Maternal Folic Acid Supplementation and Its Effects on Metabolic and Epigenetic Regulatory Gene Networks in Offspring

Total Page:16

File Type:pdf, Size:1020Kb

Maternal Folic Acid Supplementation and Its Effects on Metabolic and Epigenetic Regulatory Gene Networks in Offspring Maternal Folic Acid Supplementation and Its Effects on Metabolic and Epigenetic Regulatory Gene Networks in Offspring Wing Hong Chu Discipline of Obstetrics and Gynaecology School of Medicine Faculty of Health Sciences University of Adelaide South Australia Australia A thesis submitted in fulfilment of the degree of Doctor of Philosophy (PhD) July 2018 ii “All that we see or seem is but a dream within a dream.” – Edgar Allan Poe iii iv Dedicated to Mum, Dad and Wing Ho v vi Table of contents TABLE OF CONTENTS .......................................................................................VII ABSTRACT ..........................................................................................................XII DECLARATION .................................................................................................. XVI ACKNOWLEDGEMENTS ................................................................................. XVII ABSTRACTS ARISING FROM THIS THESIS ................................................... XIX LIST OF FIGURES ............................................................................................. XXI LIST OF TABLES ............................................................................................. XXIII ABBREVIATIONS ............................................................................................ XXVI CHAPTER 1............................................................................................................ 1 1.1. INTRODUCTION ...................................................................................... 2 1.1.1. FOLATE ABSORPTION AND TRANSPORT ......................................... 3 1.1.2. FOLATE IN ONE-CARBON METABOLISM ........................................... 7 1.1.3. MATERNAL ONE-CARBON METABOLISM AND THE ESTABLISHMENT OF FOETAL METHYLATION PATTERNS ...................... 10 1.1.4. FOLATE AND DNA METHYLATION .................................................... 11 1.1.5. DNA METHYLATION AND THE REGULATION OF GENE EXPRESSION ............................................................................................... 12 1.1.6. PHYSIOLOGICAL REQUIREMENTS OF FOLATE DURING PERICONCEPTION, PREGNANCY AND LACTATION ................................ 14 1.1.7. PERICONCEPTIONAL FOLIC ACID SUPPLEMENTATION AND PREGNANCY OUTCOMES IN HUMANS ..................................................... 16 1.1.8. MATERNAL FOLIC ACID SUPPLEMENTATION AND PREGNANCY OUTCOMES IN HUMANS ............................................................................. 21 1.1.9. FOLATE AND MATERNAL PHYSIOLOGY AND METABOLISM ......... 21 1.1.10. FOLATE IN EMBRYONIC AND FOETAL DEVELOPMENT IN NON- HUMAN STUDIES ......................................................................................... 22 1.1.11. FOLATE AND EPIGENETIC REGULATION: HUMAN STUDIES .... 23 vii 1.1.12. FOLATE AND DEVELOPMENTAL PROGRAMMING: HUMAN STUDIES ....................................................................................................... 24 1.1.13. FOLATE AND DEVELOPMENTAL PROGRAMMING: NON-HUMAN STUDIES ....................................................................................................... 25 1.1.14. MICRORNAS ................................................................................... 27 1.1.15. MICRORNA BIOGENESIS .............................................................. 27 1.1.16. MATERNAL ADAPTATIONS DURING PREGNANCY AND THE ROLE OF MICRORNAS ................................................................................ 36 1.1.17. FOETAL DEVELOPMENT AND THE ROLE OF MICRORNAS: NON- HUMAN SPECIES ......................................................................................... 38 1.1.18. MICRORNAS IN METABOLIC REGULATION ................................ 42 1.1.19. SUMMARY AND GENERAL CONCLUSION ................................... 46 1.2. GENERAL HYPOTHESES ..................................................................... 