Local Conditioning in Dawson–Watanabe Superprocesses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conditioning and Markov Properties
Conditioning and Markov properties Anders Rønn-Nielsen Ernst Hansen Department of Mathematical Sciences University of Copenhagen Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Copyright 2014 Anders Rønn-Nielsen & Ernst Hansen ISBN 978-87-7078-980-6 Contents Preface v 1 Conditional distributions 1 1.1 Markov kernels . 1 1.2 Integration of Markov kernels . 3 1.3 Properties for the integration measure . 6 1.4 Conditional distributions . 10 1.5 Existence of conditional distributions . 16 1.6 Exercises . 23 2 Conditional distributions: Transformations and moments 27 2.1 Transformations of conditional distributions . 27 2.2 Conditional moments . 35 2.3 Exercises . 41 3 Conditional independence 51 3.1 Conditional probabilities given a σ{algebra . 52 3.2 Conditionally independent events . 53 3.3 Conditionally independent σ-algebras . 55 3.4 Shifting information around . 59 3.5 Conditionally independent random variables . 61 3.6 Exercises . 68 4 Markov chains 71 4.1 The fundamental Markov property . 71 4.2 The strong Markov property . 84 4.3 Homogeneity . 90 4.4 An integration formula for a homogeneous Markov chain . 99 4.5 The Chapmann-Kolmogorov equations . 100 iv CONTENTS 4.6 Stationary distributions . 103 4.7 Exercises . 104 5 Ergodic theory for Markov chains on general state spaces 111 5.1 Convergence of transition probabilities . 113 5.2 Transition probabilities with densities . 115 5.3 Asymptotic stability . 117 5.4 Minorisation . 122 5.5 The drift criterion . 127 5.6 Exercises . 131 6 An introduction to Bayesian networks 141 6.1 Introduction . 141 6.2 Directed graphs . -
Cox Process Representation and Inference for Stochastic Reaction-Diffusion Processes
Edinburgh Research Explorer Cox process representation and inference for stochastic reaction-diffusion processes Citation for published version: Schnoerr, D, Grima, R & Sanguinetti, G 2016, 'Cox process representation and inference for stochastic reaction-diffusion processes', Nature Communications, vol. 7, 11729. https://doi.org/10.1038/ncomms11729 Digital Object Identifier (DOI): 10.1038/ncomms11729 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Nature Communications General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 ARTICLE Received 16 Dec 2015 | Accepted 26 Apr 2016 | Published 25 May 2016 DOI: 10.1038/ncomms11729 OPEN Cox process representation and inference for stochastic reaction–diffusion processes David Schnoerr1,2,3, Ramon Grima1,3 & Guido Sanguinetti2,3 Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction–diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. -
Poisson Representations of Branching Markov and Measure-Valued
The Annals of Probability 2011, Vol. 39, No. 3, 939–984 DOI: 10.1214/10-AOP574 c Institute of Mathematical Statistics, 2011 POISSON REPRESENTATIONS OF BRANCHING MARKOV AND MEASURE-VALUED BRANCHING PROCESSES By Thomas G. Kurtz1 and Eliane R. Rodrigues2 University of Wisconsin, Madison and UNAM Representations of branching Markov processes and their measure- valued limits in terms of countable systems of particles are con- structed for models with spatially varying birth and death rates. Each particle has a location and a “level,” but unlike earlier con- structions, the levels change with time. In fact, death of a particle occurs only when the level of the particle crosses a specified level r, or for the limiting models, hits infinity. For branching Markov pro- cesses, at each time t, conditioned on the state of the process, the levels are independent and uniformly distributed on [0,r]. For the limiting measure-valued process, at each time t, the joint distribu- tion of locations and levels is conditionally Poisson distributed with mean measure K(t) × Λ, where Λ denotes Lebesgue measure, and K is the desired measure-valued process. The representation simplifies or gives alternative proofs for a vari- ety of calculations and results including conditioning on extinction or nonextinction, Harris’s convergence theorem for supercritical branch- ing processes, and diffusion approximations for processes in random environments. 1. Introduction. Measure-valued processes arise naturally as infinite sys- tem limits of empirical measures of finite particle systems. A number of ap- proaches have been developed which preserve distinct particles in the limit and which give a representation of the measure-valued process as a transfor- mation of the limiting infinite particle system. -
