’ sampling formula (1972) n sampled genes k b Probability of a sample having types with j types represented j times, jbj = n,and bj = k,is n! 1 θk · · b b 1 1 ···n n b1! ···bn! θ(θ +1)···(θ + n − 1) Example: Sample 4 A1,1A2,4A3,3A4,3A5. b1 =1, b2 =0, b3 =2, b4 =2. Old and New lineages . •. ............................... ......................................... •. .............................................. ............................... ............................... ..................... ..................... ......................................... ..................... ..................... ◦ ◦◦◦◦◦ n1 n2 nm nm+1
    [Show full text]
  • A Branching Process Model for the Novel Coronavirus (Covid-19) Spread in Greece
    International Journal of Modeling and Optimization, Vol. 11, No. 3, August 2021 A Branching Process Model for the Novel Coronavirus (Covid-19) Spread in Greece Ioanna A. Mitrofani and Vasilis P. Koutras restrictions and after 42 days of quarantine, when the number Abstract—The novel coronavirus (covid-19) was initially of daily reported cases decreased to 10, state authorities identified at the end of 2019 and caused a global health care gradually repealed the restrictions [3]. These control crisis. The increased transmissibility of the virus, that led to measures, that were among the strictest in Europe, were high mortality, raises the interest of scientists worldwide. Thus, various methods and models have been extensively discussed, so initially considered as highly effective and whereas the to study and control covid-19 transmission. Mathematical pandemic was internationally ongoing, the case of Greece modeling constitutes an important tool to estimate key was treated as a success story [4]. However, at the time of this parameters of the transmission and predict the dynamic of the revision the numbers have been increased to 82,034 total virus. More precisely, in the relevant literature, epidemiology is cases and 1,288 deaths. These fluctuations on numbers attract considered as a classical application area of branching the interest of researchers to model the transmission of the processes, which are stochastic individual-based processes. In virus to evaluate and quantify the dynamic of the pandemic this paper, we develop a classical Galton-Watson branching process approach for the covid-19 spread in Greece at the early [1]. stage. This approach is structured in two parts, initial and latter Mathematical models of infectious disease transmission transmission stages, so to provide a comprehensive view of the effectively describe and simply depict the evolution of virus spread through basic and effective reproduction numbers diseases by providing quantitative data in epidemiology [2], respectively, along with the probability of an outbreak.
    [Show full text]
  • Branching Processes: Optimization, Variational Characterization, and Continuous Approximation
    Branching Processes: Optimization, Variational Characterization, and Continuous Approximation Von der Fakult¨atf¨urMathematik und Informatik der Universit¨atLeipzig angenommene DISSERTATION zur Erlangung des akademischen Grades DOCTOR RERUM NATURALIUM (Dr.rer.nat.) im Fachgebiet Mathematik vorgelegt von B.Sc. Ying Wang geboren am 09.04.1981 in Shandong (Volksrepublik China) Die Annahme der Dissertation haben empfohlen: 1. Professor Dr. J¨urgenJost (MPIMN Leipzig) 2. Professor Dr. Wolfgang K¨onig(WIAS Berlin) Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 27.10.2010 mit dem Gesamtpr¨adikat magna cum laude. Acknowledgements I would like to thank my advisor Prof. Dr. J¨urgenJost for introducing me to this interesting and challenging topic, as well as his years of encouragement, suggestions, and comments during the work on this thesis. I also would like to thank Prof. Dr. Zhi-Ming Ma for recommending me to the MPG and CAS joint doctoral promotion program, his suggestions and comments on my work. I am indebted to Chinese Academy of Sciences, the International Max Planck Re- search School Mathematics in the Sciences and the Max Planck Institute for Math- ematics in the Sciences for financial support and for providing an excellent work environment. I would like to thank Prof. Dr. R¨udigerFrey for suggestions on stochastic control and the allocation problem. I am grateful to Prof. Dr. Sergio Albeverio for discussions on the continuous approximation of multitype Markov branching processes in random environments. I am also deeply grateful to Prof. Dr. David Elworthy for his comments on my posters and encouragement during my work. Thanks to Susanne Schindler, Tat Dat Tran, Roland C.