49 1.2.1. SPECIFIC HYPOTHESES ................................................................... 49 1.3. AIMS ....................................................................................................... 50 CHAPTER 2 .......................................................................................................... 51 2.1. INTRODUCTION .................................................................................... 52 2.2. METHODS .................................................................................................. 55 2.2.1. ANIMALS AND TISSUE COLLECTION ............................................... 55 2.2.2. RNA EXTRACTION AND QUALITY ANALYSIS .................................. 56 2.2.3. AFFYMETRIX GENECHIP® RAT GENE 1.0 ST ARRAY PREPARATION ............................................................................................. 56 2.2.4. AFFYMETRIX MICROARRAY DATA NORMALISATION AND ANALYSIS ..................................................................................................... 57 2.2.5. QUANTIFICATION OF MRNA EXPRESSION ..................................... 58 2.2.6. DATA PROCESSING AND STATISTICAL ANALYSIS FOR MRNA EXPRESSION ............................................................................................... 59 2.2.7. BIOINFORMATICS ANALYSIS ............................................................ 59 2.2.8. INGENUITY PATHWAY ANALYSIS .................................................... 60 2.3. RESULTS ............................................................................................... 61 2.3.1. EFFECTS OF MATERNAL FOLIC ACID SUPPLEMENTATION ON GLOBAL TRANSCRIPTOMIC CHANGES IN THE LIVER OF ADULT OFFSPRING .................................................................................................. 61 viii 2.3.2. HIERARCHICAL CLUSTERING AND INGENUITY PATHWAY ANALYSIS FOR THE DIFFERENTIALLY EXPRESSED GENES IN ADULT OFFSPRING .................................................................................................. 71 2.3.3. HIERARCHICAL CLUSTERING AND INGENUITY PATHWAY ANALYSIS FOR THE DIFFERENTIALLY EXPRESSED GENES IN ADULT MALE OFFSPRING ....................................................................................... 74 2.3.4. HIERARCHICAL CLUSTERING AND INGENUITY PATHWAY ANALYSIS FOR THE DIFFERENTIALLY EXPRESSED GENES IN ADULT FEMALE OFFSPRING................................................................................... 77 2.3.5. BIOINFORMATICS ANALYSIS ............................................................ 83 2.3.6. INDEPENDENT QUANTIFICATION OF MRNA EXPRESSION IN LIVER OF ADULT OFFSPRING .................................................................... 84 2.4. DISCUSSION ......................................................................................... 90 CHAPTER 3.......................................................................................................... 95 3.1. INTRODUCTION .................................................................................... 96 3.2. METHODS ............................................................................................ 100 3.2.1. ANIMALS AND TISSUE COLLECTION ............................................. 100 3.2.2. RNA EXTRACTION AND QUALITY ANALYSIS ................................ 101 3.2.3. QUANTIFICATION OF MRNA EXPRESSION ................................... 101 3.2.4. DATA PROCESSING AND STATISTICAL ANALYSIS FOR MRNA EXPRESSION ............................................................................................. 102 3.2.5. EXIQON MICRORNA MICROARRAY ANALYSIS ............................. 103 3.2.6. QUANTIFICATION OF SELECTED MICRORNA EXPRESSION ...... 104 3.2.7. DATA PROCESSING AND STATISTICAL ANALYSIS FOR MICRORNA EXPRESSION ......................................................................... 105 3.2.8. MICRORNA BIOINFORMATICS AND TARGET PREDICTION ANALYSES .................................................................................................. 106 3.2.9. INGENUITY PATHWAY ANALYSIS .................................................. 