Surface Functionalization of Graphene-Based Materials By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catalysis of the Oxygen Evolution Reaction by 4–10 Nm Cobalt Nanoparticles
Topics in Catalysis https://doi.org/10.1007/s11244-018-0923-4 ORIGINAL PAPER Catalysis of the Oxygen Evolution Reaction by 4–10 nm Cobalt Nanoparticles Edward Locke1 · Shan Jiang1 · Simon K. Beaumont1 © The Author(s) 2018 Abstract Electrolysis of water is key technology, not only for clean energy production, but to ensure a continued supply of hydrogen beyond fossil resources, essential to the manufacture of many chemical goods other than fuels. Cobalt nanomaterials have been widely identified as a promising candidate for the anode (oxygen evolution) reaction in this process, but much work has focused on applied materials or electrode design. Given the importance of oxidation state changes Co(III) → Co(IV) in the accepted reaction mechanism, in this work we look at size effects in small (4–10 nm) cobalt nanoparticles, where the ease of oxidation for lower cobalt oxidation states is known to change with particle size. To discriminate between geometric and chemical effects we have compared the catalysts in this study to others in the literature by turnover frequency (widely used in other areas of catalysis), in addition to the more commonly employed performance metric of the overpotential required to produce a current density of 10 mA cm−2. Comparisons are drawn to key examples of using well defined nanomaterials (where the surface are of cobalt sites can be estimated). This has enabled an estimated intrinsic turnover rate of ~ 1 O2 mol- ecule per surface Co atom per second at an overpotential of 500 mV in the oxygen evolution reaction under typical alkaline reaction conditions (pH 14.0) to be identified. -
Potential Ivvs.Gelbasedre
US010644304B2 ( 12 ) United States Patent ( 10 ) Patent No.: US 10,644,304 B2 Ein - Eli et al. (45 ) Date of Patent : May 5 , 2020 (54 ) METHOD FOR PASSIVE METAL (58 ) Field of Classification Search ACTIVATION AND USES THEREOF ??? C25D 5/54 ; C25D 3/665 ; C25D 5/34 ; ( 71) Applicant: Technion Research & Development HO1M 4/134 ; HOTM 4/366 ; HO1M 4/628 ; Foundation Limited , Haifa ( IL ) (Continued ) ( 72 ) Inventors : Yair Ein - Eli , Haifa ( IL ) ; Danny (56 ) References Cited Gelman , Haifa ( IL ) ; Boris Shvartsev , Haifa ( IL ) ; Alexander Kraytsberg , U.S. PATENT DOCUMENTS Yokneam ( IL ) 3,635,765 A 1/1972 Greenberg 3,650,834 A 3/1972 Buzzelli ( 73 ) Assignee : Technion Research & Development Foundation Limited , Haifa ( IL ) (Continued ) ( * ) Notice : Subject to any disclaimer , the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 CN 1408031 4/2003 U.S.C. 154 ( b ) by 56 days . EP 1983078 10/2008 (21 ) Appl. No .: 15 /300,359 ( Continued ) ( 22 ) PCT Filed : Mar. 31 , 2015 OTHER PUBLICATIONS (86 ) PCT No .: PCT/ IL2015 /050350 Hagiwara et al. in ( Acidic 1 - ethyl - 3 -methylimidazoliuum fluoride: a new room temperature ionic liquid in Journal of Fluorine Chem $ 371 (c ) ( 1 ), istry vol . 99 ( 1999 ) p . 1-3 ; ( Year: 1999 ). * (2 ) Date : Sep. 29 , 2016 (Continued ) (87 ) PCT Pub . No .: WO2015 / 151099 Primary Examiner — Jonathan G Jelsma PCT Pub . Date : Oct. 8 , 2015 Assistant Examiner Omar M Kekia (65 ) Prior Publication Data (57 ) ABSTRACT US 2017/0179464 A1 Jun . 22 , 2017 Disclosed is a method for activating a surface of metals , Related U.S. Application Data such as self- passivated metals , and of metal -oxide dissolu tion , effected using a fluoroanion -containing composition . -
Nitrato Complexes of Manganese
