Simulation of Markov Chains
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conditioning and Markov Properties
Conditioning and Markov properties Anders Rønn-Nielsen Ernst Hansen Department of Mathematical Sciences University of Copenhagen Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Copyright 2014 Anders Rønn-Nielsen & Ernst Hansen ISBN 978-87-7078-980-6 Contents Preface v 1 Conditional distributions 1 1.1 Markov kernels . 1 1.2 Integration of Markov kernels . 3 1.3 Properties for the integration measure . 6 1.4 Conditional distributions . 10 1.5 Existence of conditional distributions . 16 1.6 Exercises . 23 2 Conditional distributions: Transformations and moments 27 2.1 Transformations of conditional distributions . 27 2.2 Conditional moments . 35 2.3 Exercises . 41 3 Conditional independence 51 3.1 Conditional probabilities given a σ{algebra . 52 3.2 Conditionally independent events . 53 3.3 Conditionally independent σ-algebras . 55 3.4 Shifting information around . 59 3.5 Conditionally independent random variables . 61 3.6 Exercises . 68 4 Markov chains 71 4.1 The fundamental Markov property . 71 4.2 The strong Markov property . 84 4.3 Homogeneity . 90 4.4 An integration formula for a homogeneous Markov chain . 99 4.5 The Chapmann-Kolmogorov equations . 100 iv CONTENTS 4.6 Stationary distributions . 103 4.7 Exercises . 104 5 Ergodic theory for Markov chains on general state spaces 111 5.1 Convergence of transition probabilities . 113 5.2 Transition probabilities with densities . 115 5.3 Asymptotic stability . 117 5.4 Minorisation . 122 5.5 The drift criterion . 127 5.6 Exercises . 131 6 An introduction to Bayesian networks 141 6.1 Introduction . 141 6.2 Directed graphs . -
Poisson Processes Stochastic Processes
Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written as −λt f (t) = λe 1(0;+1)(t) We summarize the above by T ∼ exp(λ): The cumulative distribution function of a exponential random variable is −λt F (t) = P(T ≤ t) = 1 − e 1(0;+1)(t) And the tail, expectation and variance are P(T > t) = e−λt ; E[T ] = λ−1; and Var(T ) = E[T ] = λ−2 The exponential random variable has the lack of memory property P(T > t + sjT > t) = P(T > s) Exponencial races In what follows, T1;:::; Tn are independent r.v., with Ti ∼ exp(λi ). P1: min(T1;:::; Tn) ∼ exp(λ1 + ··· + λn) . P2 λ1 P(T1 < T2) = λ1 + λ2 P3: λi P(Ti = min(T1;:::; Tn)) = λ1 + ··· + λn P4: If λi = λ and Sn = T1 + ··· + Tn ∼ Γ(n; λ). That is, Sn has probability density function (λs)n−1 f (s) = λe−λs 1 (s) Sn (n − 1)! (0;+1) The Poisson Process as a renewal process Let T1; T2;::: be a sequence of i.i.d. nonnegative r.v. (interarrival times). Define the arrival times Sn = T1 + ··· + Tn if n ≥ 1 and S0 = 0: The process N(t) = maxfn : Sn ≤ tg; is called Renewal Process. If the common distribution of the times is the exponential distribution with rate λ then process is called Poisson Process of with rate λ. Lemma. N(t) ∼ Poisson(λt) and N(t + s) − N(s); t ≥ 0; is a Poisson process independent of N(s); t ≥ 0 The Poisson Process as a L´evy Process A stochastic process fX (t); t ≥ 0g is a L´evyProcess if it verifies the following properties: 1. -
A Predictive Model Using the Markov Property
A Predictive Model using the Markov Property Robert A. Murphy, Ph.D. e-mail: [email protected] Abstract: Given a data set of numerical values which are sampled from some unknown probability distribution, we will show how to check if the data set exhibits the Markov property and we will show how to use the Markov property to predict future values from the same distribution, with probability 1. Keywords and phrases: markov property. 1. The Problem 1.1. Problem Statement Given a data set consisting of numerical values which are sampled from some unknown probability distribution, we want to show how to easily check if the data set exhibits the Markov property, which is stated as a sequence of dependent observations from a distribution such that each suc- cessive observation only depends upon the most recent previous one. In doing so, we will present a method for predicting bounds on future values from the same distribution, with probability 1. 1.2. Markov Property Let I R be any subset of the real numbers and let T I consist of times at which a numerical ⊆ ⊆ distribution of data is randomly sampled. Denote the random samples by a sequence of random variables Xt t∈T taking values in R. Fix t T and define T = t T : t>t to be the subset { } 0 ∈ 0 { ∈ 0} of times in T that are greater than t . Let t T . 0 1 ∈ 0 Definition 1 The sequence Xt t∈T is said to exhibit the Markov Property, if there exists a { } measureable function Yt1 such that Xt1 = Yt1 (Xt0 ) (1) for all sequential times t0,t1 T such that t1 T0. -