106 3.3. RESULTS ............................................................................................. 108 3.3.1. EFFECTS OF MATERNAL FOLIC ACID SUPPLEMENTATION ON MATERNAL AND FOETAL MORPHOMETRY ............................................ 108 ix 3.3.2. EFFECTS OF MATERNAL FOLIC ACID SUPPLEMENTATION ON GLOBAL MATERNAL AND FOETAL HEPATIC MICRORNA EXPRESSION ... ....................................................................................................... 111 3.3.3. GENOMICS OF DIFFERENTIALLY EXPRESSED MATERNAL AND FOETAL HEPATIC MICRORNAS................................................................ 112 3.3.4. PREDICTED AND VALIDATED TARGETS OF THE DIFFERENTIALLY EXPRESSED MICRORNAS IN FOETUSES AND DAMS ........................... 113 3.3.5. INGENUITY PATHWAY ANALYSIS FOR THE DIFFERENTIALLY EXPRESSED HEPATIC MICRORNAS IN ALL FOETUSES ....................... 115 3.3.6. INGENUITY PATHWAY ANALYSIS FOR THE DIFFERENTIALLY EXPRESSED HEPATIC MICRORNAS IN FEMALE FOETUSES ............... 115 3.3.7. INGENUITY PATHWAY ANALYSIS FOR THE DIFFERENTIALLY EXPRESSED HEPATIC MICRORNAS IN DAMS ........................................ 116 3.3.8. QUANTIFICATION OF MATERNAL AND FOETAL HEPATIC MICRORNA EXPRESSION ......................................................................... 119 3.3.9. EFFECTS OF MATERNAL FOLIC ACID SUPPLEMENTATION ON MATERNAL AND FOETAL HEPATIC EXPRESSION OF METABOLIC REGULATORY GENES ..............................................................................
Recommended publications
  • Entrez Symbols Name Termid Termdesc 117553 Uba3,Ube1c
    Entrez Symbols Name TermID TermDesc 117553 Uba3,Ube1c ubiquitin-like modifier activating enzyme 3 GO:0016881 acid-amino acid ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 303614 RGD1310067,Smurf2 SMAD specific E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 308669 Herc2 hect domain and RLD 2 GO:0016881 acid-amino acid ligase activity 309331 Uhrf2 ubiquitin-like with PHD and ring finger domains 2 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 117029 Ccr5,Ckr5,Cmkbr5 chemokine (C-C motif) receptor 5 GO:0003779 actin binding 117538 Waspip,Wip,Wipf1 WAS/WASL interacting protein family, member 1 GO:0003779 actin binding 117557 TM30nm,Tpm3,Tpm5 tropomyosin 3, gamma GO:0003779 actin binding 24779 MGC93554,Slc4a1 solute carrier family 4 (anion exchanger), member 1 GO:0003779 actin binding 24851 Alpha-tm,Tma2,Tmsa,Tpm1 tropomyosin 1, alpha GO:0003779 actin binding 25132 Myo5b,Myr6 myosin Vb GO:0003779 actin binding 25152 Map1a,Mtap1a microtubule-associated protein 1A GO:0003779 actin binding 25230 Add3 adducin 3 (gamma) GO:0003779 actin binding 25386 AQP-2,Aqp2,MGC156502,aquaporin-2aquaporin 2 (collecting duct) GO:0003779 actin binding 25484 MYR5,Myo1e,Myr3 myosin IE GO:0003779 actin binding 25576 14-3-3e1,MGC93547,Ywhah
    [Show full text]
  • University of Leicester, Msc Medical Statistics, Thesis, Wilmar
    Thesis MSc in Medical Statistics Department of Health Sciences University of Leicester, United Kingdom Application of Bayesian hierarchical generalized linear models using weakly informative prior distributions to identify rare genetic variant effects on blood pressure Wilmar Igl March 2015 Summary Background Currently rare genetic variants are discussed as a source of \missing heritability" of complex traits. Bayesian hierarchical models were proposed as an efficient method for the estimation and aggregation of conditional effects of rare variants. Here, such models are applied to identify rare variant effects on blood pressure. Methods Empirical data provided by the Genetic Analysis Workshop 19 (2014) included 1,851 Mexican-American individuals with diastolic blood pressure (DBP), systolic blood pressure (SBP), hypertension (HTN) and 461,868 variants from whole- exome sequencing of odd-numbered chromosomes. Bayesian hierarchical generalized linear models using weakly informative prior distributions were applied. Results Associations of rare variants chr1:204214013 (estimate = 39.6, Credible In- terval (CrI) 95% = [25.3, 53.9], Bayesian p = 6:8 × 10−8) in the PLEKHA6 gene and chr11:118518698 (estimate = 32.2, CrI95% = [20.6, 43.9], Bayesian p = 7:0 × 10−8) in the PHLEDB1 gene were identified. Joint effects of grouped rare variants on DBP in 23 genes (Bayesian p = [8:8 × 10−14, 9:3 × 10−8]) and on SBP in 21 genes (Bayesian p = [8:6 × 10−12, 7:8 × 10−8]) in pathways related to hemostasis, sodi- um/calcium transport, ciliary activity, and others were found. No association with hypertension was detected. Conclusions Bayesian hierarchical generalized linear models with weakly informa- tive priors can successfully be applied in exome-wide genetic association analyses of rare variants.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Download The