NITFLAT0 COMPLEXES OF MANGANESE (II I ) DAVID WILLIAM JOHNSON B.Sc., University of Alberta, Calgary, 1966 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF Tm REQUIREMENTS FOR THE3 DEGRE3E OF DOCTOR OF PHILOSOPHY in the Department of Chemistry 0 DAVID WILLIAM JOHNSON SIMON FRASER UNIVERSITY AUGUST, 1972, APPROVAL Name: David William Johnson Degree : Doctor of Philosophy Title of Thesis: Nitrato Complexes of ~snganese(111) Examining Committee : Chairman: T.N. Bell D. Sutton, denior Supervisor F.W.B, Einstein C.H,W, Jones L.K. Peterson - - N. Paddock, Professor, University of British Columbia Vancouver, B .C . Date Approved : I! Abstract The thesis describes a study of the reactions of a variety of manganese compounds with N204 or N205 leading to the synthesis of new manganese compounds with coordinated nitrate groups and other ligands, The aim of this work, to synthesise the first reported nitrato-complexes of manganese in an oxidation state higher than the common state (II), has been achieved, Manganese(II1) trinitrate, M~L(NO~)~,has been prepared by reaction of manganese(II1) trifluoride and dinitrogen pentoxide in dinltrogen tetroxide, Manganese (111) trinitrate is stable indefinitely below -14OC, but rapidly evolves N204 at room temperature and fumes in moist alr, The properties indicate that all nitrate groups are strongly coordinated and suggest that the compound fs polymeric with bridging nitrate groups. The bipyridyl, -o-phenanthroline, triphenylphosphine oxide and acetonitrile complexes of Mn(N0 have been prepared; all are stable at -
Sop Pyrophoric 2 12/16/2019
Owner DOC. NO. REV. DATE C.H.O SOP PYROPHORIC 2 12/16/2019 DOC. TITLE SOP FOR PYROPHORIC CHEMICALS Environmental Health & Safety STANDARD OPERATING PROCEDURES (SOP) FOR WORKING WITH PYROPHORIC CHEMICALS AT AMHERST COLLEGE ___________________________________________________________________ General Information Pyrophoric Chemicals are solid, liquid, or gas compounds that, when exposed to air or moisture at or below 54°C (130°F), can spontaneously ignite. Examples of Pyrophoric chemicals used at Amherst College Laboratories include: sodium hydride, zinc powder, and Grignard reagents. See the “Appendix” page below for a full list of Pyrophoric Chemicals. Pyrophoric chemicals are often used as catalysts in chemical reactions or as reducing and deprotonating agents in organic chemistry. Note that Pyrophoric chemicals may also be characterized by other hazards, hence, users of these chemicals may also need to refer to other SOPs that cover other hazards. In addition, each individual chemical’s Safety Data Sheet (SDS) should be consulted before they are used. _____________________________________________________________________________________ Personal Protective Equipment When working with Pyrophoric Chemicals, the following personal protective equipment (PPE) must be worn, at a minimum. Depending on the specific chemical, other forms of protection might be required. Consult the SDS for each chemical before use: Splash goggles Lab coat (Fire resistant lab coat highly recommended) Long pants Close toed shoes Gloves – Nitrile gloves adequate for accidental contact with small quantities. However, the use of fire resistant Nomex/ Leather Pilot’s gloves is highly recommended _____________________________________________________________________________________ Safety Devices All work with Pyrophoric chemicals must be done in a glove box, vacuum manifold, or any enclosed inert environment. If work must be done in a fume hood, ensure that the hood sash is in the lowest feasible position. -
Lightning in a Test Tube
Published on ASSIST (https://assist.asta.edu.au) Home > Lightning in a test tube Lightning in a test tube Posted by Anonymous on Thu, 2015-08-20 15:08 Lightning in a test tube: I have a teacher who is planning on performing the 'lightning in a test tube' demonstration in the school lecture theatre. The experiment involves layering ethanol on top of sulfuric acid in a test tube and then dropping some potassium permanganate crystals into the sulfuric acid. I would prefer it to be performed in a fume cupboard. Voting: 0 No votes yet Year Level: 7 8 9 10 Senior Secondary Laboratory Technicians: Laboratory Technicians Showing 1-1 of 1 Responses Lightning in a test tube Submitted by sat on 25 August 2015 Science ASSIST strongly advises against this demonstration being performed in a school. The risks are too high and the demonstration is not able to be adequately controlled. Each of the chemicals involved in this activity has its own particular significant hazards. Ethanol: flammable liquid Sulfuric acid: corrosive acid Potassium permanganate: oxidising agent Sulfuric acid reacts with potassium permanganate to form manganese (VII) oxide (Mn2O7) [also called manganese heptoxide], which is explosive and reacts violently with the ethanol. Significant risks of explosion or fires or both are foreseeable and cannot be controlled, so the risk assessment would conclude that the risks of the demonstration are significant and cannot be adequately controlled at the moment and therefore should not be conducted. An alternative method for demonstrating this -