A Stochastic Processes and Martingales
A Stochastic Processes and Martingales A.1 Stochastic Processes Let I be either IINorIR+.Astochastic process on I with state space E is a family of E-valued random variables X = {Xt : t ∈ I}. We only consider examples where E is a Polish space. Suppose for the moment that I =IR+. A stochastic process is called cadlag if its paths t → Xt are right-continuous (a.s.) and its left limits exist at all points. In this book we assume that every stochastic process is cadlag. We say a process is continuous if its paths are continuous. The above conditions are meant to hold with probability 1 and not to hold pathwise. A.2 Filtration and Stopping Times The information available at time t is expressed by a σ-subalgebra Ft ⊂F.An {F ∈ } increasing family of σ-algebras t : t I is called a filtration.IfI =IR+, F F F we call a filtration right-continuous if t+ := s>t s = t. If not stated otherwise, we assume that all filtrations in this book are right-continuous. In many books it is also assumed that the filtration is complete, i.e., F0 contains all IIP-null sets. We do not assume this here because we want to be able to change the measure in Chapter 4. Because the changed measure and IIP will be singular, it would not be possible to extend the new measure to the whole σ-algebra F. A stochastic process X is called Ft-adapted if Xt is Ft-measurable for all t. If it is clear which filtration is used, we just call the process adapted.The {F X } natural filtration t is the smallest right-continuous filtration such that X is adapted. -
Local Conditioning in Dawson–Watanabe Superprocesses
The Annals of Probability 2013, Vol. 41, No. 1, 385–443 DOI: 10.1214/11-AOP702 c Institute of Mathematical Statistics, 2013 LOCAL CONDITIONING IN DAWSON–WATANABE SUPERPROCESSES By Olav Kallenberg Auburn University Consider a locally finite Dawson–Watanabe superprocess ξ =(ξt) in Rd with d ≥ 2. Our main results include some recursive formulas for the moment measures of ξ, with connections to the uniform Brown- ian tree, a Brownian snake representation of Palm measures, continu- ity properties of conditional moment densities, leading by duality to strongly continuous versions of the multivariate Palm distributions, and a local approximation of ξt by a stationary clusterη ˜ with nice continuity and scaling properties. This all leads up to an asymptotic description of the conditional distribution of ξt for a fixed t> 0, given d that ξt charges the ε-neighborhoods of some points x1,...,xn ∈ R . In the limit as ε → 0, the restrictions to those sets are conditionally in- dependent and given by the pseudo-random measures ξ˜ orη ˜, whereas the contribution to the exterior is given by the Palm distribution of ξt at x1,...,xn. Our proofs are based on the Cox cluster representa- tions of the historical process and involve some delicate estimates of moment densities. 1. Introduction. This paper may be regarded as a continuation of [19], where we considered some local properties of a Dawson–Watanabe super- process (henceforth referred to as a DW-process) at a fixed time t> 0. Recall that a DW-process ξ = (ξt) is a vaguely continuous, measure-valued diffu- d ξtf µvt sion process in R with Laplace functionals Eµe− = e− for suitable functions f 0, where v = (vt) is the unique solution to the evolution equa- 1 ≥ 2 tion v˙ = 2 ∆v v with initial condition v0 = f. -
A Class of Measure-Valued Markov Chains and Bayesian Nonparametrics
Bernoulli 18(3), 2012, 1002–1030 DOI: 10.3150/11-BEJ356 A class of measure-valued Markov chains and Bayesian nonparametrics STEFANO FAVARO1, ALESSANDRA GUGLIELMI2 and STEPHEN G. WALKER3 1Universit`adi Torino and Collegio Carlo Alberto, Dipartimento di Statistica e Matematica Ap- plicata, Corso Unione Sovietica 218/bis, 10134 Torino, Italy. E-mail: [email protected] 2Politecnico di Milano, Dipartimento di Matematica, P.zza Leonardo da Vinci 32, 20133 Milano, Italy. E-mail: [email protected] 3University of Kent, Institute of Mathematics, Statistics and Actuarial Science, Canterbury CT27NZ, UK. E-mail: [email protected] Measure-valued Markov chains have raised interest in Bayesian nonparametrics since the seminal paper by (Math. Proc. Cambridge Philos. Soc. 105 (1989) 579–585) where a Markov chain having the law of the Dirichlet process as unique invariant measure has been introduced. In the present paper, we propose and investigate a new class of measure-valued Markov chains defined via exchangeable sequences of random variables. Asymptotic properties for this new class are derived and applications related to Bayesian nonparametric mixture modeling, and to a generalization of the Markov chain proposed by (Math. Proc. Cambridge Philos. Soc. 105 (1989) 579–585), are discussed. These results and their applications highlight once again the interplay between Bayesian nonparametrics and the theory of measure-valued Markov chains. Keywords: Bayesian nonparametrics; Dirichlet process; exchangeable sequences; linear functionals -