    PROBING THE INTERACTION OF ASPERGILLUS FUMIGATUS CONIDIA AND HUMAN AIRWAY EPITHELIAL CELLS BY TRANSCRIPTIONAL PROFILING IN BOTH SPECIES by POL GOMEZ B.Sc., The University of British Columbia, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Experimental Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2010 © Pol Gomez, 2010 ABSTRACT The cells of the airway epithelium play critical roles in host defense to inhaled irritants, and in asthma pathogenesis. These cells are constantly exposed to environmental factors, including the conidia of the ubiquitous mould Aspergillus fumigatus, which are small enough to reach the alveoli. A. fumigatus is associated with a spectrum of diseases ranging from asthma and allergic bronchopulmonary aspergillosis to aspergilloma and invasive aspergillosis. Airway epithelial cells have been shown to internalize A. fumigatus conidia in vitro, but the implications of this process for pathogenesis remain unclear. We have developed a cell culture model for this interaction using the human bronchial epithelium cell line 16HBE and a transgenic A. fumigatus strain expressing green fluorescent protein (GFP). Immunofluorescent staining and nystatin protection assays indicated that cells internalized upwards of 50% of bound conidia. Using fluorescence-activated cell sorting (FACS), cells directly interacting with conidia and cells not associated with any conidia were sorted into separate samples, with an overall accuracy of 75%. Genome-wide transcriptional profiling using microarrays revealed significant responses of 16HBE cells and conidia to each other. Significant changes in gene expression were identified between cells and conidia incubated alone versus together, as well as between GFP positive and negative sorted cells.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Identification of Unknown Epigenetically Regulated Genes in Non-Small Cell Lung Cancer”
    DIPLOMARBEIT Titel der Diplomarbeit “Identification of unknown epigenetically regulated genes in non-small cell lung cancer” Durchgeführt an der Medizinischen Universität Wien Univ. Klinik für Innere Med. I/Klinische Abteilung für Onkologie Verfasserin Valerie Nadine Babinsky angestrebter akademischer Grad Magistra der Naturwissenschaften (Mag.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 441 Studienrichtung lt. Studienblatt: Mikrobiologie und Genetik Betreuer: Ao.Prof. Dr. Wolfgang Mikulits Table of Content 1 TABLE OF CONTENT 1 Table of Content ............................................................................................................ 2 2 Acknowledgment / Danksagung ..................................................................................... 5 3 Introduction ................................................................................................................... 6 4 Aim of study .................................................................................................................. 7 5 Background .................................................................................................................... 9 5.1 Epigenetics: Histone protein modifications and DNA methylation ......................................... 9 5.1.1 Histone protein modifications ............................................................................................... 10 5.1.2 DNA methylation ..................................................................................................................
    [Show full text]
  • Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
    ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China.