Graphene Oxide-Based Membrane for Liquid and Gas
GRAPHENE OXIDE-BASED MEMBRANE FOR LIQUID AND GAS SEPARATION A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Han Lin August 2020 GRAPHENE OXIDE-BASED MEMBRANE FOR LIQUID AND GAS SEPARATION Han Lin Dissertation Approved: Accepted: Advisor Department Chair Dr. Jiahua Zhu Dr. Michael Cheung Committee member Interim Dean of the College Dr. George Chase Dr. Craig Menzemer Committee member Dean of the Graduate School Dr. Jie Zheng Committee member Date Dr. Siamak Farhad Committee member Dr. Xiong Gong ii Dedicated to My beloved parents and family members who helped me all things great and small. Without your endless love and support, none of my success would be possible. iii ACKNOWLEDGEMENTS I would like to express my special appreciation and deepest thanks to my advisor Dr. Jiahua Zhu, for the patient guidance, encouragement and advice he has provided in the past four years. Your advice on both research as well as on my career have been invaluable. I would also like to thank my committee members, Dr. George Chase, Dr. Jie Zheng, Dr. Siamak Farhad, and Dr. Xiong Gong for their valuable comments and suggestions that improve the quality of the work. I am grateful to all of labmates, Dr. Liwen Mu, Dr. Long Chen, Dr. Tuo Ji, Dr. Nitin Mehar, Dr. Marjanalsadat Kashfipour, and Mr. Yifan Li for their help during my struggling time. I really enjoyed time we worked together, as well as had coffee together. I would like to thank my best friends, Jiahui Wang, Chengwei Polly Zhou, and Hao Zhang for our unbelievable friendship for past 12 years. -
The True Formula
ON THE TRUE FORMULA FOR PERMANGANATES. DISSERTATION PRESENTED TO THE FACULTY OF THE UNIVERSITT7 ' OF VIRGINIA. In application fir the Degree of Dadar of 'Pflilawplzj'. BY CHARLES M. B‘RADBURY, 0F VIRGINIA. THESIS —Permanga;zz}: acid is moiwéaszc, and the per-:V _ mangamztes are represented 6}! the generalfbmwla R (Mn 04 p. -' : . ; V To His Fat/tor, 31m ‘18. granary, (35511. 77:13 Paper is Inscribed IN TOKEN OF AFFECTION, BY film 9mm, Preface. The greater part of the following paper was written nearly a year ago. As it was nearing completion, I found, from an allusion in .an article by M. Raoult, of Paris, (see Bzzlleiz'n dc Soc. C/u'm. de Paris, XLVI, p. 805), that my conclusion as to the true formula for permanganates had been reached already by that eminent chemist, by means of a new method, origi- nated by himself, for determining molecular weights. Upon examining M. Raoult‘s original papem‘fHéWIz—Iifilc C/zz'm. ct dc Ply/5., (6), VIII, July, 1886, p. 3 30, however, it was found that nothing was given concerning permanganates, beyond the simple statement that they were shown by the method to be monobasic. T Dr. Victor Meyer and Dr. Auwers, of Gottingen, have recently extended and simplified the method of M. Raoult, (see Berk/zit a’n’ Dads. Chem. 656115., for February 27 and March 12, 1888), and I am therefore enabled to add materially to the evidence already collected in the dissertation, by a con- vincing application of this method. ‘ Had the detailed results of M. -
1.Brethericks1 51 1..51