Introduction to Stochastic Processes - Lecture Notes (With 33 Illustrations)
Introduction to Stochastic Processes - Lecture Notes (with 33 illustrations) Gordan Žitković Department of Mathematics The University of Texas at Austin Contents 1 Probability review 4 1.1 Random variables . 4 1.2 Countable sets . 5 1.3 Discrete random variables . 5 1.4 Expectation . 7 1.5 Events and probability . 8 1.6 Dependence and independence . 9 1.7 Conditional probability . 10 1.8 Examples . 12 2 Mathematica in 15 min 15 2.1 Basic Syntax . 15 2.2 Numerical Approximation . 16 2.3 Expression Manipulation . 16 2.4 Lists and Functions . 17 2.5 Linear Algebra . 19 2.6 Predefined Constants . 20 2.7 Calculus . 20 2.8 Solving Equations . 22 2.9 Graphics . 22 2.10 Probability Distributions and Simulation . 23 2.11 Help Commands . 24 2.12 Common Mistakes . 25 3 Stochastic Processes 26 3.1 The canonical probability space . 27 3.2 Constructing the Random Walk . 28 3.3 Simulation . 29 3.3.1 Random number generation . 29 3.3.2 Simulation of Random Variables . 30 3.4 Monte Carlo Integration . 33 4 The Simple Random Walk 35 4.1 Construction . 35 4.2 The maximum . 36 1 CONTENTS 5 Generating functions 40 5.1 Definition and first properties . 40 5.2 Convolution and moments . 42 5.3 Random sums and Wald’s identity . 44 6 Random walks - advanced methods 48 6.1 Stopping times . 48 6.2 Wald’s identity II . 50 6.3 The distribution of the first hitting time T1 .......................... 52 6.3.1 A recursive formula . 52 6.3.2 Generating-function approach . -
Markov Process Duality
Markov Process Duality Jan M. Swart Luminy, October 23 and 24, 2013 Jan M. Swart Markov Process Duality Markov Chains S finite set. RS space of functions f : S R. ! S For probability kernel P = (P(x; y))x;y2S and f R define left and right multiplication as 2 X X Pf (x) := P(x; y)f (y) and fP(x) := f (y)P(y; x): y y (I do not distinguish row and column vectors.) Def Chain X = (Xk )k≥0 of S-valued r.v.'s is Markov chain with transition kernel P and state space S if S E f (Xk+1) (X0;:::; Xk ) = Pf (Xk ) a:s: (f R ) 2 P (X0;:::; Xk ) = (x0;:::; xk ) , = P[X0 = x0]P(x0; x1) P(xk−1; xk ): ··· µ µ µ Write P ; E for process with initial law µ = P [X0 ]. x δx x 2 · P := P with δx (y) := 1fx=yg. E similar. Jan M. Swart Markov Process Duality Markov Chains Set k µ k x µk := µP (x) = P [Xk = x] and fk := P f (x) = E [f (Xk )]: Then the forward and backward equations read µk+1 = µk P and fk+1 = Pfk : In particular π invariant law iff πP = π. Function h harmonic iff Ph = h h(Xk ) martingale. , Jan M. Swart Markov Process Duality Random mapping representation (Zk )k≥1 i.i.d. with common law ν, take values in (E; ). φ : S E S measurable E × ! P(x; y) = P[φ(x; Z1) = y]: Random mapping representation (E; ; ν; φ) always exists, highly non-unique. -
1 Introduction Branching Mechanism in a Superprocess from a Branching
数理解析研究所講究録 1157 巻 2000 年 1-16 1 An example of random snakes by Le Gall and its applications 渡辺信三 Shinzo Watanabe, Kyoto University 1 Introduction The notion of random snakes has been introduced by Le Gall ([Le 1], [Le 2]) to construct a class of measure-valued branching processes, called superprocesses or continuous state branching processes ([Da], [Dy]). A main idea is to produce the branching mechanism in a superprocess from a branching tree embedded in excur- sions at each different level of a Brownian sample path. There is no clear notion of particles in a superprocess; it is something like a cloud or mist. Nevertheless, a random snake could provide us with a clear picture of historical or genealogical developments of”particles” in a superprocess. ” : In this note, we give a sample pathwise construction of a random snake in the case when the underlying Markov process is a Markov chain on a tree. A simplest case has been discussed in [War 1] and [Wat 2]. The construction can be reduced to this case locally and we need to consider a recurrence family of stochastic differential equations for reflecting Brownian motions with sticky boundaries. A special case has been already discussed by J. Warren [War 2] with an application to a coalescing stochastic flow of piece-wise linear transformations in connection with a non-white or non-Gaussian predictable noise in the sense of B. Tsirelson. 2 Brownian snakes Throughout this section, let $\xi=\{\xi(t), P_{x}\}$ be a Hunt Markov process on a locally compact separable metric space $S$ endowed with a metric $d_{S}(\cdot, *)$ . -