Superprocesses and Mckean-Vlasov Equations with Creation of Mass
Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es. -
A Predictive Model Using the Markov Property
A Predictive Model using the Markov Property Robert A. Murphy, Ph.D. e-mail: [email protected] Abstract: Given a data set of numerical values which are sampled from some unknown probability distribution, we will show how to check if the data set exhibits the Markov property and we will show how to use the Markov property to predict future values from the same distribution, with probability 1. Keywords and phrases: markov property. 1. The Problem 1.1. Problem Statement Given a data set consisting of numerical values which are sampled from some unknown probability distribution, we want to show how to easily check if the data set exhibits the Markov property, which is stated as a sequence of dependent observations from a distribution such that each suc- cessive observation only depends upon the most recent previous one. In doing so, we will present a method for predicting bounds on future values from the same distribution, with probability 1. 1.2. Markov Property Let I R be any subset of the real numbers and let T I consist of times at which a numerical ⊆ ⊆ distribution of data is randomly sampled. Denote the random samples by a sequence of random variables Xt t∈T taking values in R. Fix t T and define T = t T : t>t to be the subset { } 0 ∈ 0 { ∈ 0} of times in T that are greater than t . Let t T . 0 1 ∈ 0 Definition 1 The sequence Xt t∈T is said to exhibit the Markov Property, if there exists a { } measureable function Yt1 such that Xt1 = Yt1 (Xt0 ) (1) for all sequential times t0,t1 T such that t1 T0. -
Cox Process Functional Learning Gérard Biau, Benoît Cadre, Quentin Paris
Cox process functional learning Gérard Biau, Benoît Cadre, Quentin Paris To cite this version: Gérard Biau, Benoît Cadre, Quentin Paris. Cox process functional learning. Statistical Inference for Stochastic Processes, Springer Verlag, 2015, 18 (3), pp.257-277. 10.1007/s11203-015-9115-z. hal- 00820838 HAL Id: hal-00820838 https://hal.archives-ouvertes.fr/hal-00820838 Submitted on 6 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cox Process Learning G´erard Biau Universit´ePierre et Marie Curie1 & Ecole Normale Sup´erieure2, France [email protected] Benoˆıt Cadre IRMAR, ENS Cachan Bretagne, CNRS, UEB, France3 [email protected] Quentin Paris IRMAR, ENS Cachan Bretagne, CNRS, UEB, France [email protected] Abstract This article addresses the problem of supervised classification of Cox process trajectories, whose random intensity is driven by some exoge- nous random covariable. The classification task is achieved through a regularized convex empirical risk minimization procedure, and a nonasymptotic oracle inequality is derived. We show that the algo- rithm provides a Bayes-risk consistent classifier. Furthermore, it is proved that the classifier converges at a rate which adapts to the un- known regularity of the intensity process. -
Strong Memoryless Times and Rare Events in Markov Renewal Point
The Annals of Probability 2004, Vol. 32, No. 3B, 2446–2462 DOI: 10.1214/009117904000000054 c Institute of Mathematical Statistics, 2004 STRONG MEMORYLESS TIMES AND RARE EVENTS IN MARKOV RENEWAL POINT PROCESSES By Torkel Erhardsson Royal Institute of Technology Let W be the number of points in (0,t] of a stationary finite- state Markov renewal point process. We derive a bound for the total variation distance between the distribution of W and a compound Poisson distribution. For any nonnegative random variable ζ, we con- struct a “strong memoryless time” ζˆ such that ζ − t is exponentially distributed conditional on {ζˆ ≤ t,ζ>t}, for each t. This is used to embed the Markov renewal point process into another such process whose state space contains a frequently observed state which repre- sents loss of memory in the original process. We then write W as the accumulated reward of an embedded renewal reward process, and use a compound Poisson approximation error bound for this quantity by Erhardsson. For a renewal process, the bound depends in a simple way on the first two moments of the interrenewal time distribution, and on two constants obtained from the Radon–Nikodym derivative of the interrenewal time distribution with respect to an exponential distribution. For a Poisson process, the bound is 0. 1. Introduction. In this paper, we are concerned with rare events in stationary finite-state Markov renewal point processes (MRPPs). An MRPP is a marked point process on R or Z (continuous or discrete time). Each point of an MRPP has an associated mark, or state. -