0001. Silver [7440-22-4] Ag Ag Acetylenic compounds MRH Acetylene 8.70/99þ See ACETYLENIC COMPOUNDS Aziridine See Aziridine: Silver Bromine azide See Bromine azide 3-Bromopropyne See 3-Bromopropyne: Metals Carboxylic acids Koffolt, J. H., private comm., 1965 Silver is incompatible with oxalic or tartaric acids, since the silver salts decompose on heating. Silver oxalate explodes at 140C, and silver tartrate loses carbon dioxide. See other METAL OXALATES Chlorine trifluoride MRH 1.42/36 See Chlorine trifluoride: Metals Copper, Ethylene glycol See Ethylene glycol: Silvered copper wire Electrolytes, Zinc Britz, W. K. et al., Chem. Abs., 1975, 83, 150293 Causes of spontaneous combustion and other hazards of silver—zinc batteries were investigated. Ethanol, Nitric acid Luchs, J. K., Photog. Sci. Eng., 1966, 10, 334 Action of silver on nitric acid in presence of ethanol may form the readily detonable silver fulminate. See Nitric acid: Alcohols See also SILVER-CONTAINING EXPLOSIVES Ethyl hydroperoxide See Ethyl hydroperoxide: Silver Ethylene oxide MRH 3.72/99þ See Ethylene oxide: Reference 4 Hydrogen peroxide MRH 1.59/99þ See Hydrogen peroxide: Metals Iodoform Grignard, 1935, Vol. 3, 320 In contact with finely divided (reduced) silver, incandescence occurs. 1 Other reactants Yoshida, 1980, 103 MRH values for 7 combinations, largely with catalytically susceptible materials, are given. Ozonides See OZONIDES Peroxomonosulfuric acid See Peroxomonosulfuric acid: Catalysts Peroxyformic acid MRH 5.69/100 See Peroxyformic acid: Metals See other METALS 0002. Silver—aluminium alloy [11144-29-9] AgÀAl Ag Al 1. Popov, E. I. et al., Chem. Abs., 1977, 87, 205143 2. Popov, E. I. et al., Chem. -
Free-Standing Graphene Oxide and Carbon Nanotube Hybrid Papers with Enhanced Electrical and Mechanical Performance and Their Synergy in Polymer Laminates
International Journal of Molecular Sciences Article Free-Standing Graphene Oxide and Carbon Nanotube Hybrid Papers with Enhanced Electrical and Mechanical Performance and Their Synergy in Polymer Laminates Manoj Tripathi 1,* , Luca Valentini 2 , Yuanyang Rong 1, Silvia Bittolo Bon 2, 3 4,5,6 3, 3,4 Maria F. Pantano , Giorgio Speranza , Roberto Guarino y , David Novel , Erica Iacob 4, Wei Liu 4, Victor Micheli 4, Alan B. Dalton 1 and Nicola M. Pugno 3,7,* 1 Department of Mathematics and Physical Sciences, University of Sussex, Brighton BN1 9QH, UK; [email protected] (Y.R.); [email protected] (A.B.D.) 2 Department of Civil and Environmental Engineering, University of Perugia and INSTM Research Unit, Strada di Pentima 4, 05100 Terni, Italy; [email protected] (L.V.); [email protected] (S.B.B.) 3 Laboratory of Bio-Inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy; [email protected] (M.F.P.); [email protected] (R.G.); [email protected] (D.N.) 4 Centre for Materials and Microsystems, Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento, Italy; [email protected] (G.S.); [email protected] (E.I.); [email protected] (W.L.); [email protected] (V.M.) 5 Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy 6 Istituto di Fotonica e Nanotecnologie, IFN-CNR, via alla Cascata 56/C, 38123 Trento, Italy 7 School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK * Correspondence: [email protected] (M.T.); [email protected] (N.M.P.) Present address: École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), y CH-5232 Villigen PSI, Switzerland. -
Safety Issues in the Treatment Plant
SAFETY ISSUES IN THE TREATMENT PLANT BILL KRULAC MCCUTCHEON ENTERPRISES, INC. 2017 NATIONAL ASSOCIATION OF WASTEWATER TECHNICIANS CONFERENCE PITTSBURGH, PA You never know where the problem will crop up. Or the depths you will have to plumb to fix it. OVERVIEW • Threats to safety in wastewater treatment plants come from several directions and change through the process. Primary, secondary and tertiary treatment processes have characteristic hazards. • From unloading, sampling, treating, discharging the waste, to operation and maintenance – the vehicles, equipment, process equipment, generated substances and treatment chemicals there are many possible hazards. • Chemical and biological hazards come from the processes used to treat the wastewater, are inherent to sewage or may be introduced by industrial or illegal discharges of hazardous chemicals. • Confined spaces are obviously present in WWTP’s, but the hazards we discuss here extend beyond those present in confined spaces. ATMOSPHERIC HAZARDS • Biological processes break down organic components of wastewater. These processes may be aerobic (done in the presence of atmospheric or dissolved oxygen) or anaerobic (without free oxygen). • Lipids (fats, greases), carbohydrates (sugar, starches), proteins and metabolic wastes (urine, feces) are hydrolyzed by biota that consume these substances. • These biota in turn create metabolic byproducts. Some of these are gasses. These gasses may be flammable, toxic or displace oxygen. • These gasses may accumulate to dangerous levels. Where they accumulate is related to their relative densities. FLAMMABILITY • METHANE AND OTHER BIOGENIC GASSES ARE FLAMMABLE. • ILLEGAL OR ACCIDENTAL DUMPING OF FLAMMABLE LIQUIDS MAY REACH THE WWTP, ESPECIALLY IF IT IS A COMBINED SEWER SYSTEM. • NO WWTP WILL KNOWINGLY ACCEPT FLAMMABLE OR COMBUSTIBLE LIQUIDS WITH A FLASH POINT BELOW 140 DEGREES F. -
Spray Reagents for the Thin Layer Chromatography of Drug Extracts
Spray Reagents For the thin layer chromatography of drug extracts No. 1 Anisaldehyde-acetic acid reagent (AA) 0.5 ml Anisaldehyde mixed with 10 ml of 98% acetic acid. The TLC plate is sprayed with 5-10 ml, then heated at 120 0 C for 7-10 min in a drying cabinet. Detection 0/ petasin/isopetasin. The plate may be sprayed afterwards with conc. sulphuric acid and evaluated in vis. or UV-365 nm. NO.2 Anisaldehyde-sulphuric acid reagent (AS) 0.5 ml Anisaldehyde is mixed with 10 ml glacial acetic acid, followed by 85 ml metha nol and 5 ml concetrated sulphuric acid, in that order. The re agent has only limited stability, and is no longer useable when the colour has turned to red-violet. The TLC plate is sprayed with ab out 10 ml, heated at 100° C for 5-10 min, then evaluated in vis. or UV-365 nm. Detection 0/ essential oils, pungent principles, bitter principles, saponins, etc. NO.3 Antimony(lII) chloride reagent (SbCI 3) 20% solution of antimony(III) chloride in chloroform. The TLC plate must be sprayed with 15-20 ml reagent, then heated for 5-6 min at 100° C. Evaluation in vis. or UV-365 nm. Detection 0/ cardiac glycosides, saponins, visnagin (Ammi visnagae /ructus), etc. NO.4 Benzidine re agent (BZ) 0.5 g Benzidine is dissolved in 10 ml glacial acetic acid and the volume adjusted to 100 ml with ethanol. Evaluation in vis. Detection 0/ aucubin (Plantaginis folium) NO.5 Berlin blue reagent (BB) A freshly prepared solution of 10 g iron(III) chloride and 0.5 g potassium hexacyano ferrate in 100 ml water. -
Graphite Oxide: Structure, Reduction and Applications
RICE UNIVERSITY Graphite Oxide: Structure, Reduction and Applications by Wei GAO A THESIS SUBMITTED IN PARTIAL FULF'ILLMENT OF THE REQUTREMTNTS F'OR THE DEGREE Doctor of Philosophy dRPROVED, Tt IE,SIS COMM t'ft'EE i - --1.4" i,-',! z'- I'ullickcl M. Ajayan, C-'hair Benjamin M. and Mary Greenwood Anderson Prolessor, Mechanical Enginecring and Material Science & Chemistry 7, 8rr,"2'brt^*, R. Bruce Weisman Prof-essor of Chemistry Enrique V.fBarrera Prof-essor of Mechanical Engineering and Material Science HOUSI'ON, TEXAS March 2012 ABSTRACT Graphite Oxide: Structure, Reduction and Applications by Wei GAO This thesis proposes a modified structure model for graphite oxide (GO), an important precursor in graphene chemistry, develops a new strategy to convert GO back to graphene-like structure, and demonstrates its possible applications in both water purification and supercapacitor technologies. GO, a nontraditional compound first obtained from graphite oxidation over 150 years ago, is now becoming an important player in the production of graphene-based materials, which has high technological relevance. GO structure and reduction have been vigorously investigated, but its precise chemical structure still remains obscure, and the complete restoration of the sp2 carbon lattice has not yet been achieved. In our work, solid state 13C NMR (MAS) analysis offered a piece of evidence for five or six- membered ring lactol structure existing in GO that had never been assigned before, leading to a modified Lerf-Klinowski model for GO. A three-step reduction strategy, involving sodium borohydride (NaBH4), sulfuric acid, and high temperature thermal annealing, described in the thesis, successfully reduced GO back to chemically converted graphene (CCG) with the lowest heteroatom abundance among all those previously reported.