The LYR Protein Subunit NB4M/NDUFA6 of Mitochondrial Complex I Anchors an Acyl Carrier Protein and Is Essential for Catalytic Activity

Total Page:16

File Type:pdf, Size:1020Kb

The LYR Protein Subunit NB4M/NDUFA6 of Mitochondrial Complex I Anchors an Acyl Carrier Protein and Is Essential for Catalytic Activity The LYR protein subunit NB4M/NDUFA6 of mitochondrial complex I anchors an acyl carrier protein and is essential for catalytic activity Heike Angerera, Michael Radermacherb, Michalina Mankowska a, Mirco Stegerc, Klaus Zwickerd, Heinrich Heidec, Ilka Wittigc,e, Ulrich Brandte,f, and Volker Zickermanna,e,1 aInstitute of Biochemistry II, Structural Bioenergetics Group, Medical School, Goethe University Frankfurt, 60438 Frankfurt, Germany; bDepartment of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT 05405; cFunctional Proteomics, SFB 815 Core Unit, and dInstitute of Biochemistry I, Medical School, Goethe University Frankfurt, 60590 Frankfurt, Germany; eCluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Germany; and fNijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, 6525 GA, Nijmegen, The Netherlands Edited by Wolfgang Baumeister, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved February 25, 2014 (received for review December 4, 2013) Mitochondrial complex I is the largest and most complicated enzyme is identical to LYR motif containing protein 6 (LYRM6). Sever- of the oxidative phosphorylation system. It comprises a number al other LYRM proteins were shown to be associated with of so-called accessory subunits of largely unknown structure and the maintenance of mitochondrial homeostasis. LYRM4 (alterna- function. Here we studied subunit NB4M [NDUFA6, LYR motif tive designation ISD11, iron-sulfur protein biogenesis desulfurase- containing protein 6 (LYRM6)], a member of the LYRM family of interacting protein 11) plays an essential role in mitochondrial – proteins. Chromosomal deletion of the corresponding gene in iron sulfur cluster biogenesis, and it has been implied that the yeast Yarrowia lipolytica caused concomitant loss of the mito- it functions as an adaptor protein for anchoring frataxin to the chondrial acyl carrier protein subunit ACPM1 from the enzyme complex of the cysteine desulfurase Nfs1 and the iron-sulfur complex and paralyzed ubiquinone reductase activity. Exchanging protein assembly protein ISCU (8). LYRM7 and LYRM8 are assembly factors of respiratory complexes III and II, respectively the LYR motif and an associated conserved phenylalanine by ala- BIOCHEMISTRY nines in subunit NB4M also abolished the activity and binding of (5, 6). The function of LYRM6 (i.e., the NB4M/NDUFA6 subunit of complex I) is unknown, but it is interesting to note that it was subunit ACPM1. We show, by single-particle electron microscopy identified as a hot spot for peroxynitrite-induced tyrosine nitration and structural modeling, that subunits NB4M and ACPM1 form (9). Down-regulation of the NDUFA6 subunit has been linked a subdomain that protrudes from the peripheral arm in the vicinity with inactivation of complex I, leading to induction of apoptosis of central subunit domains known to be involved in controlling the and, ultimately, T-cell depletion in HIV infections (10). catalytic activity of complex I. The aerobic yeast Yarrowia lipolytica is a useful yeast genetic model to study eukaryotic complex I in health and disease (11). itochondrial complex I (proton pumping NADH:ubiqui- We have deleted the gene encoding the NDUFA6 ortholog Mnone oxidoreductase, EC 1.6.5.3) is a 1-MDa membrane NB4M in this organism and observed formation of a stable protein complex with a central function in cellular energy con- and nearly complete complex I subassembly. Proteomic analysis version (1). Redox-linked proton translocation by complex I revealed that the absence of NB4M caused detachment of the contributes to the electrochemical proton gradient across the accessory mitochondrial acyl carrier protein subunit ACPM1 inner mitochondrial membrane that drives ATP synthesis by from the enzyme complex, and EM of single particles permitted ATP synthase. Complex I dysfunction caused by mutations or assignment of subunits NB4M and ACPM1 to a specific domain toxins is associated with a number of neuromuscular and neu- rodegenerative human disorders, such as Parkinson’s disease. Significance Fourteen central subunits are conserved from bacteria to humans that harbor the core function of energy conversion. In eukary- Complex I is the largest membrane protein complex of the re- otes, a substantial fraction of the mass of the holoenzyme is spiratory chain. In addition to 14 central subunits conserved contributed by so-called accessory subunits (2). A broad range of from bacteria to man, the mitochondrial enzyme comprises functions from structural reinforcement to regulation of the some 30 so-called accessory subunits of largely