Spatio-Temporal Cluster Detection and Local Moran Statistics of Point Processes
Old Dominion University ODU Digital Commons Mathematics & Statistics Theses & Dissertations Mathematics & Statistics Spring 2019 Spatio-Temporal Cluster Detection and Local Moran Statistics of Point Processes Jennifer L. Matthews Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds Part of the Applied Statistics Commons, and the Biostatistics Commons Recommended Citation Matthews, Jennifer L.. "Spatio-Temporal Cluster Detection and Local Moran Statistics of Point Processes" (2019). Doctor of Philosophy (PhD), Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/3mps-rk62 https://digitalcommons.odu.edu/mathstat_etds/46 This Dissertation is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. ABSTRACT Approved for public release; distribution is unlimited SPATIO-TEMPORAL CLUSTER DETECTION AND LOCAL MORAN STATISTICS OF POINT PROCESSES Jennifer L. Matthews Commander, United States Navy Old Dominion University, 2019 Director: Dr. Norou Diawara Moran's index is a statistic that measures spatial dependence, quantifying the degree of dispersion or clustering of point processes and events in some location/area. Recognizing that a single Moran's index may not give a sufficient summary of the spatial autocorrelation measure, a local -
Markov Chains on a General State Space
Markov chains on measurable spaces Lecture notes Dimitri Petritis Master STS mention mathématiques Rennes UFR Mathématiques Preliminary draft of April 2012 ©2005–2012 Petritis, Preliminary draft, last updated April 2012 Contents 1 Introduction1 1.1 Motivating example.............................1 1.2 Observations and questions........................3 2 Kernels5 2.1 Notation...................................5 2.2 Transition kernels..............................6 2.3 Examples-exercises.............................7 2.3.1 Integral kernels...........................7 2.3.2 Convolution kernels........................9 2.3.3 Point transformation kernels................... 11 2.4 Markovian kernels............................. 11 2.5 Further exercises.............................. 12 3 Trajectory spaces 15 3.1 Motivation.................................. 15 3.2 Construction of the trajectory space................... 17 3.2.1 Notation............................... 17 3.3 The Ionescu Tulce˘atheorem....................... 18 3.4 Weak Markov property........................... 22 3.5 Strong Markov property.......................... 24 3.6 Examples-exercises............................. 26 4 Markov chains on finite sets 31 i ii 4.1 Basic construction............................. 31 4.2 Some standard results from linear algebra............... 32 4.3 Positive matrices.............................. 36 4.4 Complements on spectral properties.................. 41 4.4.1 Spectral constraints stemming from algebraic properties of the stochastic matrix....................... -
Non-Local Branching Superprocesses and Some Related Models
Published in: Acta Applicandae Mathematicae 74 (2002), 93–112. Non-local Branching Superprocesses and Some Related Models Donald A. Dawson1 School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6 E-mail: [email protected] Luis G. Gorostiza2 Departamento de Matem´aticas, Centro de Investigaci´ony de Estudios Avanzados, A.P. 14-740, 07000 M´exicoD. F., M´exico E-mail: [email protected] Zenghu Li3 Department of Mathematics, Beijing Normal University, Beijing 100875, P.R. China E-mail: [email protected] Abstract A new formulation of non-local branching superprocesses is given from which we derive as special cases the rebirth, the multitype, the mass- structured, the multilevel and the age-reproduction-structured superpro- cesses and the superprocess-controlled immigration process. This unified treatment simplifies considerably the proof of existence of the old classes of superprocesses and also gives rise to some new ones. AMS Subject Classifications: 60G57, 60J80 Key words and phrases: superprocess, non-local branching, rebirth, mul- titype, mass-structured, multilevel, age-reproduction-structured, superprocess- controlled immigration. 