    [Show full text]
  • Application of Microrna Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease
    Article Application of microRNA Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease Jennifer L. Major, Rushita A. Bagchi * and Julie Pires da Silva * Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected] (R.A.B.); [email protected] (J.P.d.S.) Supplementary Tables Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 www.mdpi.com/journal/mps Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 2 of 25 Table 1. List of all hsa-miRs identified by Human microRNA Disease Database (HMDD; v3.2) analysis. hsa-miRs were identified using the term “genetics” and “circulating” as input in HMDD. Targets CAD hsa-miR-1 Targets IR injury hsa-miR-423 Targets Obesity hsa-miR-499 hsa-miR-146a Circulating Obesity Genetics CAD hsa-miR-423 hsa-miR-146a Circulating CAD hsa-miR-149 hsa-miR-499 Circulating IR Injury hsa-miR-146a Circulating Obesity hsa-miR-122 Genetics Stroke Circulating CAD hsa-miR-122 Circulating Stroke hsa-miR-122 Genetics Obesity Circulating Stroke hsa-miR-26b hsa-miR-17 hsa-miR-223 Targets CAD hsa-miR-340 hsa-miR-34a hsa-miR-92a hsa-miR-126 Circulating Obesity Targets IR injury hsa-miR-21 hsa-miR-423 hsa-miR-126 hsa-miR-143 Targets Obesity hsa-miR-21 hsa-miR-223 hsa-miR-34a hsa-miR-17 Targets CAD hsa-miR-223 hsa-miR-92a hsa-miR-126 Targets IR injury hsa-miR-155 hsa-miR-21 Circulating CAD hsa-miR-126 hsa-miR-145 hsa-miR-21 Targets Obesity hsa-mir-223 hsa-mir-499 hsa-mir-574 Targets IR injury hsa-mir-21 Circulating IR injury Targets Obesity hsa-mir-21 Targets CAD hsa-mir-22 hsa-mir-133a Targets IR injury hsa-mir-155 hsa-mir-21 Circulating Stroke hsa-mir-145 hsa-mir-146b Targets Obesity hsa-mir-21 hsa-mir-29b Methods Protoc.
    [Show full text]
  • Rattlesnake Genome Supplemental Materials 1 SUPPLEMENTAL
    Rattlesnake Genome Supplemental Materials 1 1 SUPPLEMENTAL MATERIALS 2 Table of Contents 3 1. Supplementary Methods …… 2 4 2. Supplemental Tables ……….. 23 5 3. Supplemental Figures ………. 37 Rattlesnake Genome Supplemental Materials 2 6 1. SUPPLEMENTARY METHODS 7 Prairie Rattlesnake Genome Sequencing and Assembly 8 A male Prairie Rattlesnake (Crotalus viridis viridis) collected from a wild population in Colorado was 9 used to generate the genome sequence. This specimen was collected and humanely euthanized according 10 to University of Northern Colorado Institutional Animal Care and Use Committee protocols 0901C-SM- 11 MLChick-12 and 1302D-SM-S-16. Colorado Parks and Wildlife scientific collecting license 12HP974 12 issued to S.P. Mackessy authorized collection of the animal. Genomic DNA was extracted using a 13 standard Phenol-Chloroform-Isoamyl alcohol extraction from liver tissue that was snap frozen in liquid 14 nitrogen. Multiple short-read sequencing libraries were prepared and sequenced on various platforms, 15 including 50bp single-end and 150bp paired-end reads on an Illumina GAII, 100bp paired-end reads on an 16 Illumina HiSeq, and 300bp paired-end reads on an Illumina MiSeq. Long insert libraries were also 17 constructed by and sequenced on the PacBio platform. Finally, we constructed two sets of mate-pair 18 libraries using an Illumina Nextera Mate Pair kit, with insert sizes of 3-5 kb and 6-8 kb, respectively. 19 These were sequenced on two Illumina HiSeq lanes with 150bp paired-end sequencing reads. Short and 20 long read data were used to assemble the previous genome assembly version CroVir2.0 (NCBI accession 21 SAMN07738522).