unknown enzyme complex has been suggested for the accessory subunits, structure and function. We show that accessory subunit NB4M but in most cases, their specific role remains unresolved. Elec- [human ortholog NDUFA6, LYR motif containing protein 6 tron microscopy (EM) (3) and X-ray crystallographic analysis of (LYRM6)], a member of the LYR protein superfamily, anchors an mitochondrial complex I at 6.3 Å resolution (4) revealed the acyl carrier protein to complex I, thus forming a structurally well- arrangement of functional modules within the L-shaped complex defined subdomain essential for complex I activity. Our study of a highly hydrophobic membrane arm consisting of the proximal offers structural insights into the functional interplay of several and distal pump-modules (PP and PD modules) and a hydrophilic central and accessory subunits that seem to be specifically in- peripheral arm extruding into the mitochondrial matrix that com- volved in controlling the catalytic activity of mitochondrial prises the NADH oxidation and ubiquinone reduction modules complex I. This also provides the structural basis for human (N and Q modules). However, information on the structure and complex I inactivation in HIV-linked LYRM6 deficiency. position of individual accessory subunits is still very limited. In this study, we focused on accessory complex I subunit Author contributions: H.A., U.B., and V.Z. designed research; H.A., M.R., M.M., M.S., K.Z., NB4M (alternative designations NDUFA6 and B14). NB4M/ H.H., I.W., U.B., and V.Z. performed research; H.A., M.R., K.Z., I.W., U.B., and V.Z. analyzed NDUFA6 belongs to the Complex1_LYR family of LYRM data; and H.A., U.B., and V.Z. wrote the paper. proteins (5–7) that is characterized by a motif comprising an The authors declare no conflict of interest. N-terminal leucine-tyrosine-arginine sequence located upstream This article is a PNAS Direct Submission. of several conserved arginines and an invariant phenylalanine. 1To whom correspondence should be addressed. E-mail: [email protected]. The human genome contains at least 11 proteins of the LYRM This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. superfamily, and the mammalian complex I subunit NDUFA6 1073/pnas.1322438111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1322438111 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 of the peripheral arm of complex I. Remarkably, despite Taken together, our data clearly show that subunit ACPM1 complete assembly of all central subunits, ubiquinone reductase was the only additional subunit not present in complex I from activity of complex I was abolished in the NB4M deletion strain. strain nb4mΔ. This indicated that the binding of this protein depended on the presence of subunit NB4M. The combined Results mass of the two missing subunits is 24 kDa. This is less than 3% Complex I from Strain nb4mΔ Lacks Two Accessory Subunits. Blue of the total mass of complex I and explains why neither via native (BN)-PAGE analysis of mitochondrial membranes pre- BN-PAGE nor in the elution profile from the size exclusion pared from Y. lipolytica strain nb4mΔ, in which we had deleted column was a significant difference between complex I from the the entire NB4M ORF by homologous recombination, indicated parental strain and strain nb4mΔ observed. a somewhat reduced amount of complex I compared with the Because the position of subunit NB4M had remained ambig- parental strain (Fig. 1A). To obtain a comprehensive picture of uous in a topological model for the arrangement of the subunits the migration profiles of the complex I subunits in a native gel in different functional modules of complex I (15), we used and the composition of possible subassemblies, we applied our controlled dissociation of purified complex I with the detergent recently developed Complexome Profiling approach (Fig. S1) lauryldimethylamine-oxide to biochemically prepare subcomplex (12). With the notable exception of subunit ST1, which is known Iλ that corresponds essentially to the peripheral arm. dSDS- to dissociate from complex I during BN-PAGE (13) and was PAGE (Fig. S3) and mass spectrometric analysis (Table S1)of indeed found exclusively as free subunit, in both strains, the the subcomplex unambigously revealed that subunits NB4M and major fraction of all detected subunits was present in monomeric ACPM1 were associated with the peripheral arm of complex I. complex I and in the supercomplexes formed by its association with complexes III and IV (14). Of several complex I subunits, All Iron–Sulfur Clusters Are Present in Complex I from Strain nb4mΔ. a small fraction also migrated as free proteins, and some sub- EPR spectroscopy of purified complex I from strain nb4mΔ at 12 K – complexes corresponding to the membrane arm and its PD showed that the signals
Recommended publications