    [Show full text]
  • Lecture 1: Finite Markov Chains. Branching Process
    Lecture 1: Finite Markov Chains. Branching process. October 9, 2007 Antonina Mitrofanova A Stochastic process is a counterpart of the deterministic process. Even if the initial condition is known, there are many possibilities how the process might go, described by probability distributions. More formally, a Stochastic process is a collection of random variables {X(t), t ∈ T } defined on a common probability space indexed by the index set T which describes the evolution of some system. One of the basic types of Stochastic process is a Markov process. The Markov process has the property that conditional on the history up to the present, the probabilistic structure of the future does not depend on the whole history but only on the present. The future is, thus, conditionally independent of the past. Markov chains are Markov processes with discrete index set and countable or finite state space. Let {Xn, n ≥ 0} be a Markov chain , with a discrete index set described by n. Let this Markov process have a finite state space S = {0, 1, . , m}. At the beginning of the process, the initial state should be chosen. For this we need an initial distribution {pk}, where P [X0 = k] = pk pk ≥ 0 Pm and k=0 pk = 1. After the initial state is chosen, the choice of the next state is defined by transition probabilities pij, which is the probability of moving to a state j given that we are currently in state i. Observe that the choice of the next state only depends on a current state and not on any states prior to that (in other words, it depends purely on the recent history).
    [Show full text]
  • A Course in Interacting Particle Systems
    A Course in Interacting Particle Systems J.M. Swart January 14, 2020 arXiv:1703.10007v2 [math.PR] 13 Jan 2020 2 Contents 1 Introduction 7 1.1 General set-up . .7 1.2 The voter model . .9 1.3 The contact process . 11 1.4 Ising and Potts models . 14 1.5 Phase transitions . 17 1.6 Variations on the voter model . 20 1.7 Further models . 22 2 Continuous-time Markov chains 27 2.1 Poisson point sets . 27 2.2 Transition probabilities and generators . 30 2.3 Poisson construction of Markov processes . 31 2.4 Examples of Poisson representations . 33 3 The mean-field limit 35 3.1 Processes on the complete graph . 35 3.2 The mean-field limit of the Ising model . 36 3.3 Analysis of the mean-field model . 38 3.4 Functions of Markov processes . 42 3.5 The mean-field contact process . 47 3.6 The mean-field voter model . 49 3.7 Exercises . 51 4 Construction and ergodicity 53 4.1 Introduction . 53 4.2 Feller processes . 54 4.3 Poisson construction . 63 4.4 Generator construction . 72 4.5 Ergodicity . 79 4.6 Application to the Ising model . 81 4.7 Further results . 85 5 Monotonicity 89 5.1 The stochastic order . 89 5.2 The upper and lower invariant laws . 94 5.3 The contact process . 97 5.4 Other examples . 100 3 4 CONTENTS 5.5 Exercises . 101 6 Duality 105 6.1 Introduction . 105 6.2 Additive systems duality . 106 6.3 Cancellative systems duality . 113 6.4 Other dualities .
    [Show full text]
  • Intermittency for Branching Random Walk in Pareto Environment
    The Annals of Probability 2016, Vol. 44, No. 3, 2198–2263 DOI: 10.1214/15-AOP1021 © Institute of Mathematical Statistics, 2016 INTERMITTENCY FOR BRANCHING RANDOM WALK IN PARETO ENVIRONMENT BY MARCEL ORTGIESE AND MATTHEW I. ROBERTS1 Westfälische Wilhelms-Universität Münster and University of Bath We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We describe the process, including a detailed shape theorem, in terms of a system of growing lilypads. As an application we show that the branching random walk is intermittent, in the sense that most particles are concentrated on one very small island with large potential. Moreover, we compare the branching random walk to the parabolic Anderson model and observe that although the two systems show similarities, the mechanisms that control the growth are fundamentally different. 1. Introduction and main results. 1.1. Introduction. Branching processes in random environments are a classi- cal subject going back to [25, 27]. We are interested in branching random walks (BRW), where particles branch but also have spatial positions and are allowed to migrate to other sites. We consider a particular variant of the model defined on Zd . Start with a single particle at the origin. Each particle performs a continuous-time nearest-neighbor symmetric random walk on Zd . When at site z ∈ Zd , a particle splits into two new particles at rate ξ(z), where the potential (ξ(z), z ∈ Zd ) is a collection of non- negative i.i.d. random variables. The two new particles then repeat the stochastic behavior of their parent, started from z.
    [Show full text]