Strong Memoryless Times and Rare Events in Markov Renewal Point
The Annals of Probability 2004, Vol. 32, No. 3B, 2446–2462 DOI: 10.1214/009117904000000054 c Institute of Mathematical Statistics, 2004 STRONG MEMORYLESS TIMES AND RARE EVENTS IN MARKOV RENEWAL POINT PROCESSES By Torkel Erhardsson Royal Institute of Technology Let W be the number of points in (0,t] of a stationary finite- state Markov renewal point process. We derive a bound for the total variation distance between the distribution of W and a compound Poisson distribution. For any nonnegative random variable ζ, we con- struct a “strong memoryless time” ζˆ such that ζ − t is exponentially distributed conditional on {ζˆ ≤ t,ζ>t}, for each t. This is used to embed the Markov renewal point process into another such process whose state space contains a frequently observed state which repre- sents loss of memory in the original process. We then write W as the accumulated reward of an embedded renewal reward process, and use a compound Poisson approximation error bound for this quantity by Erhardsson. For a renewal process, the bound depends in a simple way on the first two moments of the interrenewal time distribution, and on two constants obtained from the Radon–Nikodym derivative of the interrenewal time distribution with respect to an exponential distribution. For a Poisson process, the bound is 0. 1. Introduction. In this paper, we are concerned with rare events in stationary finite-state Markov renewal point processes (MRPPs). An MRPP is a marked point process on R or Z (continuous or discrete time). Each point of an MRPP has an associated mark, or state. -
Markov Chains on a General State Space
Markov chains on measurable spaces Lecture notes Dimitri Petritis Master STS mention mathématiques Rennes UFR Mathématiques Preliminary draft of April 2012 ©2005–2012 Petritis, Preliminary draft, last updated April 2012 Contents 1 Introduction1 1.1 Motivating example.............................1 1.2 Observations and questions........................3 2 Kernels5 2.1 Notation...................................5 2.2 Transition kernels..............................6 2.3 Examples-exercises.............................7 2.3.1 Integral kernels...........................7 2.3.2 Convolution kernels........................9 2.3.3 Point transformation kernels................... 11 2.4 Markovian kernels............................. 11 2.5 Further exercises.............................. 12 3 Trajectory spaces 15 3.1 Motivation.................................. 15 3.2 Construction of the trajectory space................... 17 3.2.1 Notation............................... 17 3.3 The Ionescu Tulce˘atheorem....................... 18 3.4 Weak Markov property........................... 22 3.5 Strong Markov property.......................... 24 3.6 Examples-exercises............................. 26 4 Markov chains on finite sets 31 i ii 4.1 Basic construction............................. 31 4.2 Some standard results from linear algebra............... 32 4.3 Positive matrices.............................. 36 4.4 Complements on spectral properties.................. 41 4.4.1 Spectral constraints stemming from algebraic properties of the stochastic matrix....................... -
1 Markov Chain Notation for a Continuous State Space
The Metropolis-Hastings Algorithm 1 Markov Chain Notation for a Continuous State Space A sequence of random variables X0;X1;X2;:::, is a Markov chain on a continuous state space if... ... where it goes depends on where is is but not where is was. I'd really just prefer that you have the “flavor" here. The previous Markov property equation that we had P (Xn+1 = jjXn = i; Xn−1 = in−1;:::;X0 = i0) = P (Xn+1 = jjXn = i) is uninteresting now since both of those probabilities are zero when the state space is con- tinuous. It would be better to say that, for any A ⊆ S, where S is the state space, we have P (Xn+1 2 AjXn = i; Xn−1 = in−1;:::;X0 = i0) = P (Xn+1 2 AjXn = i): Note that it is okay to have equalities on the right side of the conditional line. Once these continuous random variables have been observed, they are fixed and nailed down to discrete values. 1.1 Transition Densities The continuous state analog of the one-step transition probability pij is the one-step tran- sition density. We will denote this as p(x; y): This is not the probability that the chain makes a move from state x to state y. Instead, it is a probability density function in y which describes a curve under which area represents probability. x can be thought of as a parameter of this density. For example, given a Markov chain is currently in state x, the next value y might be drawn from a normal distribution centered at x.