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • THE FUNCTIONAL SIGNIFICANCE of MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in Partial Fulfillment
    THE FUNCTIONAL SIGNIFICANCE OF MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Drs. Margaret M. Sedensky & Philip G. Morgan Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedicated to my family, my teachers and all of my beloved ones for their love and support ii ACKNOWLEDGEMENTS My advanced academic journey began 5 years ago on the opposite side of the world. I traveled to the United States from Thailand in search of a better understanding of science so that one day I can return to my homeland and apply the knowledge and experience I have gained to improve the lives of those affected by sickness and disease yet unanswered by science. Ultimately, I hoped to make the academic transition into the scholarly community by proving myself through scientific research and understanding so that I can make a meaningful contribution to both the scientific and medical communities. The following dissertation would not have been possible without the help, support, and guidance of a lot of people both near and far. I wish to thank all who have aided me in one way or another on this long yet rewarding journey. My sincerest thanks and appreciation goes to my advisors Philip Morgan and Margaret Sedensky.
    [Show full text]
  • Mitochondrial Medicine in the Omics Era
    Mitochondrial Medicine in the Omics Era Joyeeta Rahman1 and Shamima Rahman1,2* 1 Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health and 2 Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK *Correspondence to: Professor Shamima Rahman Mitochondrial Research Group Genetics and Genomic Medicine UCL Great Ormond Street Institute of Child Health London WC1N 1EH, UK. Telephone: +44 (0)2079052608 [email protected] Keywords: Mitochondrial disease, OXPHOS, signalling, omics, genomics, transcriptomics, proteomics, metabolomics, mitochondrial stress response, treatment 1 Abstract Mitochondria are dynamic bioenergetic organelles whose maintenance requires ~1500 proteins from two genomes. Mutations in either the mitochondrial or nuclear genome can disrupt a plethora of cellular metabolic and homeostatic functions. Mitochondrial diseases represent one the most common and severe groups of inherited genetic disorders, characterised by clinical, biochemical, and genetic heterogeneity, diagnostic odysseys, and lack of curative therapies. This review aims to discuss recent advances in mitochondrial biology and medicine arising from widespread utilisation of high-throughput omics technologies, and also includes a broad discussion of emerging therapies for mitochondrial disease. New insights into both bioenergetic and biosynthetic mitochondrial functionalities have expedited the genetic diagnosis of primary mitochondrial disorders, and identified novel mitochondrial pathomechanisms and new targets
    [Show full text]
  • Epigenetic Regulation of Developmental Expression of Cyp2d Genes in Mouse Liver
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Acta Pharmaceutica Sinica B 2012;2(2):146–158 Institute of Materia Medica, Chinese Academy of Medical Sciences Chinese Pharmaceutical Association Acta Pharmaceutica Sinica B www.elsevier.com/locate/apsb www.sciencedirect.com ORIGINAL ARTICLE Epigenetic regulation of developmental expression of Cyp2d genes in mouse liver Ye Lia, Xiao-bo Zhongb,n aDepartment of Pharmacology, School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China bDepartment of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA Received 28 November 2011; revised 26 December 2011; accepted 10 January 2012 KEY WORDS Abstract CYP2D6 expression in liver is age-dependent. Because epigenetic mechanisms, such as DNA methylation and histone modifications, modulate age-related gene expression during develop- Cyp2d; ment, and are highly conserved among species, the current study examined the epigenetic regulation of DNA methylation; age-related expression of the Cyp2d genes in mouse liver. DNA methylation (DNAme), histone 3 Histone methylation; lysine 4 dimethylation (H3K4me2), and histone 3 lysine 27 trimethylation (H3K27me3) was Liver development established by ChIP-on-chip tiling microarrays from mouse livers at prenatal, neonatal, and adult stages. Levels of DNAme, H3K4me2, and H3K27me3 were analyzed in a genomic region containing the Cyp2d clustering genes and their surrounding genes. Gradually increased expression levels of the Cyp2d9, Cyp2d10, Cyp2d22,andCyp2d26 genes from prenatal, through neonatal, to adult are associated with gradually increased levels of H3K4me2 in the nucleosomes associated with these genes. Gene expression patterns during liver development in several Cyp2d surrounding genes, such as Srebf2, Sept3, Ndufa6, Tcf2, Nfam1,andCyb5r3, could be also explained by changes of DNA methylation, H3K4me2, or H3K27me3 in those genes.