    [Show full text]
  • The Ultimated Edition to the Mountdomain
    THEULTIMATED EDITIONUS 20170247762A1 TO THE MOUNTDOMAIN ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2017/ 0247762 A1 Heiman ( 43 ) Pub . Date: Aug . 31 , 2017 ( 54 ) COMPOSITIONS , METHODS AND USE OF Publication Classification SYNTHETIC LETHAL SCREENING (51 ) Int . CI. C120 1 /68 ( 2006 . 01 ) (71 ) Applicants : THE BOARD INSTITUTE INC ., C12N 15 / 113 ( 2006 .01 ) Cambridge, MA (US ) ; Massachusetts COZK 16 / 40 ( 2006 .01 ) Institute of Technology , Cambridge , A01K 67 /027 (2006 . 01 ) C12N 9 / 22 ( 2006 . 01 ) MA (US ) (52 ) U . S . CI. CPC . .. C12Q 1 /6883 (2013 . 01) ; A01K 67 /0278 (72 ) Inventor : Myriam Heiman , Newton , MA (US ) ( 2013 .01 ) ; C12N 9 / 22 ( 2013 .01 ) ; CO7K 16 / 40 ( 2013 .01 ) ; C12Y 111 /01009 ( 2013 . 01 ) ; C12N (21 ) Appl. No. : 15 /521 , 780 15 / 113 (2013 .01 ) ; AOIK 2267 / 0318 ( 2013 .01 ) ; C12Q 2600 / 118 ( 2013 . 01 ) ; C12Q 2600 / 158 (22 ) PCT Filed : Oct . 27 , 2015 (2013 .01 ) ; C120 2600 / 136 (2013 .01 ) ; C12N ( 86 ) PCT No. : PCT/ US2015 / 057567 2310 / 20 ( 2017 .05 ) ; CO7K 2317 / 34 (2013 .01 ) $ 371 ( C ) ( 1 ), (57 ) ABSTRACT Apr. 25 , 2017 The present invention generally relates to methods of iden ( 2 ) Date : tifying modulators of central nervous system diseases and the use of the modulators in treatment and diagnosis . The methods utilize a novel high throughput screen that includes Related U . S . Application Data injection of a library of barcoded viral vectors expressing (60 ) Provisional application No . 62/ 122, 686 , filed on Oct. shRNA ' s , CRISPR / Cas systems or cDNA ' s into animal 27 , 2014 . models of disease and detecting synthetic lethality .
    [Show full text]
  • Loci Associated with Bone Strength in Laying Hens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Archive for Student Projects Faculty of Veterinary Medicine and Animal Science Department of Animal Breeding and Genetics Loci associated with bone strength in laying hens Biaty Raymond Examensarbete / Swedish University of Agricultural Sciences Master’s Thesis, 30 hp Department of Animal Breeding and Genetics 488 Uppsala 2016 Faculty of Veterinary Medicine and Animal Science Department of Animal Breeding and Genetics Loci associated with bone strength in laying hens Biaty Raymond Supervisors: D.J. De-Koning, SLU, Department of Animal Breeding and Genetics Anna Maria Johansson, SLU, Department of Animal Breeding and Genetics Examiner: Erling Strandberg, SLU, Department of Animal Breeding and Genetics Credits: 30 hp Course title: Degree project in Animal Science Course code: EX0556 Level: Advanced, A2E Place of publication: Uppsala Year of publication: 2016 Name of series: Examensarbete / Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, 488 On-line publicering: http://epsilon.slu.se Key words: Osteoporosis, GWAS, Fracture, Genes, QTLs ABSTRACT One of the growing welfare concern in the layer industry is the high incidences of bone fracture. This is thought to result from reduction in bone strength due to osteoporosis which is exacerbated by environmental stresses and mineral deficiencies. Despite these factors however, the primary cause of bone weakness and the resulting fractures is believed to be genetic predisposition. In this study, we performed a genome-wide association study to identify with high reliability the loci associated with bone strength in laying hens. Genotype information and phenotype data were obtained from 752 laying hens belonging to the same pure line population.
    [Show full text]