1Supported by an NSERC Research Grant and a Max Planck Award. 2Supported by the CONACYT (Mexico, Grant No. 37130-E). 3Supported by the NNSF (China, Grant No. 10131040). 1 1 Introduction Measure-valued branching processes or superprocesses constitute a rich class of infinite dimensional processes currently under rapid development. Such processes arose in appli- cations as high density limits of branching particle systems; see e.g. Dawson (1992, 1993), Dynkin (1993, 1994), Watanabe (1968). The development of this subject has been stimu- lated from different subjects including branching processes, interacting particle systems, stochastic partial differential equations and non-linear partial differential equations. -
Log Gaussian Cox Processes
Log Gaussian Cox processes by Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log Gaussian Cox processes JESPER MØLLER Aalborg University ANNE RANDI SYVERSVEEN The Norwegian University of Science and Technology RASMUS PLENGE WAAGEPETERSEN University of Aarhus ABSTRACT. Planar Cox processes directed by a log Gaussian intensity process are investigated in the univariate and multivariate cases. The appealing properties of such models are demonstrated theoretically as well as through data examples and simulations. In particular, the first, second and third-order properties are studied and utilized in the statistical analysis of clustered point patterns. Also empirical Bayesian inference for the underlying intensity surface is considered. Key words: empirical Bayesian inference; ergodicity; Markov chain Monte Carlo; Metropolis-adjusted Langevin algorithm; multivariate Cox processes; Neyman-Scott processes; pair correlation function; parameter estimation; spatial point processes; third- order properties. AMS 1991 subject classification: Primary 60G55, 62M30. Secondary 60D05. 1 Introduction Cox processes provide useful and frequently applied models for aggregated spatial point patterns where the aggregation is due to a stochastic environmental heterogeneity, see e.g. Diggle (1983), Cressie (1993), Stoyan et al. (1995), and the references therein. A Cox process is ’doubly stochastic’ as it arises as an inhomogeneous Poisson process with a random intensity measure. The random intensity measure is often specified by a random intensity function or as we prefer to call it an intensity process or surface. There may indeed be other sources of aggregation in a spatial point pattern than spatial heterogeneity. Cluster processes is a well-known class of models where clusters are generated by an unseen point process, cf. -
Simulation of Markov Chains
Copyright c 2007 by Karl Sigman 1 Simulating Markov chains Many stochastic processes used for the modeling of financial assets and other systems in engi- neering are Markovian, and this makes it relatively easy to simulate from them. Here we present a brief introduction to the simulation of Markov chains. Our emphasis is on discrete-state chains both in discrete and continuous time, but some examples with a general state space will be discussed too. 1.1 Definition of a Markov chain We shall assume that the state space S of our Markov chain is S = ZZ= f:::; −2; −1; 0; 1; 2;:::g, the integers, or a proper subset of the integers. Typical examples are S = IN = f0; 1; 2 :::g, the non-negative integers, or S = f0; 1; 2 : : : ; ag, or S = {−b; : : : ; 0; 1; 2 : : : ; ag for some integers a; b > 0, in which case the state space is finite. Definition 1.1 A stochastic process fXn : n ≥ 0g is called a Markov chain if for all times n ≥ 0 and all states i0; : : : ; i; j 2 S, P (Xn+1 = jjXn = i; Xn−1 = in−1;:::;X0 = i0) = P (Xn+1 = jjXn = i) (1) = Pij: Pij denotes the probability that the chain, whenever in state i, moves next (one unit of time later) into state j, and is referred to as a one-step transition probability. The square matrix P = (Pij); i; j 2 S; is called the one-step transition matrix, and since when leaving state i the chain must move to one of the states j 2 S, each row sums to one (e.g., forms a probability distribution): For each i X Pij = 1: j2S We are assuming that the transition probabilities do not depend on the time n, and so, in particular, using n = 0 in (1) yields Pij = P (X1 = jjX0 = i): (Formally we are considering only time homogenous MC's meaning that their transition prob- abilities are time-homogenous (time stationary).) The defining property (1) can be described in words as the future is independent of the past given the present state.