    [Show full text]
  • WO 2017/070647 Al 27 April 2017 (27.04.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/070647 Al 27 April 2017 (27.04.2017) P O P C T (51) International Patent Classification: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 31/455 (2006.01) C12N 15/86 (2006.01) KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, A61K 31/465 (2006.01) A61P 27/02 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 31/19 (2006.01) A61P 27/06 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, A61K 48/00 (2006.01) A61K 45/06 (2006.01) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (21) International Application Number: ZW. PCT/US2016/058388 (84) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of regional protection available): ARIPO (BW, GH, 24 October 2016 (24.10.201 6) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (25) Filing Language: English TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (26) Publication Language: English DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (30) Priority Data: LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 62/245,467 23 October 2015 (23.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Genomic Approach in Idiopathic Intellectual Disability Maria De Fátima E Costa Torres
    ESTUDOS DE 8 01 PDPGM 2 CICLO Genomic approach in idiopathic intellectual disability Maria de Fátima e Costa Torres D Autor. Maria de Fátima e Costa Torres D.ICBAS 2018 Genomic approach in idiopathic intellectual disability Genomic approach in idiopathic intellectual disability Maria de Fátima e Costa Torres SEDE ADMINISTRATIVA INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZAR FACULDADE DE MEDICINA MARIA DE FÁTIMA E COSTA TORRES GENOMIC APPROACH IN IDIOPATHIC INTELLECTUAL DISABILITY Tese de Candidatura ao grau de Doutor em Patologia e Genética Molecular, submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto Orientadora – Doutora Patrícia Espinheira de Sá Maciel Categoria – Professora Associada Afiliação – Escola de Medicina e Ciências da Saúde da Universidade do Minho Coorientadora – Doutora Maria da Purificação Valenzuela Sampaio Tavares Categoria – Professora Catedrática Afiliação – Faculdade de Medicina Dentária da Universidade do Porto Coorientadora – Doutora Filipa Abreu Gomes de Carvalho Categoria – Professora Auxiliar com Agregação Afiliação – Faculdade de Medicina da Universidade do Porto DECLARAÇÃO Dissertação/Tese Identificação do autor Nome completo _Maria de Fátima e Costa Torres_ N.º de identificação civil _07718822 N.º de estudante __ 198600524___ Email institucional [email protected] OU: [email protected] _ Email alternativo [email protected] _ Tlf/Tlm _918197020_ Ciclo de estudos (Mestrado/Doutoramento) _Patologia e Genética Molecular__ Faculdade/Instituto _Instituto de Ciências
    [Show full text]
  • Instability in NAD Metabolism Leads to Impaired Cardiac Mitochondrial
    RESEARCH ARTICLE Instability in NAD+ metabolism leads to impaired cardiac mitochondrial function and communication Knut H Lauritzen1*, Maria Belland Olsen1, Mohammed Shakil Ahmed2, Kuan Yang1, Johanne Egge Rinholm3, Linda H Bergersen4,5, Qin Ying Esbensen6, Lars Jansen Sverkeli7, Mathias Ziegler7, Ha˚ vard Attramadal2, Bente Halvorsen1,8, Pa˚ l Aukrust1,8,9, Arne Yndestad1,8 1Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway; 2Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; 3Department of Microbiology, Oslo University Hospital, Oslo, Norway; 4Department of Oral Biology, University of Oslo, Oslo, Norway; 5Department of Neuroscience and Pharmacology, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; 6Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Nordbyhagen, Norway; 7Department of Biomedicine, University of Bergen, Bergen, Norway; 8Institute of Clinical Medicine, University of Oslo, Faculty of Medicine, Oslo, Norway; 9Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway Abstract Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD+) as energy source. Prolonged PARP activity can drain cellular NAD+ reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pathophysiological mechanism that connects mtDNA damage to cardiac *For correspondence: dysfunction via reduced NAD+ levels and loss of mitochondrial function and communication. Using Knut.Huso.Lauritzen@rr-research. a transgenic model, we demonstrate that high levels of mice cardiomyocyte mtDNA damage cause no a reduction in NAD+ levels due to extreme DNA repair activity, causing impaired activation of Competing interests: The NAD+-dependent SIRT3.
    [Show full text]
  • Bayesian Hidden Markov Tree Models for Clustering Genes with Shared Evolutionary History
    Submitted to the Annals of Applied Statistics arXiv: arXiv:0000.0000 BAYESIAN HIDDEN MARKOV TREE MODELS FOR CLUSTERING GENES WITH SHARED EVOLUTIONARY HISTORY By Yang Liy,{,∗, Shaoyang Ningy,∗, Sarah E. Calvoz,x,{, Vamsi K. Moothak,z,x,{ and Jun S. Liuy Harvard Universityy, Broad Institutez, Harvard Medical Schoolx, Massachusetts General Hospital{, and Howard Hughes Medical Institutek Determination of functions for poorly characterized genes is cru- cial for understanding biological processes and studying human dis- eases. Functionally associated genes are often gained and lost together through evolution. Therefore identifying co-evolution of genes can predict functional gene-gene associations. We describe here the full statistical model and computational strategies underlying the orig- inal algorithm CLustering by Inferred Models of Evolution (CLIME 1.0) recently reported by us [Li et al., 2014]. CLIME 1.0 employs a mixture of tree-structured hidden Markov models for gene evolution process, and a Bayesian model-based clustering algorithm to detect gene modules with shared evolutionary histories (termed evolutionary conserved modules, or ECMs). A Dirichlet process prior was adopted for estimating the number of gene clusters and a Gibbs sampler was developed for posterior sampling. We further developed an extended version, CLIME 1.1, to incorporate the uncertainty on the evolution- ary tree structure. By simulation studies and benchmarks on real data sets, we show that CLIME 1.0 and CLIME 1.1 outperform traditional methods that use simple metrics (e.g., the Hamming distance or Pear- son correlation) to measure co-evolution between pairs of genes. 1. Introduction. The human genome encodes more than 20,000 protein- coding genes, of which a large fraction do not have annotated function to date [Galperin and Koonin, 2010].
    [Show full text]
  • A Framework to Identify Contributing Genes in Patients with Phelan-Mcdermid Syndrome
    www.nature.com/npjgenmed Corrected: Author Correction ARTICLE OPEN A framework to identify contributing genes in patients with Phelan-McDermid syndrome Anne-Claude Tabet 1,2,3,4, Thomas Rolland2,3,4, Marie Ducloy2,3,4, Jonathan Lévy1, Julien Buratti2,3,4, Alexandre Mathieu2,3,4, Damien Haye1, Laurence Perrin1, Céline Dupont 1, Sandrine Passemard1, Yline Capri1, Alain Verloes1, Séverine Drunat1, Boris Keren5, Cyril Mignot6, Isabelle Marey7, Aurélia Jacquette7, Sandra Whalen7, Eva Pipiras8, Brigitte Benzacken8, Sandra Chantot-Bastaraud9, Alexandra Afenjar10, Delphine Héron10, Cédric Le Caignec11, Claire Beneteau11, Olivier Pichon11, Bertrand Isidor11, Albert David11, Laila El Khattabi12, Stephan Kemeny13, Laetitia Gouas13, Philippe Vago13, Anne-Laure Mosca-Boidron14, Laurence Faivre15, Chantal Missirian16, Nicole Philip16, Damien Sanlaville17, Patrick Edery18, Véronique Satre19, Charles Coutton19, Françoise Devillard19, Klaus Dieterich20, Marie-Laure Vuillaume21, Caroline Rooryck21, Didier Lacombe21, Lucile Pinson22, Vincent Gatinois22, Jacques Puechberty22, Jean Chiesa23, James Lespinasse24, Christèle Dubourg25, Chloé Quelin25, Mélanie Fradin25, Hubert Journel26, Annick Toutain27, Dominique Martin28, Abdelamdjid Benmansour1, Claire S. Leblond2,3,4, Roberto Toro2,3,4, Frédérique Amsellem29, Richard Delorme2,3,4,29 and Thomas Bourgeron2,3,4 Phelan-McDermid syndrome (PMS) is characterized by a variety of clinical symptoms with heterogeneous degrees of severity, including intellectual disability (ID), absent or delayed speech, and autism spectrum disorders (ASD). It results from a deletion of the distal part of chromosome 22q13 that in most cases includes the SHANK3 gene. SHANK3 is considered a major gene for PMS, but the factors that modulate the severity of the syndrome remain largely unknown. In this study, we investigated 85 patients with different 22q13 rearrangements (78 deletions and 7 duplications).
    [Show full text]
  • Diagnóstico Molecular Do Transtorno Do Espectro Autista Através Do Sequenciamento Completo De Exoma Molecular Diagnosis Of
    Universidade de São Paulo Tatiana Ferreira de Almeida Diagnóstico molecular do transtorno do espectro autista através do sequenciamento completo de exoma Molecular diagnosis of autism spectrum disorder through whole exome sequencing São Paulo 2018 Universidade de São Paulo Tatiana Ferreira de Almeida Diagnóstico molecular do transtorno do espectro autista através do sequenciamento completo de exoma Molecular diagnosis of autism spectrum disorder through whole exome sequencing Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Biologia/Genética. Versão corrigida. Orientador(a): Maria Rita dos Santos Passos-Bueno São Paulo ii 2018 Dedico esta tese à ciência, e a todos os seus amantes. O, reason not the need! Our basest beggars Are in the poorest thing superfluous. Allow not nature more than nature needs, Man’s life is cheap as beast’s. Thou art a lady: If only to go warm were gorgeous, Why, nature needs not what thou gorgeous wear’st Which scarcely keeps thee warm. But, for true need- You heavens, give me that patience, patience I need! You see me here, you gods, a poor old man, As full of grief as age; wretched in both.” iii King Lear, William Shakespeare, 1608 Agradecimentos Agradeço em primeiro lugar ao meu grande amor Danilo, sem ele, há 11 anos, essa jornada não teria começado, a vida não teria me surpreendido e eu estaria de volta em casa, com todos os peixinhos do mar, e infeliz pelo resto da minha vida. Agradeço minha família, principalmente minha mãe Flávia e meu pai Airton por sacrificarem com mínimos protestos, as melhores horas que passaríamos juntos para que eu cumprisse meu trabalho.
    [Show full text]
  • Respiratory Chain Activity and Protein Expression in Skeletal Muscles from High and Low Feed Efficient Swine Within the Same Genetic Line
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2020 Respiratory Chain Activity and Protein Expression in Skeletal Muscles from High and Low Feed Efficient Swine within the Same Genetic Line Earsie L. Alcorn de Feliz University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Animal Experimentation and Research Commons, Cellular and Molecular Physiology Commons, Food Science Commons, and the Meat Science Commons Citation Alcorn de Feliz, E. L. (2020). Respiratory Chain Activity and Protein Expression in Skeletal Muscles from High and Low Feed Efficient Swine within the Same Genetic Line. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3802 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Respiratory Chain Activity and Protein Expression in Skeletal Muscles from High and Low Feed Efficient Swine within the Same Genetic Line A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Food Science by Earsie L. Alcorn de Feliz Union University Bachelor of Science in Biology, 1975 University of Arkansas Master of Science in Natural Science, 1977 July 2020 University of Arkansas This dissertation is approved for recommendation to the graduate council. Charles V. Maxwell, Ph.D. Dissertation Director Navam Hettiarachchy, Ph. D. Gisela F. Erf, Ph.D. Committee Member Committee Member Zelpha B. Johnson, Ph.D. Luke Howard, Ph.D. Committee Member Committee Member ABSTRACT Current as well as past studies have provided evidence for a connection between macroeconomic/agricultural and cellular/biochemical basis of feed efficiency (FE; gain:feed) in farm animal production.
    [Show full text]